Homework 24: Due Thursday, December 5

Please note that you will not be able to turn in revisions for this homework assignment.

1. (Extra Credit – Worth 5 points; all or nothing) Find the maximum and minimum values of the function \(f(x, y, z) = x^4 + y^4 + z^4 \) subject to \(x^2 + y^2 + z^2 = 1 \).

 Hint: Be sure to consider the case when variables are zero. You should get a total of 26 points. Some of them will be maximums, some minimums, some in between.

2. Find the extreme value(s) of \(f(x, y, z) = x^2 + y^2 + z^2 \) subject to \(x + y + z = 12 \).

3. Find the extreme value(s) of \(f(x, y, z) = yz + xy \) subject to the constraints \(xy = 1 \) and \(y^2 + z^2 = 1 \).

4. Find the absolute minimum(s) and absolute maximum(s) of \(f(x, y) = 2x^2 + 3y^2 - 4x - 5 \) over the domain

 \[D = \{(x, y) \mid x^2 + y^2 \leq 1\} \]

 Hint: Find the critical points of the function on \(D \). Then find the extreme values of \(f \) restricted to \(x^2 + y^2 = 1 \), which is the boundary of \(D \). Compare the points you find to determine which is the absolute maximum and absolute minimum. Be sure to consider the cases when the variables are zero.