ABSTRACT

This is a no-holds barred approach using the full range of SAS® procedures to produce a one-page dashboard of visual displays to support decision-making in a university setting. The changing demography of the student population together with a wealth of technology-enabled instructional methods have enabled faculty to design coursework to effectively teach a diverse group of students. The usual student roster is inadequate and can be replaced by a student profile rich with graphics developed with ODS and SAS/GRAPH procedures using the results of SAS/STAT procedures with a little help from the REPORT procedure.

INTRODUCTION

In the face of the multitudes of data produced from coursework, surveys, and other educational processes, the reports used to design and administer those processes are found to be inadequate. I can design Microsoft® Word reports to be at least as informative as your quarterly mutual funds report for instructional purposes. Using SAS® and ODS RTF, it is possible to design a one- or two-page report from a menu of graphic displays, tables and summaries. The impetus for this application came from the realization that in a student-centered university the classroom is becoming increasingly bimodal—differentiated by major, age or some other characteristic.

ONE SCENARIO

An innovative faculty member requests more information on the students she will meet for the first time on the first day of class. She has lots of questions. She wants to know more about their skills, study habits, what their majors are, what their plans are, and how their performance compares to other classes. I have access to warehouses of data, SAS® version 8.2, a toolkit of my favorite procedures, all the resources on the www.sas.com and from the Penn State University SAS Users Group. My job is to develop a one-page class profile that will answer all her questions.

CREATE THE CHARTS AND GRAPHS FIRST!

The first task is to create the charts and graphs that can be included in the report. The data come from warehouses, surveys, or classroom activities and can include the results of statistical analyses or predications derived from the REGRESSION or LOGISTIC procedures, for example. SAS/Graph directs charts and plots to WORK.GSEG using the names gchart, gchart1, gchart3, etc. and gplot, gplot1, gplot2, etc. These jpeg images will later be included in the REPORT procedure.

/* gchart and gchart1 examples */

goptions reset=all device=jpeg
hsize=7.8cm vsize=7.8cm htitle=1 htext=1;
pattern1 color=blue;

proc gchart data=chartthis;
title "Hours Studying/Week";
vbar hours/type=cpercent noheading;
run;
quit;

/* gplot example (blue, red, green)*/
goptions reset=all device=jpeg
hs=5.8cm vs=5.8cm;
symbol1 interpol=std1PT cv=blue co=blue width=1;
symbol2 interpol=std1PJ cv=red co=white width=1;
axis1 width=1 label=none;
axis2 order=(1.00 to 4.00 by .25) width=1 label=none;
proc gplot data=plotthis uniform ;
plot GPA*Year
 haxis=x1 vaxis=x2 overlay;
quit;

LEARNING TO USE TEMPLATES AND ODS RTF

Customized styles can be created using the TEMPLATE procedure and text-formatting instructions can be included in RTF code. The following are examples of directing a table and a comment to the RTF destination, file Class1 in the C:\ClassProfiles directory.

%let path=C:\ClassProfiles;
ods escapechar='^';
proc template ;
declare style styles.profiles;
parent=styles.rtf;
 style table from table/ just=left
preimage='c:\nesug2003\psu.jpg' ;
end;
run;
ods rtf file="&path\Class1.rtf"
 title="The Full Monte" startpage=no style=styles.profiles;
proc tabulate data=AnalyzeThis;
 tables ThisCourse_grade = 'Prior Course Grade' All, NextCourse_grade = 'This Course Grade' * pctn<NextCourse_grade All>='%';
 class ThisCourse_grade NextCourse_grade;
run;

data _null_; file print ODS;
 length Analysis $100;
 Analysis=' ';
 put _ODS_ "Based on previous students' performance, 62% of these students will earn a B or better.";
run;

THE RESULTS

<table>
<thead>
<tr>
<th>Prior Course Grade</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D,F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>A</td>
<td>55.26</td>
<td>39.47</td>
<td>2.63</td>
<td>2.63</td>
</tr>
<tr>
<td>B</td>
<td>9.30</td>
<td>44.19</td>
<td>34.88</td>
<td>11.63</td>
</tr>
<tr>
<td>C</td>
<td>.3000</td>
<td>40.00</td>
<td>30.00</td>
<td></td>
</tr>
<tr>
<td>D,F</td>
<td>.2000</td>
<td>20.00</td>
<td>60.00</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>23.58</td>
<td>38.68</td>
<td>23.58</td>
<td>14.15</td>
</tr>
</tbody>
</table>

Analysis

Based on previous students' performance, 62% of these students will earn a B or better.

ADDING COMMENTS TO THE REPORT

Summary comments and analyses can be added to the report and can eventually be created from canned comments with variable input from procedures such as MEANS.

data summaries;
 length comments comments1 comments2 comments3 comments4 $200;
 comments= "These are good students with a median SAT Math score of 640 and a median high school GPA of 3.7.";
 comments1= "These are mostly third semester students taking a median of 15 credits this semester";
 comments2= "This is gplot2";
 comments3= "These students expect to study an average of 20 hours per week.";
 comments4= "One-third of these students expect to major in Mechanical Engineering";
run;

THE REPORT PROCEDURE

This REPORT procedure defines three columns for plots and comments.

proc report noheader nofs list;
 compute before _page_ / style={font_size=8 font_weight=bold} ;
 line @ 15 "Predictors of Success";
 endcomp;
 rbreak before/;
 rbreak after/;
 column comments comments1 comments2;
 define comments / style={cellwidth=6cm};
 define comments1 / style={cellwidth=6cm};
 define comments2 / style={cellwidth=6cm};
 compute comments; call define (_COL_,"GRSEG","gseg.gplot"); endcomp;
 compute comments1; call define (_COL_,"GRSEG","gseg.gplot1"); endcomp;
 compute comments2; call define (_COL_,"GRSEG","gseg.gplot2"); endcomp;
run;
quit;
This REPORT procedure defines two columns for charts and comments.

```sas
proc report noheader nofs list;
compute after _page_ /
  style={font_size=8 font_weight=bold};
line @5 "Student Expectations" @50 "Student Performance";
endcomp;
rbreak before/;
rbreak after/;
column comments3 comments4;
define comments3/style={cellwidth=8cm};
define comments4/style={cellwidth=8cm};
compute comments3;
call define (_COL_,"GRSEG","gseg.gchart");
endcomp;
rbreak after/;
compute comments4;
call define(_COL_,"GRSEG","gseg.gchart1");
endcomp;
run;
quit;
ods _all_ close;
```

CONCLUSION

This paper shows an example of using SAS® to enhance the information used for decision-making in an instructional setting. Using SAS® to improve data analysis and reporting at the Pennsylvania State University adds value to the reports that professors and students receive.

FUTURE WORK

The versatility of SAS® procedures and ODS RTF exhibited in this “First Day of Class” scenario indicates that it is possible to develop a menu-driven application with data input from a variety of sources and customized reports composed of preprogrammed modules for a variety of scenarios: “Student Performance”, “Mid-Semester Review”, “Program Evaluation”, and “Retention and Progression”. I plan to develop several of these scenarios and make them available on the intranet using SAS/IntrNet.

THE THREE-COLUMN REPORT

<table>
<thead>
<tr>
<th>Predictors of Success</th>
</tr>
</thead>
<tbody>
<tr>
<td>These are good students with a median SAT Math score of 640 and a median high school GPA of 3.7.</td>
</tr>
</tbody>
</table>
THE TWO-COLUMN REPORT

Student Expectations

<table>
<thead>
<tr>
<th>Hours Studying/Week</th>
<th>Top Majors</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUMULATIVE PERCENT</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>36911223344258147036925</td>
<td></td>
</tr>
</tbody>
</table>

These students expect to study an average of 20 hours per week. One-third of these students expect to major in Mechanical Engineering.

REFERENCES

ACKNOWLEDGEMENTS
SAS® is a registered trademark of SAS Institute, Inc.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:
Sue Cross
The Pennsylvania State University
23 Willard Building
University Park PA 16802
(814) 863-2598
slc@psu.edu