Some Simple Problems from Chapter 15

1. What must be the magnitude of a uniform electric field, in order that an electron initially at rest gets an acceleration of 2×10^{12} m/s2? If the electron is initially at rest how long will it take to get a speed of 5×10^6 m/s? Ans.: $11.4 \, \frac{N}{C}$, 2.5×10^{-6} s

2. By how much will the acceleration due to gravity be changed for a charged mass of 5 g falling downward towards the surface of the earth? The mass is charged with a charge of 4×10^{-8} C. The magnitude of the electric field on the surface of the earth is 100 N/C. Ans.: $(a-g) = \frac{E q}{m} = 0.8 \times 10^{-3} \frac{m}{s^2}$

3. At 2 opposite vertices of a square with sides of length 50 cm are located identical positive charges each of charge 10^{-8} C and at the third vertex is a charge of the same magnitude but opposite sign. Calculate the magnitude of the electric field at the fourth vertex. Ans.: $E = \frac{k q}{2a^2(2 \sqrt{2} - 1)} = 3.3 \times 10^2 \, \frac{N}{C}$

4. At the vertices of a hexagon with sides of length, a, are located charges identical in magnitude but with charges at successive vertices alternating in sign. Calculate the magnitude of the electric field at the center of the hexagon.