PSU Zephyrus
HPA Sport

Alan “Awen” Campbell
Mark DeAngelo
Nate “Dogg” Depenbusch
John “Jack Bauer” Quindlen
Daniel “Freshman” Melly
Kevin “Unfair Advantage” Show
Jason Slaby
David “Wes” Vinson
David Whapham
Purpose

- To direct interest in Human-Powered Aircraft towards the design for production and ongoing development of aircraft suited to athletic competition

- In particular it is necessary to specify and design aircraft able to operate in normal reasonable weather conditions as encountered in the United Kingdom
Considerations

- May be staged over land or water at discretion of entrant within the UK
- Electric power is permitted for the sole purpose of control, including auto-stabilization and propeller governing.
- No communication or external assistance during the flight
The Course

Course marker

Wind direction

Start & finish
Clockwise flights

500 meter sides

Start & finish
Anticlockwise flights
Considering constant minimal wind and minimal path, flight will take 3 minutes for one revolution at 10m/s airspeed.

Allowed 1 hr. to recuperate

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembly from</td>
<td>30 Minutes</td>
</tr>
<tr>
<td>transporter to takeoff</td>
<td></td>
</tr>
<tr>
<td>Recuperation</td>
<td>1 hr between circuits</td>
</tr>
<tr>
<td>Speed</td>
<td>Two flights opposite directions</td>
</tr>
<tr>
<td></td>
<td><7.00min (>10m/s, 22.4mi/h, 20 knots)</td>
</tr>
<tr>
<td>Dismantle time</td>
<td>30 minutes</td>
</tr>
</tbody>
</table>
Weather

- Mean wind speed must not be less than 5.0 meters/second (11.2 mph)
- Periods of relative calm (wind speed is less than 5.0 m/s over a time of 20 seconds or more are “unacceptable.”)
- Wind shall be measured by an anemometer provided by the judges at a height not more than 10m above the ground and verified by an independent authority in the U.K.
Transportation

• Before and after the flights, the airplane must be assembled, disassembled and stowed within 30 minutes.

• The whole machine must be stowed into a roadworthy container no longer than 8.0 meters (26.24 ft.) internally (more on this later).
Rules Overview

<table>
<thead>
<tr>
<th>Stowage</th>
<th>Roadworthy vehicle, weatherproof container not longer than 8.0 m (26.24ft) internally</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Winds</td>
<td>10 knots (11.2 mi/h, 16.4 ft/s), >18 km/h recorded at 10m (33ft)</td>
</tr>
<tr>
<td>Assembly from transporter to takeoff</td>
<td>30 Minutes</td>
</tr>
<tr>
<td>Start/Finish line height</td>
<td>5.0 m (16.4ft)</td>
</tr>
<tr>
<td>Recuperation</td>
<td>1 hr between circuits</td>
</tr>
<tr>
<td>Speed</td>
<td>Two flights opposite directions in less than 7 min (>10m/s, 22.4mi/h, 20 knots)</td>
</tr>
<tr>
<td>Dismantle time</td>
<td>30 minutes</td>
</tr>
<tr>
<td>Entry</td>
<td>1/20th scale 3-view drawing depicting assembled and stowed for transportation</td>
</tr>
<tr>
<td>Course</td>
<td>One circuit in each direction, two flights in opposite directions per circuit must be completed in under 7 minutes</td>
</tr>
</tbody>
</table>
Figure 4 Aircraft specific power for various HPAs.
Specific Power

- Similar aircraft require 6 - 7 watts per kilogram of pilot weight to fly at our required speed
 - For a 55 kg (120 lb) pilot this means approximately 330 - 385 watts
Specific Power

- Drela discovered power output is linearly related to weight of pilot
- Also, power required is proportional to the gross weight of the aircraft
- Therefore, for every weight increase in the airplane, the necessary weight of the pilot increases as well
Pilot Power Available

![Graph showing pilot power available over time. The graph plots power (in HP) on the y-axis and time in minutes on the x-axis. There are two markers: one for 'First class athlete' and another for 'World record'. The power decreases significantly as time increases.]
Power Available

- For sustained flights power required must be less than 70% of max power

- College level athlete can sustain around .5 - .6 hp (350 - 450 watts) for our 3.5 minute timespan
Parent Aircraft Comparison

<table>
<thead>
<tr>
<th>PLANE</th>
<th>MUSCULAIR 1</th>
<th>MUSCULAIR 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>HP all-purpose</td>
<td>HP speed plane</td>
</tr>
<tr>
<td>Builder</td>
<td>Gunter Rochelt. Munchen, W. Germany</td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td>High-wing monoplane with rear prop.</td>
<td></td>
</tr>
<tr>
<td>Span</td>
<td>22m (20m for speed)</td>
<td>19.5m</td>
</tr>
<tr>
<td>Length</td>
<td>7.1m</td>
<td>6.0 m</td>
</tr>
<tr>
<td>Fuselage height</td>
<td>2.12m</td>
<td>1.5m</td>
</tr>
<tr>
<td>Wing area</td>
<td>16.5</td>
<td>11.7 sq. m.</td>
</tr>
<tr>
<td>Aspect ratio</td>
<td>29.3</td>
<td>32.5</td>
</tr>
<tr>
<td>Airfoil</td>
<td>Wortmann FX76 MP root 16% thick</td>
<td>FX76 MP modified by</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dieter Althaus</td>
</tr>
<tr>
<td>Empty weight</td>
<td>28 kg</td>
<td>25 kg</td>
</tr>
<tr>
<td>Flying weight</td>
<td>82 kg</td>
<td>78 kg</td>
</tr>
<tr>
<td>(with passenger 110 kg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wing loading</td>
<td>49 N/sq.m.</td>
<td>65.4 N/sq.m.</td>
</tr>
<tr>
<td>Min. flying speed</td>
<td>7.5 m/s</td>
<td>10.0 m/s</td>
</tr>
<tr>
<td>Min. power at speed</td>
<td>200 W @ 8.5 m/s</td>
<td>250 W @ 10 m/s</td>
</tr>
<tr>
<td>Full power at speed</td>
<td>265 W @ 1 I m/s</td>
<td>315 W @ 12 m/s</td>
</tr>
<tr>
<td>Min. sink rate</td>
<td>0.22 m/s</td>
<td>0.27 m/s</td>
</tr>
<tr>
<td>Max. glide ratio</td>
<td>1:38</td>
<td>1:37</td>
</tr>
<tr>
<td>Propeller</td>
<td>Solair 1 mod.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.72m dia.</td>
<td>2.68m dia.</td>
</tr>
</tbody>
</table>

- Musculair 2 required only 315 watts to fly at 12 m/s (26.8 mph)
- This is well within our acceptable range
Chain vs. Gears

• Efficiency
• Weight
• Simplicity of Construction
 • Easy to build/repair
Power

Three gears located at pedals for varied flight conditions (e.g. takeoff, wind)

Elliptical chainring - leads to constant power output throughout the pedal stroke
~ 100 g

Crank arms ~ 400 g

Bracket ~ 200 g
Chain - 90 degree turn from chainring to upper gear. Approximately 500 links (8ft loop)
~ 1000 g

Derailleur - rear bicycle derailleur to keep tension in chain
~ 200 g

Upper Gear - transfers power from chain to drive-shaft
~ 40 g
Gear Ratios

- Target pedal RPM = 90 - 120
- Propeller RPM in steady flight ~ 200
- 1:2 for middle gear, higher and lower gears available
Controls

Parent Aircraft

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>Span</th>
<th>Roll</th>
<th>Pitch</th>
<th>Yaw</th>
<th>Stick type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Musculair 1</td>
<td>20m (for speed)</td>
<td>Self-centering ailerons</td>
<td>All moving elevator</td>
<td>Springs keep rudder in neutral point</td>
<td>3 axis joystick</td>
</tr>
<tr>
<td>Musculair 2</td>
<td>19.5m</td>
<td>Sideways tilting of stick</td>
<td>Rotation of handgrips</td>
<td>Rotation about vertical axis</td>
<td>3 axis joystick</td>
</tr>
<tr>
<td>Velair 88</td>
<td>21.7m</td>
<td>Electric Ailerons</td>
<td>All moving, "bungee" trim, push rods</td>
<td>All moving, push rods</td>
<td>3 function cardan sidestick</td>
</tr>
<tr>
<td>Velair 89</td>
<td>23.3m</td>
<td>Electric rotating wing tip</td>
<td>All moving, "bungee" trim, push rods</td>
<td>All moving, push rods</td>
<td>3 function cardan sidestick</td>
</tr>
</tbody>
</table>
Controls

Initial Design

• Parent aircraft approach
• Requirements
 • Light weight
 • Easy to construct
 • Simple to train on
Controls

- Our design
 - Side stick control
 - 3-axis vs. two 2-axis sticks
 - Variable pitch prop
 - Electronics
- All moving tail
- Ailerons to control roll
Controls

Electronics

• Rules allow us to use one source of electrical power
• Must be used solely for control
 • Includes auto-stabilization and propeller governing
• No electronics may be used for communication
Basic Design- Fuselage

Design characteristics motivated by rules:

• Required Airspeed (22 mph)
 ● Low Reynolds Number
 ● Induced drag will be HUGE factor
• Human assisted takeoff (stabilization only)
 ● Landing Gear required
• Suitable for small batch production or assembly from kit
 ● Simple, cost efficient construction methods
Basic Design- Fuselage

Design characteristics motivated by performance goals:

• Weight
 • Affects physiological performance
 • Pilot stamina and strength
• Comfort
 • Affects physiological performance
 • Ease of control and awareness
 • Biological Implications
Basic Design- Fuselage

Resultant Key Features:

• Houses reclined pilot
• Houses power generation equipment
 ● Drive train
 ● Gears
 ● Pedals
 ● Shafts
• Attached Landing Gear (retractable?)
• Ventilation System
• Windshield
Construction Methods- Fuselage

• Marathon Eagle
 • Rigid Composite Construction
 • Minimize fuselage width
 • Allows for highly contoured shape
 • Floating Tab
 • Cancel induced drag associated with side slip maneuvers

• Daedalus
 • Frame Design
 • Graphite Epoxy tubes
 • Joined with bonding, lashing kevlar
 • Pod Shell
 • Made from Kevlar
• Lexan Windshield
Wing

• 20 m Spar
• Area = 14.7 m^2
• Root chord = 0.8m
• Tip chord = 0.6m
• Trapizoidal
• Linear taper
• All internal bracing

• Three sections
• Center = 7m
• Outside = 6.5m
• Airfoil: FX76 MP
• Modified for speed
• Re region of 600,000
• C_l around 0.8
Wing 2 - View
Wing Construction

- Tube Spar with Spar Caps
 - Tube: carbon fibers wound at +-45
 - Spar Caps: carbon laid at 0,90
- Styrofoam Ribs: minimum carbon reinforcement
- Thin (≈4mm) foam on leading edge
- Covered entirely with Mylar
Empennage

- Horizontal
 - Span = 3m
 - Chord = 0.57m
- Vertical
 - Height = 1.5m
 - Chord = 0.76m
- All Moving
Trailer

- Kremer Competition requirements
 - 8 m (26.24 ft) long internally
 - “weatherproof container”
 - Stow into a roadworthy vehicle

- UK trailer requirements
 - Mainly depends upon weight of towing vehicle

- PennDOT trailer requirements
 - Fall under “Specially Constructed Vehicle” vehicle code
UK Trailer Requirements

• If *towing vehicle* has gross weight >= 3.5 tonnes (7716 lbs)
 • Width: 2.55 m (8.37 ft) Length: 12 m (39.4 ft)

• If gross weight of towing vehicle is < 3.5 tonnes (7716 lbs)
 • Width: 2.3 m (7.55 ft) Length 7 m (23.0 ft)

• In both cases, maximum length of both trailer and vehicle must not exceed 18 m (59.1 ft) or 18.75 m (61.5 ft), respectively
PennDOT Regulations

- For trailers 3000 lbs or less
 - Must be inspected by mechanic
 - Comply with normal safety requirements
 - No inspection sticker, nor required annual safety inspection
- For trailers over 3000 lbs
 - More complicated with written forms and annual safety inspections
What this tells us

- Optimum Trailer Dimensions:
 - Width: 2.5 m
 - Length: 8 m
 - Height: not specified, but want to limit between 3 m – 4.5 m
 - Volume: 60 m3 – 90 m3
General Aircraft Construction

• Weight
 • Based on parent aircraft (Musculair 1, 2 etc), our goal is an empty weight of approximately 60 pounds.
 • With a reasonable assumption for the weight of the pilot, our takeoff weight should be less than 200 pounds.
• Feasibility?
Initial Weight Buildup

<table>
<thead>
<tr>
<th>Component</th>
<th>Appx. Weight (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wing (Spar)</td>
<td>15.0</td>
</tr>
<tr>
<td>Fuselage</td>
<td>20.0</td>
</tr>
<tr>
<td>Drive Train</td>
<td>5.0</td>
</tr>
<tr>
<td>Controls</td>
<td>5.0</td>
</tr>
<tr>
<td>Propeller</td>
<td>7.0</td>
</tr>
<tr>
<td>Empennage</td>
<td>4.0</td>
</tr>
<tr>
<td>Total</td>
<td>56.0</td>
</tr>
</tbody>
</table>

This is a very approximate estimation, and is subject to change upon further analysis.
Materials

- Carbon Fiber spar
- Weight and strength considerations (as opposed to aluminum)
- Commercially made (sponsors??)
- Styrofoam ribs, Mylar covering
- Carbon tubes framing, Mylar/Fiberglass(?) covering for fuselage
Training Regimen

• We want a program that assimilates the pilot to the actual flight conditions.
 • Cycling
 • Zephyrus Bike: Wheeled Model
 • Gears
 • Chainring
 • Position
 • Repetition
 • Muscle Memory and Power
 • Short Bursts (Able to put out necessary power for 4-5 minutes at a time)
 • Recovery Period
Training Regimen

• Control
 • Again, Repetition
 • Stick experience (Instinctual motion)
 • Flying experience (Sailplane?, Small powered aircraft?)
 • Implement on bicycle
 • Try to simulate real conditions as closely as possible
 • Problems: effective mass effects, ways to model?

• Diet
 • Regulated…more details to be worked out

• Kinesiology Department
Sponsorship

- Rules
 - Sport—No rule specifically mentioned concerning sponsorship

 - Information from Virginia Tech indicates that no sponsorship is allowed on the airplane

 - Sponsorship opportunities limited by the lack of decals on aircraft

 - Various companies can be approached for Sponsorship

 - MIT’s Daedalus used a variety of sponsors

 - NASA, Anheuser Busch, United Technologies Corporations
ONE FINAL REMINDER...
£ 100,000 > £ 50,000

$/£ = 2.08
as of 5:45 PM GMT
on 5 November 2007
Questions?
¿Preguntas?
Fragen?
Domande?
Spørsmål?
вопросы?
質問?
SENSE

This picture makes none
Let’s pray this man knows how to land