PSU Zephyrus

HPA Sport

Alan “Awen” Campbell
Jason Slaby
Kevin “Unfair Advantage” Show
“GI” Jess Tramaglini
Charlie Allen
Dave Whapham
Nate “Dogg” Depenbusch
Daniel McIntosh
Mike McTague
Kirk “H. Potter” Miles
Mark DeAngelo
Sylvie Garrett
John “Jack Bauer” Quindlen
David “Wes” Vinson
Casie Krady
Patrick Doyle
Daniel “Freshman” Melly
Zephyrus (Greek Ζεφύρος) is the Classical Greek god of the west wind, a wind that originates in the west and blows east.

The most favorable of the four winds, Zephyrus is associated with the coming of spring.
Wing

- Dimensions
 - Span = 17.5m
 - Root chord = .73m
 - Tip chord = .52m
 - Thickness = 16% - 14%
 - Airfoil = FX 76 MP (modified)
- Span broken into 3 sections
 - 6m center section
 - 5.5m outboard sections
 - .25m winglets
Wing
Construction

- Carbon fiber tube spar
 - Woven ± 45°
 - Spar caps woven at 0°, 90°
- Foam ribs
 - Minimal use of carbon fiber rovings for support
- Very thin foam-fiberglass sandwich panel covering entire wing
- Wing covered in Mylar film
Empennage

- First iteration sizes based on scaling from parent aircraft (Musculair 2)
- Dimensions
 - Horizontal
 - Span = 2.89m
 - Chord = .71m - .42m (linear taper)
 - Vertical
 - Height = 1.7m
 - Width = 1m
Fuselage

- Fairing
 - Lightweight
 - Does not bear structural loads
 - To reduce drag
- Structure
 - Hold pilot
 - Load bearing
Dimensions

ALL DIMENSIONS IN METERS
DIMENSIONS BASED FROM 0.778 m PILOT (5’10’’)
Structure
Materials

- Fuselage cage from wired
 - Easily molded
 - Light
- Bottom of fuselage from fiberglass
- Remainder: Mylar and Lexan
Primary Hardpoint

- Minimal breaking of skin
- Aerodynamic and structural concerns
- Needs to be strong in tension
- Lift
- Torsional strength still a concern
Propeller

- Target RPM - 200-300
- Pedal RPM (fixed) - 90-120 (max)
- Gear Ratio (fixed) 1:2.5

- Propeller diameter:
 - Musculair 1 2.72m
 - Musculair 2 2.68m
- Determined largely by design of aircraft
Propeller

- What has been done:
 - Contacted Dr. Mark Drela of MIT for XRotor program
 - Research

- What will be done:
 - Numbers! —— XRotor
 - Scale model of propeller (Water tunnel?)
Propeller Construction

- Can certainly be done on-site
- Foam core
- Durable covering
 - Kevlar (Daedalus) or carbon fiber
Drive Train

- Elliptical gear at the feet
- Constant power output through stroke
- Unconventional chain to reduce weight
 - Reinforced perforated belt
- Carbon fiber drive-shaft to propeller
HPA Flight Simulator

Goals:

- Use as a training aid
- Understand aircraft performance based on necessary conditions
- Utilize and modify current set up

Current work:

- Choosing software
- Meeting with Dr. Horn and grad students
Flight Gear

Pros

› Easy to program (Fortran)
› Students with experience available for help (Dr. Horn)
› Open source, source code available

Cons

› No wind or ground on Dr. Horn’s simulator
Microsoft Flight Simulator

- **Pros**
 - Already contains wind parameters
 - Inputs (throttle) can be modified

- **Cons**
 - Modeling software difficult to use
Pros

- Easy to use modeling software
- Very accurate flight characteristics

Cons

- Not open source
- Different approach to modeling

X-Plane
Future Work

- Continue with X-Plane and Flight Simulator
- Working model by start of spring semester
- Start work on hardware (bicycle throttle)
Challenges:

- Pilot Power Output
 - Needs to power aircraft
- Pilot Core Stability
 - Needs to control aircraft
- Aerobic vs. Anaerobic Training
 - Sprint and Endurance
Pilot Training

- Three main aspects:
 - Power Training
 - Stability Training
 - Strength Training
Interval Training

- One set on, One set off:
 - Trainee does a set at peak power, then does an equal length set at low power. Repeat.

- Rotate fixed and non-fixed cycling work.
 - Inside work on stationary bike, outside work with modified recumbent bike.
Improves sprinting and endurance performance

Work way up and down the pyramid
Stability Training

- Improve the pilot’s core strength.
- Important to be able to remain fairly still in flight to be able to effectively control the aircraft.
Strength Training

- Promotes all around fitness and health
- Makes it easier to increase strength and power output in specific areas
Trailer

- U.S. and U.K. roadworthy
- Needs to be easily accessible
What We Are going to Do

- Open vs. Box Trailer
- Buy vs. Build
- Dimensions: 8m x 2.35m x 2.8m (internal)
Future Considerations / Work

- Resize as the aircraft dimensions change
- Unloading optimization
 - Time, accessibility, part safety, etc.
- Shipping logistics
- Manufacturing of final design
- Storage
Future

- Finalize design
- Website
- Cost build-up
 - Materials
- Construction location
 - Will it work?
- Sponsorship
 - Rules?
Far Future

- Scoping out flight site (UK)
- Test site
- Pilot(s)