Classical nucleation theory of homogeneous freezing of water: thermodynamic and kinetic parameters

Luisa Ickes,* André Welti,a Corinna Hooseb and Ulrike Lohmanna

The probability of homogeneous ice nucleation under a set of ambient conditions can be described by nucleation rates using the theoretical framework of Classical Nucleation Theory (CNT). This framework consists of kinetic and thermodynamic parameters, of which three are not well-defined (namely the interfacial tension between ice and water, the activation energy and the prefactor), so that any CNT-based parameterization of homogeneous ice formation is less well-constrained than desired for modeling applications. Different approaches to estimate the thermodynamic and kinetic parameters of CNT are reviewed in this paper and the sensitivity of the calculated nucleation rate to the choice of parameters is investigated. We show that nucleation rates are very sensitive to this choice. The sensitivity is governed by one parameter – the interfacial tension between ice and water, which determines the energetic barrier of the nucleation process. The calculated nucleation rate can differ by more than 25 orders of magnitude depending on the choice of parameterization for this parameter. The second most important parameter is the activation energy of the nucleation process. It can lead to a variation of 16 orders of magnitude. By estimating the nucleation rate from a collection of droplet freezing experiments from the literature, the dependence of these two parameters on temperature is narrowed down. It can be seen that the temperature behavior of these two parameters assumed in the literature does not match with the predicted nucleation rates from the fit in most cases. Moreover a comparison of all possible combinations of theoretical parameterizations of the dominant two free parameters shows that one combination fits the fitted nucleation rates best, which is a description of the interfacial tension coming from a molecular model [Reinhardt and Doye, J. Chem. Phys., 2013, 139, 096102] in combination with the activation energy derived from self-diffusion measurements [Zobrist et al., J. Phys. Chem. C, 2007, 111, 2149]. However, some fundamental understanding of the processes is still missing. Further research in future might help to tackle this problem. The most important questions, which need to be answered to constrain CNT, are raised in this study.

1 Introduction

Since the first freezing experiments of Fahrenheit in 1753, many studies have elaborated the phase transition of supercooled water. Various experiments revealed that the freezing temperature of pure water droplets has a strong dependence on the droplet size. While droplets 1 cm in diameter freeze at 240 K, 1 μm droplets remain liquid down to 233 K. To a smaller extent exposure time of droplets at a certain temperature influences the probability of droplet freezing. A higher cooling rate also lowers the freezing temperature for a given droplet size.

These observations can be well captured by Classical Nucleation Theory (CNT; here CNT always refers to Classical Nucleation Theory of freezing and not nucleation of particles from the gas phase), where the freezing process is described stochastically based on thermodynamic and kinetic parameters.1

When CNT was initially developed, our knowledge about supercooled water and its characteristics was not sufficient.2 Even today, there is still no complete physical model for liquid water, which takes into account all its unusual properties3 to constrain the theory. Therefore, there are thermodynamic and kinetic parameters in CNT where a comprehensive description is not available or at least not known over a broad temperature range. These unconstrained parameters are a major source of the uncertainties in the nucleation rates derived by CNT. As an example, the interfacial tension between water and ice σ_{iw} has not been measured below 273.15 K. This introduces major uncertainties in the energy barrier ΔG.

*a Institute of Atmospheric and Climate Science, ETH Zurich, Universitätsstrasse 16, Zurich, Switzerland. E-mail: luisa.ickes@env.ethz.ch; Tel: +41 44 632 7369
b Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany

Received 17th September 2014, Accepted 22nd December 2014
DOI: 10.1039/c4cp04184d
www.rsc.org/pccp
To reconcile CNT with the outcome of laboratory measurements, several approximations of thermodynamic and kinetic parameters have been proposed on the basis of indirect measurements or theoretical considerations.4 On the one hand, studies have focused on kinetics by adapting the kinetic prefactor, e.g. Hagen \textit{et al.},5 Pruppacher2 and Huang and Bartell,6 and on the other hand focused on thermodynamics by changing the interfacial free energy, e.g. Eadie.7 These different approaches have led to multiple formulations of the unconstrained CNT parameters and the theory itself.

The aim of this paper is to clarify and compare different formulations of CNT currently used in the research community. CNT is used in different research fields with many applications, e.g. biology, food industry and atmospheric sciences.8 The focus will be on atmospheric applications in this study. However, the theory itself and findings might also be important for other fields.

The freezing of small water droplets has a major influence on atmospheric cloud formation and the physical properties of clouds. Three major cloud types can be defined in terms of the phase: (i) water clouds, consisting of water droplets only, (ii) mixed-phase clouds, consisting of both ice and water particles, and (iii) ice clouds, consisting of ice crystals. Ice in clouds may form via homogeneous or heterogeneous ice nucleation mechanisms, depending on the temperature and supersaturation. In the absence of sufficient ice nuclei, homogeneous nucleation is the dominant process in cirrus clouds as well as anvils of cirrus clouds and anvil formation of deep convective clouds. Heterogeneous nucleation is the dominant process for mixed-phase clouds, and is initiated above the homogeneous freezing temperature (approx. 235 K) by impurities in the water droplets. Comprehensive definitions of heterogeneous nucleation mechanisms can be found in Vali.9 However, the focus of this study is on homogeneous nucleation.

The net radiative effect of a cloud depends on its physical properties like temperature, vertical and horizontal extent, optical thickness and phase and is therefore sensitive to freezing processes. The analysis presented in this study will help to develop CNT-based parameterizations of freezing in regional and global climate models to improve the representation of cirrus clouds and anvil formation of deep convective clouds.

In the following Section 2 the formalism of CNT and the thermodynamic and kinetic concepts making up CNT are introduced before Sections 3 and 4 examine the different thermodynamic and kinetic parameters and summarize the physical considerations or assumptions they are based on. The associated uncertainties are discussed in detail in Section 5.

In Section 6 we compare CNT, using the parameterizations for the thermodynamic and kinetic parameters as proposed by different authors, to measured homogeneous nucleation rates from 33 droplet freezing experiments using a variety of experimental techniques (Table 4). This comparison enables us to check the validity of different theoretical estimates of the two most important unconstrained parameters. This gives an indication which formulations are able to quantitatively reproduce laboratory data.

2 Classical nucleation theory

The key concepts and equations of CNT are summarized here. For details we refer to Volmer and Weber,1 Turnbull and Fisher,10 Fletcher,11 Dufour and Defay,12 Young,13 Debenedetti,14 Pruppacher and Klett15 and references therein.

Statistical fluctuation of molecules in supercooled liquid due to thermal vibration can lead to spontaneous formation of ordered solid molecule clusters, called ice embryos. The size of an embryo fluctuates as individual water molecules (monomers) are gained or lost from the liquid phase. However, at a certain critical embryo size additional incorporation of further water molecules to the crystal lattice becomes thermodynamically favored. This critical embryo (ice germ) may then allow the entire parent phase (supercooled liquid) to undergo a macroscopic phase transition: the droplet freezes.

CNT aims to describe this freezing process theoretically, in terms of a temperature-dependent nucleation rate [m$^{-3}$ s$^{-1}$] by a thermodynamic and a kinetic component (i.e. the temperature and pressure dependent energy barrier of spontaneous cluster formation and the rate of molecule incorporation into existing clusters). This nucleation rate can be understood as the formation rate of ice germs in a volume of water leading to freezing over time.

2.1 Thermodynamics of nucleation

The thermodynamic part of the nucleation rate gives the number of ice germs formed per unit volume of water at a given temperature. The formation of a spherical ice embryo in the liquid phase requires a decrease in entropy, and may form a barrier to nucleation. The corresponding change in Gibbs energy required to form an ice embryo containing n_h water molecules (ΔG_h) forms an energy barrier to nucleation. This barrier must be overcome when creating a spherical ice embryo in the liquid phase. It consists of a volume term and a surface term and can be derived by integrating the first law of thermodynamics for the thermodynamic potential G giving the following expression:

$$\Delta G_h = n_h \left(\mu_i(T) - \mu_w(T) \right) + 4\pi r_{embryo}^2 \sigma_{iw}(T).$$

where n_h is the number of water molecules in the ice embryo, $\mu_{iw}(T)$ the chemical potential of the water/ice phase as a function of temperature, r_{embryo} the radius of an assumed-spherical ice embryo (discussed further below) and σ_{iw} denotes the interfacial tension between ice and water.

The first term in eqn (1) (volume term) describes the decrease in chemical potential experienced by the embryo, relative to the parent phase due to the phase transition. This decrease can be expressed as a function of temperature and supersaturation with respect to ice (S_i):

$$\mu_i(T) - \mu_w(T) = -k_B T \ln \left(\frac{e_{iw}(T)}{e_{iw}(T)} \right) = -k_B T \cdot \ln S_i,$$

where k_B is the Boltzmann constant and S_i denotes the ratio of the saturation vapour pressures over water (e_{iw}) and ice (e_{iw}). The number of water molecules in the ice embryo can be
calculated from the ratio of the volume of the embryo to the volume of a water molecule in ice \(\frac{v_{\text{ice}}(T)}{} \):

\[
\frac{r_{\text{embryo}}^{3}}{v_{\text{ice}}(T)}
\]

In eqn (3) \(v_{\text{ice}}(T) \) can be calculated from the density of ice, which e.g. can be found as an empirical temperature dependent function in Pruppacher and Klett\(^{[15]} \) [eqn (6.2)]. Using eqn (2) and (3) the term can be expressed as:

\[
\frac{4\pi}{3} r_{\text{embryo}}^{3} \frac{v_{\text{ice}}(T)}{v_{\text{ice}}(T)} \cdot (-k_{B}T \cdot \ln S_{i}).
\]

The second term in eqn (1) (surface term) describes the energy needed to form the interface of the embryo. The formulation is based on the assumption that the ice embryo is spherical, with an interfacial tension similar to a macroscopic system (e.g. Anisimov\(^{[16]} \)). In addition, it is usually assumed that the curvature effect on interfacial tension is neglected by assuming that the curvature radius is considerably larger compared to the molecular dimensions (capillary assumption).\(^{[17]} \) Especially for small clusters, these assumptions may be violated and are major limitations for CNT.

The critical size of an ice embryo (i.e. germ size) is a function of temperature and supersaturation (or saturation ratio). It has been calculated using two different approaches. In the first, the critical germ radius is defined as the maximum of the energy barrier \(\Delta G \) (i.e. at the equilibrium between the volume and the surface term), resulting in

\[
r_{\text{germ}} = \frac{2v_{\text{ice}}\sigma_{w}}{k_{B}T \ln \left(\frac{\rho_{w}}{\rho_{s}} \right)} = \frac{2v_{\text{ice}}\sigma_{w}}{k_{B}T \ln S_{i}}.
\]

In the second approach, the equilibrium condition for the ice germ in a supercooled droplet of pure water, which itself is in equilibrium with humid air [Pruppacher and Klett\(^{[15]} \) eqn (6.10) and (6.52)], is integrated. This approach becomes equivalent to the first, if the saturation ratio is expressed as a function of the latent heat of melting \(L_{m} \) [e.g. Rogers and Yau\(^{[18]} \) eqn (2.15)]:

\[
S_{i} = \exp \left(\frac{L_{m}}{k_{B}T} \frac{T_{0} - T}{T} \right).
\]

where \(T_{0} = 273.15 \) K.

Other formulations for \(r_{\text{germ}} \), taking solution and curvature effects into account, can for example be found in Khvorostyanov and Sassen,\(^{[19]} \) Khvorostyanov and Curry\(^{[20]} \) and Jeffery and Austin.\(^{[3]} \)

Eqn (4) and (5) can be inserted into eqn (1) to predict the energy barrier \(\Delta G \) to ice germ formation as:

\[
\Delta G = \frac{16\pi}{3} \frac{v_{\text{ice}}^{3}}{(k_{B}T \ln S_{i})^{2}}.
\]

The temperature and saturation dependent number of ice germs (\(N_{\text{germ}} \)) per unit volume of water can be expressed in the form of a Boltzmann distribution using \(\Delta G \) [eqn (7)]:

\[
N_{\text{germ}}[m^{-3}] = N_{1} \cdot \exp \left(\frac{-\Delta G}{k_{B}T} \right).
\]

where \(N_{1} \) is the volume-based number density of water molecules in the liquid parent phase.

2.2 Kinetics of nucleation

The kinetic part of the nucleation rate gives the number of water molecules, which can potentially be incorporated into the ice germ. The flux of water molecules available for incorporation into an ice germ must be taken into account in order to estimate a nucleation rate. This flux can be understood as the diffusive flux (\(\Phi \)), which can be expressed as a Boltzmann distribution:

\[
\Phi = \frac{k_{B}T}{h} \cdot \exp \left(\frac{-\Delta G^{*}}{k_{B}T} \right).
\]

where \(h \) denotes the Planck’s constant and \(\Delta G^{*} \) the activation energy for the transfer of a water molecule across the water–ice boundary [cf. Section 3.1, eqn (14)–(16)]. \(\Phi \) can be interpreted either as the frequency at which water molecules overcome the activation energy barrier,\(^{[21]} \) as a rate of collisions or as a probability of bond breaking and molecular reorganisation.\(^{[15]} \)

A second kinetic prefactor, the Zeldovich factor \(Z \), accounts for the depletion of the cluster population due to germ production.\(^{[22]} \) This factor embodies the non-equilibrium of the kinetic process and has a value between \(10^{-2} \) and 1, where a value of 1 means that equilibrium is assumed. The estimation of \(Z \) is discussed further in Section 3.2.2.

Using the described expressions for the diffusive flux \(\Phi \) and the kinetic prefactor \(Z \) the rate \(K \) at which water molecules are transferred into an ice germ can be predicted by

\[
K = n_{s} \cdot 4\pi r_{\text{germ}}^{2} \cdot Z \cdot \Phi,
\]

where \(n_{s} \) is the number of molecules in jumping distance around the germ surface/neighboring the germ surface and \(4\pi r_{\text{germ}}^{2} \) is the surface area of the critical ice germ (see Section 3.2.1).

2.3 Nucleation rate

Combining the thermodynamic [eqn (8)] and the kinetic part [eqn (10)], a formulation of the steady state nucleation rate can be expressed as:

\[
J_{\text{hom}}[m^{-3} s^{-1}] = \frac{K}{\text{Kinetics}} \cdot N_{1} \cdot \exp \left(\frac{-\Delta G}{k_{B}T} \right) \cdot \text{Number of germs}
\]

Inserting eqn (9) and (10) into eqn (11) leads to:

\[
J_{\text{hom}}[m^{-3} s^{-1}] = n_{s} \cdot 4\pi r_{\text{germ}}^{2} \cdot Z \cdot \Phi \cdot N_{1} \cdot \exp \left(\frac{-\Delta G^{*}}{k_{B}T} \right)
\]

\[
\times N_{1} \cdot \exp \left(\frac{-\Delta G}{k_{B}T} \right)
\]

The variables \(N_{1}, n_{s}, Z, \) the surface area of the ice germ, and the prefactor \(k_{B}T/h \) of the flux \(\Phi \) are summarized as the
3 Uncertainties in the kinetics

3.1 Activation energy (Δg^*)

The activation energy (Δg^*) describes the energy required for a single molecule to diffuse across the water–ice boundary, in addition to the free energy barrier ΔG. Δg^* can be understood as the activated state through which a molecule must pass when diffusing from the parent phase to the embryo of the new phase.\(^{10}\)

It is difficult to perform direct measurements from which to determine Δg^*. Various estimation methods have been applied and have yielded in diverse findings. Nevertheless, the following independent characteristics of Δg^* can be stated:

- The diffusion of a water molecule from the liquid phase into the ice lattice requires the breaking of hydrogen bonds between the diffusing water molecule and its neighbors. After breaking loose (one or two hydrogen bonds may be retained) the molecule is influenced by the force field of the surrounding water molecules and moves across the interface.

- The breaking of hydrogen bonds increases the internal energy of the diffusing water molecule, allowing it to overcome Δg^*.\(^{23}\) Therefore Δg^* depends on the number of hydrogen bonds connecting a given water molecule to its neighbors, which is dependent on the structure of the water (the hydrogen bond network of the water molecules). Below 310 K, a water molecule is expected to possess an average of three tetrahedrally-arranged hydrogen bonds.\(^{23}\)

- As diffusion depends on temperature, so does the activation energy. Δg^* increases with decreasing temperature, because the average number of hydrogen bonds in a network of supercooled water molecules increases with decreasing vibrational energy.\(^{15}\) The hydrogen-bond strength increases with decreasing temperature and the structure of the water itself becomes more ice-like at lower temperature.\(^{24,25}\) Bulavin et al.\(^{23}\) showed that self-diffusion in water is based on the movement of single water molecules (one-particle contribution) near 273.15 K. At low temperatures the collective contribution of self-diffusion might become more important. Therefore Hagen et al.\(^{5}\) proposed a contrary temperature dependence below 241 K. They argue that below this temperature the diffusion process is a cooperative phenomenon and ice embryos grow by transfer of increasingly large water clusters instead of monomers. Consequently less hydrogen bonds – only the ones at the cluster periphery – have to be broken.

There are three measurable quantities (defined by the Glasstone relations\(^{3,26}\)) based on which the activation energy Δg^* can be estimated: the viscosity of water η, the self-diffusivity of water D and the dielectric relaxation time τ of water:

$$\eta = \eta_0 \cdot \exp\left(\frac{-\Delta g^*(T)}{RT}\right)$$ \hspace{1cm} (14)

$$D = D_0 \cdot \exp\left(\frac{-\Delta g^*(T)}{RT}\right)$$ \hspace{1cm} (15)

$$\frac{1}{\tau} = \frac{k_B T}{h} \cdot \exp\left(\frac{-\Delta g^*(T)}{k_B T}\right).$$ \hspace{1cm} (16)

Measurements of Klymkicki et al.\(^{27}\) showed that Δg^* and Δg^* are around 19×10^3 J mol$^{-1}$ near the melting point. Wang et al.\(^{28}\) estimated Δg^*, Δg^*, and Δg^* at 298.15 K and proposed that the activation barrier is the same for viscous flow, self-diffusion and dipole orientation with breaking of approximately two hydrogen bonds. However, it has not been proven that all three relations are physically correct, nor that Δg^*, Δg^*, and Δg^* are equal. The possibility of Δg^* depending on the measured quantity is beyond the scope of this work. Thus Δg^* is used in the following for the activation energy independent of the measurable quantity the estimation is based on.

The value of Δg^* derived from different analyses varies with the input data as well as the applied fitting method. Eight different descriptions of Δg^* from Dufour and Defay,\(^{12}\) Eadie,\(^{7}\) Young,\(^{13}\) Pruppacher and Klett,\(^{15}\) Jeffery and Austin,\(^{3}\) Zobrist et al.\(^{29}\) Chen et al.\(^{30}\) and the extension of the Pruppacher and Klett formulation from Khvorostyanov and Curry are shown in Fig. 1 as a function of temperature. The methods and

Fig. 1 Variation of the activation energy Δg^* with temperature T; figure modified from Hoose and Möhler.\(^{31}\) Note that the curve 6 shows only the extension for low temperatures by Khvorostyanov and Curry 2000\(^{20}\) (see Appendix A).
datasets are used are summarized in Table 1 and described in detail in Appendix A.

The different Δg^s in Fig. 1 spread over almost one order of magnitude. This spread leads to an even larger variation in the predicted nucleation rate J_{hom}, as Δg^s is found in the exponential term of eqn (9). Notably, the expression of Khvorostyanov and Curry\(^{20}\) has an opposite temperature dependence to the other formulations below 243.15 K, so that the difference in Δg^s is the largest in this temperature regime. This difference can be traced to a lack of understanding of the change in water structure bonding at low temperatures.

3.2 Prefactor (C_{prefac})

In this section the different values of the variables comprising C_{prefac}, which is the prefactor in front of the energy barriers in eqn (13), are listed. We emphasize that the definition of C_{prefac} is not the same definition as used by all authors. Moreover some authors estimated C_{prefac} as a single quantity to simplify the calculation. The sensitivity of J_{hom} to the parameters discussed in this section is evaluated in Section 5.

3.2.1 Number of water molecules in contact with the unit area of an ice germ (n_s) and volume number density of water molecules in liquid water (N_iw).

n_s has been estimated as a temperature-independent value by different authors between 5.85×10^{18} m\(^{-2}\) and 1×10^{19} m\(^{-2}\). See Appendix B for details.

The factor N_iw accounts for the fact that homogeneous nucleation is a volume dependent process. The variation of this parameter in the literature estimates is not as large as in the case of n_s. In Tabazadeh et al.,\(^{32}\) the number density of water molecules in a solution droplet of 1 m\(^{-3}\) is given as 3.35×10^{28} m\(^{-3}\) consistent with Jacobi,\(^{33}\) who reported 3.33×10^{28} m\(^{-3}\), whereas in Zobrist et al.,\(^{29}\) a slightly lower value of 3.1×10^{28} m\(^{-3}\) is used.

3.2.2 Zeldovich factor (Z).

Z represents the non-equilibrium nature of an ice-nucleating system (i.e. ice embryos plus the parent phase). It accounts for the loss of subcritical clusters in the embryo population due to the growth of ice embryos, which reduces the number of water molecules available to transfer across the water–ice interface. If an equilibrium is assumed, Z has the value 1. Otherwise, Z can be estimated as follows:

$$Z = \frac{1}{n_s \cdot \sqrt{\frac{\Delta G}{3\pi k_B T}}}$$ \hspace{1cm} (17)

Whereas Fletcher\(^{11}\) states that the effect of taking Z into account is minor, Pruppacher and Klett\(^{25}\) reckon that Z has the order of 10^{-1} and Butlerin and Skripov\(^{34}\) estimate Z to be of the order of 10^{-2}.

3.2.3 Estimates of the total prefactor C_{prefac}

By coincidence, the product of n_s, the germ surface area A, and Z is approximately equal to unity. Therefore the total prefactor is approximately the product of the volume number density N_iw and the temperature dependent term $k_B T/h$. Fletcher,\(^{11}\) Young\(^{33}\) and Debenedetti,\(^{14}\) for example approximate the prefactor for homogeneous freezing by 10^{41} m\(^{-3}\) s\(^{-1}\) over the whole temperature range.

4 Uncertainties in the thermodynamics

4.1 Interfacial tension between ice and water (σ_{iw})

The interfacial tension between ice and water (σ_{iw}) is an important but poorly-constrained parameter in CNT [cf. eqn (7)]. σ_{iw} is strongly temperature-dependent, due to the temperature dependence of the structure of water. With decreasing temperature, the structure of water becomes increasingly ice-like,\(^{24,25}\) decreasing the ice–water interfacial entropy (ordering of water molecules in contact with the ice structure increases) and thus σ_{iw}. The interfacial free energy, and thus the interfacial entropy, becomes zero in the limiting case where the water structure is completely isomorphic with ice.\(^{15}\)

Direct measurements of σ_{iw} for ice embryos is nearly impossible, as they may be smaller than 1 nm.\(^{29}\) Moreover, metastable supercooled water tends to freeze heterogeneously on any experimental apparatus. Therefore σ_{iw} is normally measured at or above 273.15 K using macroscopic water drops. These measurements are then extrapolated to ice embryos in supercooled water. This approach implicitly assumes that the ice embryos have the same intensive properties as bulk water. In addition, the extrapolation of σ_{iw} to supercooled temperatures requires theoretical assumptions about its temperature dependence. These assumptions introduce significant uncertainty to the result. Alternatively the interfacial tension between ice and water can be estimated by using molecular models or based on fitting of CNT to measured nucleation rates.

Several different estimates of σ_{iw} are summarized in Fig. 2 as a function of temperature. The figure includes measurements of σ_{iw} at 273.15 K ($\sigma_{iw,0}$) and their theoretical extrapolations as just described, theoretical estimates of $\sigma_{iw,0}$ and $\sigma_{iw}(T)$, as well...
as results from molecular models and results from fits of CNT. Table 2 gives the methods and datasets used in each of these studies. See Appendix C and D for more details.

\(\sigma_{iw} \) differs by up to a factor of three (Fig. 2) and follows differing temperature trends. It can be described in terms of two components: the magnitude of its value at the melting point (\(\sigma_{iw,0} \)) and its temperature dependence. Literature estimates of \(\sigma_{iw} \) vary between \(10^{10}/C^2 \) and \(44^{10}/C^0 \) J m\(^{-2} \) at 273.15 K, and between \(6.8^{10}/C^2 \) and \(26.7^{10}/C^0 \) J m\(^{-2} \) at 220 K. As noted above, \(\sigma_{iw} \) is expected to decrease with temperature. Most of the theoretical and molecular-modeling approaches suggest that this decrease should be linear, with a slope between 0.1 and 0.25 \(10^{10}/C^2 K^0 \) (see Table 3). The only studies that report a temperature dependence which is very different from a linear dependence is that of Zobrist et al.,\(^{29} \) where a function was fitted to experimental nucleation rate data without theoretical consideration, and the Young relation by Pruppacher and Klett,\(^{15} \) where \(\sigma_{iw} \) was constrained by the singularity behavior of water at 228.15 K.

Describing \(\sigma_{iw} \) is a challenging task due to the spread of available measurement data at the melting point (see Fig. 2) and the unknown temperature behavior. In Fig. 3, the importance of the reference value \(\sigma_{iw,0} \) versus the importance of the predicted temperature dependence is examined. The figure shows the temperature-dependent functions reported in the literature for a single value of \(\sigma_{iw,0} \). The measured \(\sigma_{iw,0} \) of Hardy\(^{39} \) was taken as the reference value, in accordance with current consensus (see e.g. Gránásy et al.\(^{40} \)). With an unified reference value, better agreement than Fig. 2 can be seen (a narrower range of values for \(\sigma_{iw} \) on the ordinate). However, significant spread remains.

It is interesting to compare the results from molecular models with other estimates. The molecular-model results are fundamentally different from others, as the molecular mechanics of water molecules building clusters is explicitly simulated. Fig. 2 shows that these molecular modeling results are within the uncertainty range of Hardy\(^{39} \) at 273.15 K (besides the value of Digilov, 2004\(^{41} \)). Additional information from sophisticated molecular models may be able to reduce the
uncertainty in $\sigma_{iw}(T)$ in future. Nevertheless, the spread of the results reported is still quite large.

4.2 Saturation ratio

Another parameter included in the calculation of the nucleation rate is the saturation ratio [see eqn (2)]. Murphy and Koop42 have investigated the spread of results obtained by different parameterizations for the saturation ratio. Different formulations are in good agreement above 238.15 K, but may become significantly different at lower temperatures. Moreover, the recent study of Murray43 shows that assuming the ice structure to be cubic instead of hexagonal changes the saturation ratio with respect to ice and σ_{iw} significantly, when estimated from nucleation measurements. Between 180 and 190 K the vapor pressure is 10.5 ± 2.5% larger for cubic ice compared to hexagonal ice. The difference gets smaller with higher temperatures (8.3% at 235 K).

The sensitivity of the nucleation rate to the calculation of the saturation vapor pressure with respect to water and ice as well as the difference between cubic and hexagonal ice is not investigated here. Most studies cited here are based on the assumption of hexagonal ice, so that the saturation ratio was calculated for this ice type based on Goff44 as recommended by the World Meteorological Organization.45

5 Sensitivity analysis

In this section, the sensitivity of CNT to different parameters, parameterizations, and assumptions is analyzed by plotting the nucleation rate J_{hom} as a function of temperature. $J_{\text{hom}}(T)$ is plotted for each parameter discussed in Sections 3 and 4.

Fig. 4 shows that the nucleation rate J_{hom} is smaller when a high value of Δg^g is chosen, as the kinetic barrier for cluster formation thus becomes larger. Depending on the choice of Δg^g, the predicted nucleation rate at 230 K differs by up to 16 orders of magnitude. This difference does not translate directly to a disagreement between the studies cited in Fig. 4, as some CNT formulations have estimated Δg^g based on other free parameters. For example, σ_{iw} has been kept the same (based on Pruppacher and Klett[55]) for all calculations in
To examine the influence of the prefactor C_{prefac} on the nucleation rate, the number of water molecules in contact with the unit area of the ice germ n_s (in this case N_l is kept constant) and the volume number density of water molecules in liquid water N_l were varied. Additionally, the importance of the Zeldovich factor was investigated. As can be seen in Fig. 5 the spread of reported literature values for n_s and N_l do not lead to a large spread in J_{hom} compared to the influence of the choice of other unconstrained parameters.

Accounting for the Zeldovich factor reduces the total nucleation rate in a manner dependent on the formulation used for r_{germ} [eqn (5)] and s_{iw}, as ΔG [eqn (1)] and n_k, germ are part of the formula for Z [see eqn (17)]. This dependence complicates the comparison and makes a comprehensive statement about the sensitivity of the nucleation rate caused by accounting versus non-accounting ($Z = 1$) of the Zeldovich factor impossible. In this example, using the formulation of s_{iw} by Pruppacher and Klett \cite{15} lowers J_{hom} by two orders of magnitude in comparison to setting $Z = 1$.

The difference between the detailed calculation of the prefactor C_{prefac} and using an approximated temperature independent prefactor as suggested by Fletcher \cite{11} and Young \cite{13} is max. two orders of magnitude.

Fig. 6 shows the variation of the energy barrier ΔG due to the choice of s_{iw} and Fig. 7 the corresponding variation in the nucleation rate. The nucleation rate can differ by around 25 orders of magnitude at 230 K (Fig. 7), which is larger than the spread due to
the choice of Δg^0 (16 orders of magnitude). Again, a direct comparison is difficult because there are interdependencies in the estimation of the different parameters in some studies. Therefore, Fig. 7 shows one example for a constant Δg^0 based on Chen et al. and one for $\Delta g^0(T)$ based on Jeffery and Austin. The spread of J_{hom} is approximately the same in both cases, providing evidence that σ_{lw} is the dominant factor controlling the shape of the curve of $J_{\text{hom}}(T)$.

The nucleation rate $J_{\text{hom}}(T)$ is governed by the exponential terms in the equation. The steepness of $J_{\text{hom}}(T)$ is dominated by the thermodynamic exponent, indicating that σ_{lw} is the controlling factor of $J_{\text{hom}}(T)$ (see Fig. 8). The kinetic exponent is more important at very low temperatures, where the energetic barrier of the freezing process becomes small enough, where the process is limited by kinetics.

The sensitivity studies also show that the choice of σ_{lw} and Δg^0 influences the calculated nucleation rate considerably whereas the choice of the prefactor, respectively the components of C_{prefac} does not matter so much for J_{hom}. Therefore the further focus is on σ_{lw} and Δg^0 only.

Note that the spread in the nucleation rate estimates resulting from the choice of Δg^0 and σ_{lw} depends on the different formulations found in the literature and cannot be generalized from Fig. 4 and 7. Therefore in Section 5.1 the sensitivity of the parameters was investigated independent of the different formulations in the literature.

5.1 Uncertainty of using CNT
To illustrate the uncertainty resulting from the choice of the different formulations of CNT parameters, the relative error in the nucleation rate was estimated by varying the free parameters σ_{lw} and Δg^0 within $\pm 50\%$ from one estimate values (Fig. 9). The calculations were done at 243 K and at 233 K, as this is a temperature range around the onset of homogeneous freezing in atmospheric clouds. In Fig. 9 it can be seen that in all cases the impact of uncertainties in σ_{lw} and Δg^0 is not symmetric. σ_{lw} is the parameter with the largest uncertainty (dark blue lines), which dominates the uncertainty in J_{hom}. For example at 243 K, a minor decrease in σ_{lw} of 0.5% leads to an uncertainty in J_{hom} of 94%.
the other hand, decreasing $\Delta g^\#$ by 0.5% only changes J_{hom} by 16%. Uncertainties in σ_{iw} have a larger impact on J_{hom} than uncertainties in $\Delta g^\#$ at higher temperature. Note that in the case of increasing σ_{iw} or $\Delta g^\#$, J_{hom} decreases (towards the limit of zero) so that the relative change in J_{hom} for such an increase is always $\leq 100\%$. In that case the uncertainties approach $\sim 100\%$, which cannot be exceeded.

Looking at the spread in the free parameters estimated by different studies in the literature, it can be seen that an uncertainty of at least 50% is common. This translates into an uncertainty in J_{hom} of 18 orders of magnitude. In contrast, measured values of J_{hom} generally differ by six orders of magnitude. A six-orders-of-magnitude uncertainty in J_{hom} translates into an uncertainty in σ_{iw} of 6% at 243 K and 18% at 233 K, and in an uncertainty in $\Delta g^\#$ of 35% for the whole temperature range. Note that the temperature dependence of the uncertainty due to variation of $\Delta g^\#$ is negligible here. With this level of precision, it is not possible to decide which literature formulation of σ_{iw} and $\Delta g^\#$ is the most realistic. Nevertheless in the next section we try to constrain possible ranges for σ_{iw} and $\Delta g^\#$ from a fitted function of J_{hom}.

6 Constraining σ_{iw} and $\Delta g^#$ with J_{hom}

The sensitivity analysis of Section 5 shows that it is difficult to evaluate the formulations of $\Delta g^\#$ and σ_{iw} separately. Additionally, many authors fix one of the parameters (based on theoretical considerations), while the other one is then estimated by fitting plausible freezing rates to experimental data. The choice of the fit parameter influences the values of the other free parameters. Therefore an estimate of the nucleation rate $J_{\text{hom}}(T)$ will be used here to express $\Delta g^\#$ or σ_{iw} depending on the different theoretical formulations (see Appendix A and C) of either σ_{iw} or $\Delta g^\#$. By using the whole range of approaches and assumptions, the range of the free parameters can be constrained within the uncertainty limits of $J_{\text{hom}}(T)$. From this analysis a suitable temperature dependence emerges. Moreover all possible combinations of the different theoretical formulations of σ_{iw} and $\Delta g^\#$ are explored by using the fit result to appoint the best combination.
Table 4 Dataset of measurements of the homogeneous freezing rate j_{hom} (sorted chronologically; 1952–2013; DSC stands for Differential scanning calorimetry; EDB for levitated drops in electrodynamic balance)

<table>
<thead>
<tr>
<th>#</th>
<th>Dataset</th>
<th>Measurement technique</th>
<th>Uncertainty range (T)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Schaefee (1952)69</td>
<td>Cloud chamber</td>
<td>±0.5 K</td>
<td>Two immiscible liquids</td>
</tr>
<tr>
<td>2</td>
<td>Bigg (1953)31,32</td>
<td>Suspension</td>
<td>±0.5 K</td>
<td>Mercury and silicone</td>
</tr>
<tr>
<td>3</td>
<td>Bayardelle (1954)48</td>
<td>Suspension</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Mossp (1955)34</td>
<td>Cloud chamber</td>
<td>±0.2 K</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Jacobi (1955)33</td>
<td>Cold stage</td>
<td>±0.2 K</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Carte (1956)35</td>
<td>Cold stage</td>
<td>±0.6 K</td>
<td>Silicone oil</td>
</tr>
<tr>
<td>7, 8</td>
<td>Langham and Mason (1958)55</td>
<td>Cloud chamber</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Hoffer (1961)56</td>
<td>Cloud chamber</td>
<td>±0.5 K</td>
<td>Droplets in silicone oil</td>
</tr>
<tr>
<td>10</td>
<td>Wood and Walton (1970)106</td>
<td>Emulsion</td>
<td>±0.1 K</td>
<td>Water and oil; significant variation from run to run</td>
</tr>
<tr>
<td>11</td>
<td>Botorin and Skripov (1972)14</td>
<td>DSC</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>12a</td>
<td>Broto and Clause (1976)54</td>
<td>DSC</td>
<td>±0.5 K</td>
<td></td>
</tr>
<tr>
<td>12b</td>
<td>Broto et al. (1979)55</td>
<td>DSC</td>
<td>±0.5 K</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Hagen et al. (1981)55</td>
<td>Cloud chamber</td>
<td>—</td>
<td>Very fast droplet growth</td>
</tr>
<tr>
<td>14</td>
<td>Taborek (1985)109</td>
<td>DSC</td>
<td>—</td>
<td>Two immiscible liquids</td>
</tr>
<tr>
<td>15</td>
<td>DeMott and Rogers (1999)110</td>
<td>EDB</td>
<td>±0.2 K</td>
<td>Water and petroleum</td>
</tr>
<tr>
<td>16a</td>
<td>Huang and Bartell (1995)6</td>
<td>Electron diffraction</td>
<td>T not measured</td>
<td>No direct optical detection</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sending time correction</td>
</tr>
<tr>
<td>17</td>
<td>Krämer et al. (1999)110</td>
<td>EDB</td>
<td>±0.1 K</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Wood et al. (2002)111</td>
<td>Cloud chamber</td>
<td>±0.2 K</td>
<td></td>
</tr>
<tr>
<td>16b</td>
<td>Bartell and Chushak (2003)48</td>
<td>Cloud chamber</td>
<td>T not measured</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Duft and Leisner (2004)116</td>
<td>EDB</td>
<td>±0.002 K</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Benz et al. (2005)111</td>
<td>Cloud chamber</td>
<td>±0.3 K</td>
<td>Exp. Nr. 2</td>
</tr>
<tr>
<td>21</td>
<td>Stöckel et al. (2005)112</td>
<td>EDB</td>
<td>±0.25 K</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Kabath et al. (2006)113</td>
<td>EDB</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Larson and Swanson (2006)58</td>
<td>Emulsion</td>
<td>±0.5 K</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Stan et al. (2009)116</td>
<td>Emulsion</td>
<td>±0.4 K</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Earle et al. (2010)117</td>
<td>Cloud chamber</td>
<td>±0.5 K</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Murray et al. (2010)43</td>
<td>Cold stage</td>
<td><±0.6 K</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Knopf and Dong (2011)56</td>
<td>Cold stage</td>
<td>±0.15 K</td>
<td></td>
</tr>
<tr>
<td>28, 29</td>
<td>Hoyle et al. (2011)114</td>
<td>Cloud chamber</td>
<td>±0.4 K</td>
<td>30[a] 800 nm droplets</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31[b] 200 nm</td>
</tr>
<tr>
<td>30</td>
<td>Kuhn et al. (2011)62</td>
<td>Cloud chamber</td>
<td>±0.5 K</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Rzesanke et al. (2012)67</td>
<td>EDB</td>
<td>±0.1 K</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Manka et al. (2012)49</td>
<td>Vibration spectroscopy</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Riechers et al. (2013)47</td>
<td>Emulsion</td>
<td>±0.3 K</td>
<td>Water and oil</td>
</tr>
<tr>
<td>34</td>
<td>Sanz et al. (2013)50</td>
<td>TIP4P</td>
<td>—</td>
<td>Simulation results</td>
</tr>
<tr>
<td>35</td>
<td>Sanz et al. (2013)50</td>
<td>TIP4P/ice</td>
<td>—</td>
<td>Simulation results</td>
</tr>
</tbody>
</table>

6.1 Fitting j_{hom} to experimental data

A comprehensive dataset of 33 homogeneous freezing measurements was collected and fitted by least-squares minimization using three different approaches, which are explained further on. The dataset consists of measurements from many different experimental setups collected over the last few decades, covering different temperature ranges. An overview of the dataset and the used measurement techniques can be found in chronological order in Table 4 and in Fig. 10 and 11. Table 4 includes information about the temperature uncertainty of the measurement. In Fig. 10 and 11 the measurement uncertainty of the nucleation rate can be seen. Note that the measurement uncertainty of the nucleation rate does not reflect the uncertainty introduced by experimental parameters, which has been discussed in Riechers et al.47 The raw data would be needed to be able to re-evaluate the measurements and evaluate uncertainties. The re-evaluation of the data is beyond the scope of this paper, but important for any future analysis (see Section 7). On the premise that measurement techniques have got more precise over the years, the dataset was divided almost equally into measurements made before or after the year 2000 (indicated by red and blue colors in Fig. 10 and 11). Note that the data from Huang and Bartell,6 Bartell and Chushak,48 and Manka et al.49 were not measured at atmospheric pressure but under high pressure conditions due to the use of supersonic nozzles. The data were nevertheless included to guide the fitting algorithm in the low temperature regime. In addition to the 33 measurements, the simulated nucleation rates from Sanz et al.50 were added to guide the fit in the high-temperature regime (see Table 4).

To estimate the nucleation rate $j_{\text{hom}}(T)$ the dataset was fitted following a CNT formulation equivalent to eqn (13). A constant prefactor C_{prefac} of 10^{24} m$^{-3}$ s$^{-1}$, a constant activation energy Δg^R, and a linear T-dependent σ_{iw} with the reference value $\sigma_{\text{iw,0}}$ of Hardy39 was used:

$$j_{\text{hom}} = C_{\text{prefac}} \cdot \exp \left(\frac{\Delta g^R}{k_B T} \right) \times \exp \left(\frac{16\pi \cdot v_{\text{exp}}^2 \cdot (29.1 \times 10^{-3} + d\sigma_{\text{iw}}/dT \cdot T_c)^3}{3(k_B T)^3 \ln(S_i)^2} \right) \times \xi^3 \times \frac{S_i}{2} \times \exp \left(\frac{16\pi \cdot v_{\text{exp}}^2 \cdot (29.1 \times 10^{-3} + d\sigma_{\text{iw}}/dT \cdot T_c)^3}{3(k_B T)^3 \ln(S_i)^2} \right).$$

The fit parameters are thus the slope of $\sigma_{\text{iw}}(T)$ ($d\sigma_{\text{iw}}/dT$, fit parameter A) and Δg^R (fit parameter B).
In the first step, the fit was done by combining all measurements into one large dataset to investigate the general behavior of the fitting formula. It can be seen in Fig. 12 that a reasonably good fit was possible. However, the fitted Δg^F is negative, which translates into a missing activation energy barrier for the nucleation process and therefore does not seem to be reasonable. As the fit is biased by the number of data in each dataset, a weighting function for each measurement value, which is the reciprocal of

Fig. 10 Homogeneous freezing measured by several authors. A list of all datasets taken into account including the measurement method and the temperature uncertainty can be found in Table 3 (horizontal error bars were omitted on account of clarity). Blue colors characterize measurements done before the year 2000, red colors characterize measurements done after the year 2000. The symbols indicate the measurement method: open circled points (○) cloud and aerosol chamber experiments (droplet in air); plus signs (+) cold stage experiments (droplet on a solid plate); open squares (□) suspension, emulsion and dispersion experiments (droplet in liquid); open diamonds (◊) levitated drop in electrodynamic balance; stars (⋆) electron diffraction.

Fig. 11 Same as Fig. 10 but showing a limited temperature range.
the number of data in the corresponding dataset, was next introduced, giving all datasets equal weight. This may have introduced problems, as the quality of each dataset is different. However, not enough information is available to decide which datasets should or should not be taken into account. A physically-meaningful weighting would be the temperature uncertainty of the measurement, as this strongly affects these results. Unfortunately this information was not available for quite a few datasets.

Looking at the whole spectrum of measurements in Fig. 10, differences in the slope of the data between datasets can be seen. To take such differences into account, a grouped-data object was created out of the individual datasets. With this method, information about the grouping of the data is not lost. The grouping factor is the measurement method and the time of publication. This procedure splits the dataset into several datasets which are fitted separately. An advantage of this method is that the resulting fit parameters of the individual fits can be compared to check whether the parameters vary among individual datasets. The correlation between the two fit parameters can also be tested. A disadvantage of this method is that small datasets (containing less than three values) have to be excluded. Therefore, the dataset of Broto et al. and Broto and Clausse were combined into one dataset, as well as the dataset of Huang and Bartell and Bartell and Chushak. The datasets of Knopf et al., Duft and Leisner, Rzesanke et al., Bayardelle and Schaefer were omitted because they are too small and could not be reasonably combined with other datasets.

To take into account the individual characteristics of each dataset, we estimate fixed and random effects for the grouped-data object using a non-linear mixed-effect model. The fixed effects represent the value of the fit parameter throughout all datasets and the random effects the variation in the fit parameter between the individual datasets. The amount of random effects needed can be estimated from the intervals of the fit parameters for the individual datasets resulting from the fit of the grouped data object. Fig. 13 shows the intervals of the fit parameters for all datasets. The results are sorted by J-values (starting with highest nucleation rates). No trend is seen with time (the origin of dataset) and/or the measurement method.

The fitted parameters differed from dataset to dataset but were correlated (Fig. 14). This correlation underlines the earlier statement that the choice of one free parameter influences the other one. Note that because of this correlation, uncertainties of one quantity can be compensated by the other one.

A simplified mixed-effect model was created based on these results. Only the slope of \(\sigma_{iw} \) was taken as a fit parameter, having fixed and random effects, while \(\Delta g^d \) obtained from the fit of the weighted dataset was used. The results of the different fitting methods can be found in Table 5 and seen in Fig. 15. This mixed-effect model, which is statistically the best solution, was used for further analysis.

Note that using a trustful reference dataset for \(J_{hom}(T) \) instead of using the whole comprehensive dataset from all peer-reviewed articles could improve the analysis (see Section 7).

6.2 Constraining \(\sigma_{iw} \) and \(\Delta g^d \) using the fit of \(J_{hom}(T) \)

The final fit to \(J_{hom} \) (mixed-effect model) obtained in Section 6.1 gives a picture of the nucleation rate over a wide temperature range. Moreover, the fitted \(J_{hom}(T) \) can be used to better constrain the values of \(\sigma_{iw} \) and \(\Delta g^d \) found in the literature. In the discussion that follows, the fitted \(J_{hom}(T) \) was used (1) to constrain a reasonable range and behavior of \(\sigma_{iw} \) and \(\Delta g^d \), and (2) to evaluate different literature formulations of \(\Delta g^d \) and \(\sigma_{iw} \).
Table 5 Results of fitting measurement dataset of \(J_{\text{hom}} \)

<table>
<thead>
<tr>
<th>Fitting method</th>
<th>Fit parameter</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fit 1</td>
<td>(A = d\sigma_{\text{sw}}/dT = 0.046094 \times 10^{-3} \text{ J m}^{-2} \text{ K}^{-1})</td>
<td>(5.155 \times 10^{-6} \text{ J m}^{-2} \text{ K}^{-1})</td>
</tr>
<tr>
<td></td>
<td>(B = \Delta g^0 = -5.062232 \times 10^{-20} \text{ J})</td>
<td>(0.545589 \times 10^{-20} \text{ J})</td>
</tr>
<tr>
<td>Fit 2; weighted dataset</td>
<td>(A = 0.130857 \times 10^{-3} \text{ J m}^{-2} \text{ K}^{-1})</td>
<td>(9.023 \times 10^{-20} \text{ J m}^{-2} \text{ K}^{-1})</td>
</tr>
<tr>
<td></td>
<td>(B = 2.591893 \times 10^{-20} \text{ J})</td>
<td>(0.746252 \times 10^{-20} \text{ J})</td>
</tr>
<tr>
<td>Fit 3; mixed-effect model</td>
<td>(A = 0.1240907 \times 10^{-3} \text{ J m}^{-2} \text{ K}^{-1})</td>
<td>(3.925824 \times 10^{-6} \text{ J m}^{-2} \text{ K}^{-1})</td>
</tr>
<tr>
<td></td>
<td>(B = 2.591893 \times 10^{-20} \text{ J})</td>
<td>Fixed</td>
</tr>
</tbody>
</table>

Fig. 15 Fitting results for \(J_{\text{hom}}(T) \) from (a) 190–240 K and (b) 190–260 K compared to the collected homogeneous freezing dataset.

6.2.1 Constraints on \(\sigma_{\text{sw}} \) and \(\Delta g^0 \) from \(J_{\text{hom}}(T) \). If \(J_{\text{hom}}(T) \) and \(C_{\text{prefac}} \) is known, according to eqn (13), one of \(\sigma_{\text{sw}} \) or \(\Delta g^0 \) can be evaluated based on the other. For example, the fitted \(J_{\text{hom}}(T) \) can be used to predict \(\sigma_{\text{sw}} \) using different literature formulations for \(\Delta g^0 \) (some of which are independent of \(\sigma_{\text{sw}} \) with the exception of the constant approach from Chen et al.\(^{10}\) and the approach with the opposite temperature dependence from Khvorostyanov and Curry\(^{20}\)). The results may be evaluated in terms of their temperature dependence and plausibility.

Fig. 16 shows the fitted nucleation rate \(J_{\text{hom}}(T) \) for different temperatures (colored lines) as a function of the two parameters \(\Delta g^0 \) and \(\sigma_{\text{sw}} \). The black symbols represent different estimates for \(\Delta g^0 \) (a) or \(\sigma_{\text{sw}} \) (b) as proposed by various authors. These estimates are all independent of \(\sigma_{\text{sw}} \) (a) or \(\Delta g^0 \) (b). For each estimated \(\Delta g^0 \) or \(\sigma_{\text{sw}} \), \(\sigma_{\text{sw}} \) or \(\Delta g^0 \) is constrained by \(J_{\text{hom}}(T) \) as following a different functional form, as shown by the black lines in Fig. 16.

A linear dependence of \(\sigma_{\text{sw}} \) on temperature (as expected; Section 4.1) implies that the black lines in Fig. 16(a) should be curved, which can also be seen in Fig. 16(b). Where this is not the case, \(\sigma_{\text{sw}} \) is only linear for low temperatures at low \(\Delta g^0 \) where the isolines of \(J_{\text{hom}}(T) \) are nearly equidistant. Other formulations of \(\Delta g^0 \), which lead to a non-linear temperature dependence of \(\sigma_{\text{sw}} \) (e.g. the one of Chen et al.\(^{10}\)), may be interpreted as being inconsistent with theoretical expectations.

The temperature trend in \(\sigma_{\text{sw}} \) given by the formulation of Pruppacher and Klett\(^{15}\) suggests that \(\sigma_{\text{sw}} \) becomes negative at temperatures below 223 K, which reflects a transition to unstable conditions, where no thermodynamic equilibrium exists. The temperature dependence of \(\Delta g^0(T) \) would need to reverse below this temperature, if \(\sigma_{\text{sw}} \) is to decrease with \(T \) but has a positive value. On the other hand, the \(\Delta g^0 \) formulation of Jeffery and Austin\(^{3}\) leads to reasonable values of \(\sigma_{\text{sw}} \) over the whole temperature range.

As shown by the steepness of the \(J_{\text{hom}} \) curves in Fig. 16 for temperatures above 233 K, \(\sigma_{\text{sw}} \) is not strongly influenced by the temperature dependence of \(\Delta g^0 \). For these temperatures, \(\Delta g^0 \) could therefore be approximated as a temperature-independent constant. In contrast, the value of \(\Delta g^0 \) becomes increasingly important for lower temperatures. As the size of an ice germ decreases with temperature, it is possible that the capillary assumption (Section 2.1) may not hold at these low temperatures.

6.2.2 Evaluation of different formulations of \(\sigma_{\text{sw}} \) and \(\Delta g^0 \). Different formulations of \(\Delta g^0 \) and \(\sigma_{\text{sw}} \) were collected from literature and evaluated against the fitted \(J_{\text{hom}}(T) \). The selected formulas are independent of one another (the formulations based on theoretical concepts were chosen) with the exception of the Chen et al.\(^{30}\) formulation of \(\Delta g^0 \), which has been included to see how a temperature independent formulation...
of $\Delta g^\#$ behaves. Nucleation rates $J_{\text{hom}}(T)$ were calculated using these formulations [eqn (13)] and the difference between these calculated rates and the fitted $J_{\text{hom}}(T)$ was evaluated for the atmospherically-relevant temperature range 230–250 K based on the relative uncertainty at 223 K, 233 K, 243 K and 253 K (Fig. 17).

We find that the formulation of $\Delta g^\#$ is of secondary importance between 230 and 250 K. Moreover, while some formulations show good agreement with the fit until 245 K, very few formulations also show good agreement at lower temperatures. The combination of the σ_{iw} formulation of Reinhardt and Doye,72 which is based on molecular model simulations, and the $\Delta g^\#$ formulation of Zobrist et al.,29 which is based on self-diffusivity measurements, leads to the best agreement with our $J_{\text{hom}}(T)$. The resulting curve is shown with the fit and the homogeneous dataset in Fig. 17. Besides in Fig. 16(a) it can be seen that both curves lie on top of each other or at least close in this temperature range. However, for low temperatures the combination of both parameters does not give a nucleation rate close to the fitting result (the curves in Fig. 16(a) deviate from each other).

Note that this result is self-consistent but has to be used with caution since it is dependent on $J_{\text{hom}}(T)$ and the formulations of σ_{iw} and $\Delta g^\#$ used in the analysis.

7 Conclusions and outlook
Due to a poor understanding of the physics of supercooled water, the theory of CNT is poorly constrained. Key thermodynamic and kinetic parameters in the theory remain to be understood. Multiple studies have attempted to define these parameters, using different methods which have resulted in diverse findings. Consequently, multiple different formulations of CNT exist. Depending on the formulation used, CNT-predicted ice nucleation rates may differ widely. This difference contributes significantly to uncertainties in regional and global...
Appendix

A Methods for estimating Δg^e

- Dufour and Defay: 12

In Dufour and Defay Δg^e is calculated by using the viscosity of water η [see eqn (14)] leading to:

$$\Delta g^e[J] = k_B \cdot T \cdot \ln \left(\frac{\eta \cdot \rho \cdot \omega}{h \cdot N_A} \right).$$

(19)

For Fig. 1 the formulation of Huber et al. 23 is used to calculate the viscosity of water η (originally η was based on Dorsey, 1940 74).

- Eadie: 7

Unlike in other publications, the activation energy is estimated based on the dielectric relaxation time of water τ. For this purpose the measurement of Collie et al. 75 is used and interpolated with a four-point Newton interpolation, which leads to similar results as in Dufour and Defay (see Table 6). 12 An advantage of this method can be seen in eqn (16), different from the other methods there is no offset value (τ_0) which has to be estimated first.

- Young: 13

In Young Δg^e is defined as the energy needed to break one hydrogen bond. This energy is estimated based on measurements of the viscosity of supercooled water using a capillary flow technique by Hallett 76 and on measurements of the nucleation process in a cloud chamber at 233.15 K by Hagen et al. 5 leading to:

$$\Delta g^e[J] = 3.6 \times 10^{-20} - 7.3 \times 10^{-22} \cdot T_c$$

(20)

with T_c the temperature in °C. This formulation is also used by Chukin et al. 77

- Pruppacher and Klett: 15

In Pruppacher and Klett Δg^e is estimated from a fit to laboratory data of the self-diffusion coefficient of water. For this the following measurements were used: in the temperature range between 273.15 K and 318.15 K the data based on a diaphragm-cell technique by Mills 78 and the evaluation of Mills, 79 where the existing measurement data has been listed and reviewed. In the temperature range of supercooled water the data of Gillen et al. 80 and Pruppacher 81 were used. Gillen et al. 80 used a fixed gradient spin–echo nuclear magnetic resonance (NMR) method to measure the self-diffusivity between 298.15 K and 242.15 K. Pruppacher 81 did measurements of the self-diffusivity of water in the temperature range

<table>
<thead>
<tr>
<th>T_c</th>
<th>Δg^e</th>
<th>Δg^e</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>24.4</td>
<td>26.02</td>
</tr>
<tr>
<td>−10</td>
<td>23.76</td>
<td>25.33</td>
</tr>
<tr>
<td>−20</td>
<td>23.20</td>
<td>24.74</td>
</tr>
<tr>
<td>−30</td>
<td>22.69</td>
<td>24.19</td>
</tr>
<tr>
<td>−40</td>
<td>22.19</td>
<td>23.66</td>
</tr>
<tr>
<td>−50</td>
<td>21.67</td>
<td>23.11</td>
</tr>
</tbody>
</table>

Note that, because CNT is not a fully constrained theory yet, it would be helpful to specify which formulation and estimates of the free parameters are used when applying CNT to predict nucleation rates or interpret data.
of 303.15 K to 248 K. To estimate Δg^s from self-diffusivity measurements an effective activation energy was defined:

$$\Delta g^s = -R \frac{d}{d(T^{-1})} \log D,$$

resulting in the following cubic fit of the activation energy:

$$\Delta g^s[J] = a_0 \exp(a_1T_c + a_2T_c^2 + a_3T_c^3),$$

with $a_0 = 5.55 \times 4184/(6.022 \times 10^{25})J$, $a_1 = -5.423 \times 10^{-3}$, $a_2 = 6.384 \times 10^{-6}$ and $a_3 = 7.891 \times 10^{-6}$, which is valid in the temperature range from 310.15 to 233.15 K [Pruppacher and Klett, 2000; eqn (3.22)].

This method has the disadvantage of implicitly assuming that the temperature dependence of Δg^s is weak compared to the $1/T$-dependence of the exponential in eqn (15), which may not be true for supercooled water.3

- Jeffery and Austin4

Jeffery and Austin used measurements of the self-diffusion of water from Prielmeier et al.82 and Harris and Woolf13 to estimate Δg^s. The data from Prielmeier et al.82 was used to fit the temperature dependence with the Vogel–Fulcher–Tammann (VFT) approach. D_0 was estimated from the data of Harris and Wolf, resulting in:

$$\Delta g^s[J] = \frac{RT}{N_A} \left(\frac{B}{T - T^*} - \ln \left(\frac{D}{D_0} \right) \right)$$

with $B = 347 K^{-1}$, $T^* = 177 K$, $D^* = 4.14 \times 10^{19} m^2 s^{-1}$ and $D_0 = 349 \times 10^{-6} m^2 s^{-1}$.

- Khvorostyanov and Sassen/Khvorostyanov and Curry20

Khvorostyanov and Sassen discuss an extension to the Pruppacher and Klett15 formulation. Δg^s for low temperatures ($T < 243.15 K$) is described as the activation energy across the liquid–ice boundary taking into account enhanced cooperation of molecules when transferring into the ice lattice at low temperatures. Therefore the sign of $d\Delta g^s/dT$ is different to all other formulations giving a negative temperature-dependent relation (Δg^s is decreasing with decreasing T). The parameterization is based on fitted values for homogeneous freezing at $T < 243.15 K$ following Jensen et al.84 Fitting the nucleation rate with the Pruppacher and Klett15 formulation of $\sigma_{i,w}$ results in an activation energy of the following form:

$$\Delta g^s[J] = 0.694 \times 10^{-19} \times (1 + 0.007 \times (T_c + 30)).$$

Because this equation can give negative values, it was corrected in Khvorostyanov and Curry to

$$\Delta g^s[J] = 0.694 \times 10^{-19} \times [1 + 0.027 \times (T_c + 30) \times \exp(0.01 \times (T_c + 30))].$$

However, above 243.15 K the Pruppacher and Klett15 formulation is used. Note that in this study the label Δg^s of Khvorostyanov and Curry refers only to the extension of the formulation of Khvorostyanov and Curry (the part of the formulation similar to Pruppacher and Klett is not shown due to clarity).

- Zobrist et al.29

In Zobrist et al. an empirical temperature dependent formulation of Δg^s is estimated based on measurements of the self-diffusivity by Smith and Kay85 in the following form:

$$\Delta g^s[J] = \frac{k_B T^2 E}{(T - T^*)^2}$$

with parameters $E = 892 K$ and $T^* = 118 K$. This parameterization is valid in the temperature range of 150 K to 273 K.

The dataset of the self-diffusivity consists of data between 150 and 157 K and between 250 K and 500 K. The complete dataset can not be fitted by an Arrhenius temperature dependence, because of a much stronger temperature dependence in the cold range. Other methods to fit the temperature dependence are the often used VFT equation and a power-law ansatz. While the VFT equation is able to fit both temperature ranges, the power law fails to fit the cold range like the Arrhenius fit. However, the power law better represents the data above 250 K, thus the ideal method depends on the temperature regime of interest. Zobrist et al.29 used the VFT equation to describe Δg^s.

- Chen et al.30

In Chen et al., Δg^s is used as a fit parameter in CNT. The parameter was estimated for immersion freezing assuming that it is temperature independent over the temperature range of this freezing process (approximately 238.15 K to 273.15 K). Because the diffusion of a molecule across phases should not be influenced by the presence of insoluble substances in the water droplet Δg^s should be the same for heterogeneous and homogeneous freezing. Moreover it should also be independent of the aerosol type (in the case of heterogeneous freezing). However, because it was used as a fit parameter, it varies from dataset to dataset and thus for different aerosol types in this study. The value of Δg^s varies from $12.7 \times 10^{-20} J$ (soot) to $16 \times 10^{-20} J$ (China rose pollen). A value in-between of $14.5 \times 10^{-20} J$ is used here as shown in Fig. 1. Besides the result from the fitting method used depends on the estimate of other free parameters, most important on $\sigma_{i,w}$.

B Methods for estimating n_s

The number of water molecules in contact with the unit area of the ice germ n_s is a surface dependent factor, which is estimated by different authors:

- Fletcher11

The number of molecules in contact with the unit area of an ice germ or a catalyst surface (as in the case of immersion freezing) can be estimated from the molecular density of water N_i:

$$n_s [m^{-2}] = 3 \times 10^{-10} N_i.$$

The factor 3×10^{-10} represents the side dimension of a cube containing one mole of water (approx. $3 \times 10^{-29} m^3$ mol$^{-1}$).

At 273.15 K n_s is approximately $10^{13} m^{-2}$.

The same approximation is used by Young11 and Khvorostyanov and Curry.96 Zobrist et al.29 and Chen et al.30 assume that n_s is independent of temperature and use the value at 273.15 K ($10^{13} m^{-2}$) for the whole temperature range.

- Dufour and Defay12

In Dufour and Defay n_s is calculated for a spherical germ by:

$$n_s [m^{-2}] = \pi \cdot r_{germ}^{2/3},$$

(28)
where z is a constant. To estimate n_a Dufour and Defay calculated the distance of two neighboring water molecules in a tetrahedral arrangement and came up with $2.69 \, \text{Å}$ at $277.15 \, \text{K}$. For that distance they approximated a value for n_a of $5.21 \times 10^{18} \, \text{m}^{-2}$ in the planes $(100)(010)(001)$. In the planes $(101)(011)$ it is $7.4 \times 10^{18} \, \text{m}^{-2}$. For their calculations they used a value of $5.3 \times 10^{18} \, \text{m}^{-2}$. They show that the higher value of $7.4 \times 10^{18} \, \text{m}^{-2}$ changes the nucleation rate by a factor of 1.4. It has a minor effect on the freezing temperature ($0.1 \, \text{K}$ to $0.3 \, \text{K}$ for small droplets).

In Pruppacher and Klett as well as Jeffery and Austin (referring to Pruppacher and Klett) a value within the above mentioned range of $5.85 \times 10^{18} \, \text{m}^{-2}$ is used.

C Methods for estimating σ_{iw} at the melting point ($\sigma_{iw,0}$)

Due to the fact that $\sigma_{iw,0}$ can only be measured indirectly several measured data exist, which are explained below:

- Kubelka and Prokscha:

 Kubelka and Prokscha used several capillary methods to estimate σ_{iw} from the melting point reduction in the pores of a silica gel using the Thomson equation at approximately $268.15 \, \text{K}$. They found an averaged value of $25.4 \times 10^{-3} \, \text{J} \, \text{m}^{-2}$, a minimum value of $21.9 \times 10^{-3} \, \text{J} \, \text{m}^{-2}$ and a maximum value of $27.9 \times 10^{-3} \, \text{J} \, \text{m}^{-2}$.

- Skapski et al.: 37

 Skapski et al. used a Pyrex tube as a capillary cone in which they measured the ice–water equilibrated interface curvature using a microscope. From the deviation of the melting temperature from $273.15 \, \text{K}$ they estimated the interfacial tension using the Gibbs–Thomson relation resulting in a rather high value for $\sigma_{iw,0}$ of $44 \times 10^{-3} \pm 10 \times 10^{-3} \, \text{J} \, \text{m}^{-2}$. This might be due to inaccurate measurements of the curvature or impurities inside the cone, which might lower the melting point.

- Fernandez and Barduhn: 87

 Fernandez and Barduhn measured the crystal growth of ice crystals in supercooled water with different flow velocities. They found an interfacial tension of $31.8 \times 10^{-3} \pm 1.8 \times 10^{-3} \, \text{J} \, \text{m}^{-2}$.

- Coriell et al.: 98

 Coriell observed the growth of ice crystal cylinders into supercooled water. The measured growth rates and wavelength of sinusoidal perturbations were then used to estimate $\sigma_{iw,0}$ of $25 \times 10^{-3} \, \text{J} \, \text{m}^{-2}$.

- Ketcham and Hobbs: 89

 In Ketcham and Hobbs the equilibrium conditions of grain boundary grooves at the liquid–solid interface were investigated and the shape of the grain boundary grooves (grain boundary groove angle) measured. The Young relation was then used to estimate $\sigma_{iw,0}$ from the contact angle leading to $33 \times 10^{-3} \pm 3 \times 10^{-3} \, \text{J} \, \text{m}^{-2}$.

- Jones and Chadwick: 98

 Jones and Chadwick also used grain boundary measurements, but found a quite different value of $\sigma_{iw,0}$ of $41 \times 10^{-3} \pm 9 \times 10^{-3} \, \text{J} \, \text{m}^{-2}$. The measurement was therefore redone in Jones leading to a value of $44 \times 10^{-3} \pm 10 \times 10^{-3} \, \text{J} \, \text{m}^{-2}$. Since the error of this measurement is large, the lower value by Ketcham and Hobbs is almost entirely inside the uncertainty range of Jones. The used technique might not work for materials with different thermal conductivities in the liquid and solid phase as in the case of water.

- Hardy: 99

 Similar to that in Ketcham and Hobbs and Jones and Chadwick the equilibrium shape of grain boundary grooves at a stabilized melt–crystal interface is observed with a slightly different experimental setup compared to Ketcham and Hobbs. Different from Ketcham and Hobbs, $\sigma_{iw,0}$ is indirectly estimated using the analysis by Nash and Glicksman. It results in a value of $29.1 \times 10^{-3} \pm 0.8 \times 10^{-3} \, \text{J} \, \text{m}^{-2}$. The measurement of $\sigma_{iw,0}$ by Hardy is considered the most reliable (e.g. Gráná gy et al. 40).

- Hillig: 93

 Hillig used fine-pore cellulose acetate filters, with pore sizes corresponding to the minimum gas pressure, allowing bubbling through the water-wetted filters. The corresponding supercooling was measured. From the proportionality between the supercooling and the gas pressure the interfacial tension was calculated. The measurement was repeated for different filter types leading to an average value of $\sigma_{iw,0}$ of $31.7 \times 10^{-3} \pm 2.7 \times 10^{-3} \, \text{J} \, \text{m}^{-2}$.

In addition to the measured values some studies did theoretical calculation to estimate σ_{iw}. Thus Volmer suggested to estimate $\sigma_{iw,0}$ based on the assumption that the relation of σ_{iw} to the latent heat of melting L_m is equivalent to the relation of σ_{wa} to the latent heat of vaporization L_v. The approach was used by Krastanow. However, assuming L_v to be constant did result in a wrong temperature behavior of σ_{iw}. The calculated values of Krastanow were later corrected by McDonald using a temperature dependent L_v parameterization. Only the corrected values are plotted in Fig. 2.

Turnbull used a similar approach and did relate σ_{iw} to the heat of melting per unit area and thus estimated $\sigma_{iw,0}$ for different materials including water.

Moreover Oura estimated σ_{iw} from nucleation measurements of Schaefer and Smith and Johannsen by using the formulation of Turnbull and Fisher. He found a value of $18.5 \times 10^{-3} \, \text{J} \, \text{m}^{-2}$ at $253.15 \, \text{K}$ by theoretical considerations.

Another approach was suggested by Born and Stern. It is based on the lattice energy of the ice crystal (cleavage work), which is computed from the energy of hydrogen bonds and Antonoff’s rule. Using this method Mason estimated a value for σ_{iw} of $22 \times 10^{-3} \, \text{J} \, \text{m}^{-2}$ at $233.15 \, \text{K}$. Briegleb re-estimated the energy of the hydrogen bonds at the surface and thus the interfacial tension σ_{iw}. McDonald reviewed the method of Mason and suggested that the energy of hydrogen bonds at the surface calculated from the sublimation heat has to be corrected and the distortion energy has to be taken into account leading to new estimates for the temperature range from $223.15 \, \text{K}$ to $273.15 \, \text{K}$. However, the general assumption, specifically the Antonoff’s rule, for the calculation is criticized by Ouchi. Gilra and Dass followed another theoretical approach by using precrystallization theory. They calculated low values of $13 \times 10^{-3} \, \text{J} \, \text{m}^{-2}$ and $10 \times 10^{-3} \, \text{J} \, \text{m}^{-2}$ at $233.15 \, \text{K}$ and $253.15 \, \text{K}$ respectively.
Manka et al. found an interfacial tension of 15.6×10^{-3} J m$^{-2}$ in the temperature range from 202 to 215 K from nucleation rate measurements using the analysis from Murray et al.

D Methods for estimating $\sigma_{iw}(T)$

The different forms of $\sigma_{iw}(T)$ found in literature stem from the use of either a macroscopic value from the list above in combination with a theoretical temperature dependence, a theoretical approach only, a macroscopic value in combination with nucleation measurements, the use of nucleation measurements only or the use of molecular simulations. The estimates for the interfacial tension are therefore dependent on the chosen macroscopic value, the nucleation rate dataset used for fitting, the theoretical assumption of the temperature dependence or the type of molecular model. Some descriptions of all methods will be compared in the following.

- **Young relation (1805):**

 Young’s semi-empirical relation is based on the mechanical equilibrium conditions of a drop on a solid surface. In this case the interfacial tension between the solid and air (σ_{sa}) is in balance with the interfacial tension between solid and water (σ_{sw}) and the one between water and air (σ_{wa}) multiplied by the cosine of the contact angle θ between the drop and the substrate:

 $$\sigma_{wa} \cos \theta = \sigma_{sa} - \sigma_{sw}. \tag{29}$$

 For θ going towards zero eqn (29) can be used, following Antonoff, to indirectly calculate σ_{iw} from σ_{ia} and σ_{wa} as they are in equilibrium:

 $$\sigma_{iw} = \sigma_{ia} - \sigma_{wa}. \tag{30}$$

 σ_{wa} can be found in Pruppacher and Klett. The formulation of Pruppacher and Klett takes into account the singularity behavior of water near 228.15 K. σ_{ia} is given e.g. in Hale and Plummer.

 - **Ouchi:**

 Ouchi derived the temperature dependence of σ_{iw} based on thermodynamics. He assumed that the interface of liquid and ice is a layer of the same amount of ice and water molecules. In this layer the mean internal energy per molecule is

 $$U = \frac{1}{2}(2U_{iw} + 2U_{i}) = \Delta U + 2U_{i},$$

 with ΔU being the difference of the internal energy per molecule related to the different phases $U_{iw} - U_{i}$.

 Due to mixing of molecules with different phases the entropy is changing. For a large number of molecules (n) the entropy (S) becomes

 $$S = n \cdot k_{B} \cdot \log(2).$$

 As the free energy (F) is defined as $F = U - TS$, the interfacial free energy per molecule is equal to $F_{\text{molecule}} = U - k_{B} \cdot \log(2)$.

 The interfacial free energy (interfacial tension) per unit area of the interface is thus the following:

 $$\sigma_{iw} \text{[J m}^{-2}] = \frac{U - k_{B} \cdot \log(2)}{V_{\text{ice}} \cdot N_{A}} \tag{31}$$

 with V_{ice} as the volume of one gram molecule of ice.

 - **Jacobi**

 Jacobi estimated σ_{iw} from his own nucleation dataset by using the theory of Volmer for the phase differences, where σ_{iw} is based on the proportion relation of σ_{iw} to the latent heat of melting L_{m} compared to σ_{wa} to the latent heat of vaporization L_{v}. Comparison with nucleation measurements leads to a temperature gradient of:

 $$\frac{d\sigma_{iw}}{dT} = 0.2 \times 10^{-3} \text{ J m}^{-2} \text{ K}^{-1} \tag{32}$$

 and $\sigma_{iw} = 16.1 \times 10^{-3} \text{ J m}^{-2}$ at 238.15 K.

 In Dufour and Defay, σ_{iw} was re-estimated from the same dataset using the method of least squares to a regression line for $d\sigma_{iw}/dT$ resulting in:

 $$\frac{d\sigma_{iw}}{dT} = 0.102 \times 10^{-3} \text{ J m}^{-2} \text{ K}^{-1} \tag{33}$$

 The value of σ_{iw} was estimated to be $20.24 \times 10^{-3} \text{ J m}^{-2}$ at 238.15 K.

 This estimate is quite different to the one of Jacobi. The deviation comes mainly from a different formula for the germ radius and a different shape factor (assuming the germ to be a hexagonal prism).

 - **Wood and Walton:**

 In this study Wood–Walton measured the kinetics of homogeneous ice nucleation. By fitting CNT to these measurements they derived σ_{iw} at 236.6 K and $d\sigma_{iw}/dT = 0.211 \times 10^{-3} \pm 0.012 \times 10^{-3} \text{ J m}^{-2} \text{ K}^{-1}$ (in their study denoted as the nucleation parameter ω) resulting in:

 $$\sigma_{iw} = \sigma_{iw,0} + d\sigma_{iw}/dT \cdot T \tag{34}$$

 with $\sigma_{iw,0} = 31.93 \times 10^{-3} \pm 0.44 \times 10^{-3} \text{ J m}^{-2}$.

 - **Eadie:**

 Eadie gave a full theoretical description of homogeneous nucleation based on a statistical model for liquid water. The basis of the model is the theoretical framework from Némethy and Scheraga, where the specific interfacial tension is a variable of the molecular interactions at the ice–water interface. σ_{iw} is obtained as a function of supercooling (see Table 6). For a hexagonal plate a value of $23.42 \times 10^{-3} \text{ J m}^{-2}$ was determined at a temperature of 238.15 K. The estimate of σ_{iw} is limited by the idealized model used.

 - **DeMott and Rogers:**

 Nucleation rate measurements were used to estimate σ_{iw} from CNT. In the temperature range between 239.15 K and 233.15 K a constant value of $22.5 \times 10^{-3} \text{ J m}^{-2}$ was found to best reproduce the data. Extending the range to 243.15 K and taking the temperature dependence into account yields:

 $$\sigma_{iw} \text{[J m}^{-2}] = 28 \times 10^{-3} \text{ J m}^{-2} + 0.167 \times 10^{-3} \text{ J m}^{-2} \text{ C}^{-1} \times T_{c}. \tag{35}$$
Pruppacher and Klett:15

Pruppacher and Klett used an estimate of \(\sigma_{iw,0} \) based on unpublished data on latent heat of melting in combination with an educated guess about the temperature dependence. It is expressed by a polynomial expression [eqn (5-47a) and eqn (5-47b) in the textbook]:

Between 237.15 and 273.15 K:

\[
\sigma_{iw} [\text{J m}^{-2}] = 28 \times 10^{-3} \text{ J m}^{-2} + 0.25 \times 10^{-3} \text{ J m}^{-2} \cdot C^{-1} \cdot T_c.
\]
(36)

And between 237.15 and 229.15 K:

\[
\sigma_{iw} [\text{J m}^{-2}] = (189.081 \text{ J m}^{-2} + 13.1625 \text{ J m}^{-2} \cdot C^{-1} \cdot T_c)
+ 0.3469 \text{ J m}^{-2} \cdot C^{-2} \cdot T_c^2
+ 3.125 \times 10^{-3} \text{ J m}^{-2} \cdot C^{-4} \cdot T_c^3 \times 10^{-3}.
\]
(37)

This formulations are also used by e.g. Chen et al.30 and Khvorostyanov and Sassen.19

Jeffery and Austin:3

The interfacial tension \(\sigma_{iw} \) in Jeffery and Austin is calculated empirically by a relation which is based on Turnbull.96 It is expressed as follows:

\[
\sigma_{iw} [\text{J m}^{-2}] = k_T L_m/\rho_t^{2/3} N_A^{-1/3} - k_v T_c,
\]
(38)

where \(k_T \) is a constant with a value of 0.32 for water, \(L_m \) the latent heat of melting, \(\rho_t \) the surface density of ice, \(N_A \) the Avogadro constant and \(k_v = 0.00009 \text{ J m}^{-2} \cdot K^{-1} \) another constant estimated by Jeffery and Austin through fitting CNT based nucleation rates to observations. The latent heat of melting is expressed through the change of the specific entropy (\(s \)) by the equation of state \(L_m = T(s_m - s_l) \), where the specific entropy of water (\(s_w \)) is the inverse change of the specific free energy (\(f \)) with temperature \(s_w = -\left(\frac{\partial f}{\partial T} \right)_{1/\rho} \) and the specific entropy of ice (\(s_l \)) is \(s_l = 1.885 \log(T) + 0.1327 T - 5.115 \), which results from the integration of the heat capacity of ice.5,15

Taborek109 and Gránásy et al.:40

In Taborek homogeneous nucleation rate measurements were used to estimate \(\sigma_{iw} \) from CNT. The best fit at 236 K resulted in an interfacial tension of \(28.3 \times 10^{-3} \text{ J m}^{-2} \) with a temperature dependence of \(\sigma_{iw}/\partial T = 0.1 \times 10^{-3} \text{ J m}^{-2} \cdot K^{-1} \) leading to a value of \(3.19 \times 10^{-3} \text{ J m}^{-2} \) at 273.15 K. \(\Delta g^0 \) was held constant at \(3.4 \times 10^8 \) J, which resulted from low-viscosity measurements from Hallett.76 As the nucleation rate in the investigated temperature range is dominated by the interfacial tension, this simplification causes only minor uncertainties. However, note that the value is very small compared to other literature estimates (see Appendix A).

Gránásy et al.40 used a continuum model instead of the CNT to estimate \(\sigma_{iw} \) from nucleation measurements. The approach stems from a generalization of density functional theories and is the single-order-parameter Cahn–Hilliard approach. They reanalyzed the data from Taborek.109 The interfacial tension at \(T = 236 \text{ K} \) was estimated to be approx. \(24.8 \times 10^{-3} \text{ J m}^{-2} \), which is slightly lower than the estimate by Taborek.109 However they found the same temperature dependence, so that the extrapolated value at \(T = 273 \text{ K} \) is \(27.1 \times 10^{-3} \pm 0.2 \times 10^{-3} \) J m\(^{-2}\). Granasy mention that the crystal in their model analysis could be described with bulk properties in the temperature range of the measurement data.

Zobrist et al.29

\(\sigma_{iw} \) is used as a fit parameter in Zobrist et al.\(^{29}\) CNT is fitted to experimental nucleation rates from Pruppacher and Klett,15 Krämer et al.,110 Duft and Leinsner,66 Benz et al.,112 Stöckel et al.112 and Kabath et al.113 For the formulation of the nucleation rate, eqn (13) is used with a kinetic prefactor \(Z = 1 \) and \(N_l = 3.1 \times 10^{28} \text{ m}^{-3} \) for the volume number density of water molecules in the liquid. The resulting formula for \(\sigma_{iw} \) is the following:

\[
\sigma_{iw} [\text{J m}^{-2}] = 10^{-2} J m^{-2} \times \left[3.298 + 1.2048 \cdot \frac{T - T_0}{T_0} - 46.705 \cdot \left(\frac{T - T_0}{T_0} \right)^2 \right].
\]
(39)

It is valid in the temperature range between 229 and 238 K. However, the extrapolation to 273.15 K yields \(32.98 \times 10^{-3} \text{ J m}^{-2} \) and fits to the measured value of Hobbs et al., indicating that the formula can be used over this whole temperature range.

Huang and Bartell6 and Murray et al.43

Huang and Bartell proposed that due to lower free energy barrier, metastable cubic ice forms first after the phase transition. At homogeneous freezing temperatures it rapidly transforms into the stable hexagonal structure. This assumption is also made by Murray et al.43 Both estimate \(\sigma_{iw} \) based on their nucleation measurements by fitting the following formula:

\[
\sigma_{iw} = \sigma_{iw}(T_{ref}) \cdot \left(\frac{T}{T_{ref}} \right)^n.
\]
(40)

Huang and Bartell6 got a result of \(n = 0.3 \) and \(\sigma_{iw}(T_{ref}) = 21.55 \times 10^{-3} \) or \(21.72 \times 10^{-3} \text{ J m}^{-2} \) at \(T_{ref} = 200 \text{ K} \) depending on the used dataset (in Fig. 2 the average is used). Murray et al. report \(n = 0.97 \) and \(\sigma_{iw}(T_{ref}) = 20.8 \times 10^{-3} \pm 1.2 \times 10^{-3} \text{ J m}^{-2} \) at \(T_{ref} = 235.8 \text{ K} \) by plotting the logarithm of the measured nucleation rate against \(T^{-3} \ln S_l^0 \) [see eqn (8) in Murray et al. \(^{43} \)]. As the structure of the ice is assumed to be cubic here, a direct comparison to other values of \(\sigma_{iw} \) for hexagonal ice is difficult. Assuming the structure of the ice to be hexagonal yields \(\sigma_{iw}(T_{ref}) = 26.8 \times 10^{-3} \pm 0.5 \times 10^{-3} \text{ J m}^{-2} \).

Chukin et al.27

Chukin used a parameterization for \(\sigma_{iw} \) based on Pruppacher and Klett15 and Berkyaev114

\[
\sigma_{iw}[\text{J m}^{-2}] = -0.937875 \text{ J m}^{-2} + 0.00025 \text{ J m}^{-2} \cdot K^{-1} \cdot T.
\]
(41)

It is valid from 233 K to 273 K.

Némecet al.115

\(\sigma_{iw} \) was estimated by fitting nucleation measurement data to CNT in the temperature range of 200–240 K, leading to:

\[
\sigma_{iw}[\text{J m}^{-2}] = \sigma_{iw,0} \cdot \left(\frac{T}{235.8} \right)^n.
\]
(42)
with $\sigma_{iw,0} = 23.24 \times 10^{-3} \pm 1.1 \times 10^{-3}$ J m$^{-2}$ and the exponent $n = 0.35$. The nucleation measurements, which were used, were the high pressure measurements from Huang and Bartell6 and Manka et al.19 the dataset from Hagen et al.3 and the dataset from Stan et al.116 The pressure dependence of the nucleation rate was explicitly described and taken into account.

The use of molecular models to simulate the molecular dynamics and thermodynamics has only recently become feasible. These models are explicitly simulating molecular mechanics of water molecules building clusters. They are classified with respect to the amount of points describing one water molecule i.e. the interaction between water molecules. Depending on the number of points used, the structure and other features, e.g. the polarization of the water molecules, can be represented in the model. One of the simplest models is the TIP4P model of water. It is used in nearly all of the following studies from which the results for σ_{iw} are summarized. The abbreviation stands for “4-point-transferable-intermolecular-potential”. The four points refer to both hydrogen atoms, the oxygen atom and the negative charge from the oxygen atom, which is treated separately from the atom and placed near the oxygen at the dipole axis. The angle, shape and body of the water molecule is rigid without any intermolecular forces. Some subversions of the TIP4P model exist, which are the TIP4P-Ew model, using Ewald summation; the TIP4P-ice model, which is specifically designed for ice; and the TIP4P/2005 model, which is capable of simulating the whole phase diagram of condensed water.

Results from these models for the estimation of σ_{iw} are given in the following. It should be mentioned that the values of σ_{iw} can be quite different in the case of a planar calculation of σ_{iw} compared to a molecular σ_{iw}.

- Digilov41

Digilov used Monte Carlo simulations to model the liquid–solid interface and the atomic disordering in the solid–liquid transition zone. From that, the potential function of the inter-planar adhesion can be estimated and used to find a relation for σ_{iw} based on the empirical Turnbull rule, where σ_{iw} is correlated with the melting point temperature (T_0) and the latent heat of melting at T_0. The relation found scales with T_0 and the atomic volume ($\frac{V^2}{\Omega_{sm}}$):

$$\sigma_{iw,0} \approx \frac{3}{2} \frac{k_B T_0}{\Omega_{sm}} \delta^2 \exp\left(\frac{L_m(T_0)}{3k_B T_0} \right)$$

$$\approx \frac{1}{8} \frac{3k_B}{S_m} \exp\left(\frac{S_m}{3k_B} \right) \frac{L_m(T_0)}{\Omega_{sm}}$$

where δ is a displacement factor with a value between 0.5 (lower limit for σ_{iw}) and 0.7. The second form of the equation is equivalent to the Turnbull rule. It yields a value of 38.7×10^{-3} J m$^{-2}$ at T_0 (ice hcp).

- Davidchack et al.117

In Davidchack et al. an extended cleaving method was used, meaning that separate liquid and solid water systems were cleaved and both cleaving potentials were merged to one interface to study the planar interfacial tension. The authors concluded from the simulations that σ_{iw} could be due to the short-range packing interaction between water molecules. They did the simulation with the TIP4P, the TIP4P-Ew and the TIP5P-E model setup leading to similar values of $\sigma_{iw,0}$ of 26.5×10^{-3}, 27.6×10^{-3} and 28.9×10^{-3} J m$^{-2}$, respectively.

- Reinhardt and Doye72

Reinhardt and Doye used a hybrid Monte Carlo molecular simulation of TIP4P/2005 to estimate σ_{iw}. At a temperature of 240 K, σ_{iw} was found to be approximately 24×10^{-3} J m$^{-2}$ for monatomic water and 24.5×10^{-3} J m$^{-2}$ for a basal plane of TIP4P ice. The temperature dependence of σ_{iw} is described by the change in entropy, which occurs per unit area when forming an interface:

$$\frac{\partial \sigma_{iw}}{\partial T} = -S.$$ \hspace{1cm} (45)

The change of internal entropy S was found to be 0.18×10^{-3} J m$^{-2}$ K$^{-1}$.

- Sanz et al.50

Sanz et al. used the TIP4P model to simulate an ice Ih cluster surrounded by supercooled water in the temperature range from 238.15 K to 258.15 K. The information gained about the critical cluster was then combined with CNT to estimate σ_{iw} as the size of the critical cluster is strongly correlated with the interfacial tension. The clusters had a size of 600 to 8000 molecules (a radius of 1.7 to 4 nm), from which the plane in contact with the supercooled liquid and thus σ_{iw} was calculated. Sanz et al. derived a value of 28.7×10^{-3} J m$^{-2}$ at the melting point and a temperature dependence of $d\sigma_{iw}/dT = 0.18 \times 10^{-3}$ J m$^{-2}$ K$^{-1}$.

To counteract the problem that σ_{iw} is a macroscopic property and might be different in the case of small clusters of water molecules, Bogdan118 estimated the curvature effect on σ_{iw} following Tolman.119 As a basis he used the formulation of Dufour and Defay12 and the Gibbs17 relations. He found that σ_{iw} decreases with the curvature (resulting in smaller critical clusters), which on the other hand then increases the probability of nucleation.

E List of symbols

The symbols listed in the paper are defined in Table 7.

Remarks and typographical errors found in the literature

The review of the kinetic and thermodynamic parameters is necessarily incomplete due to the large amount of the literature on this subject.

One typographical error was found in Pruppacher and Klett,115 on page 206 n_c (here N_c) has to be 5.85×10^{14} cm$^{-2}$ and 5.3×10^{14} cm$^{-2}$ instead of 5.85×10^{12} cm$^{-2}$ and 5.3×10^{12} cm$^{-2}$.
In Taborek, the value of $\sigma_{\text{sw,0}}$ is different from the value given in Table 3. The value was calculated using the linear slope σ_{sw}/dT and the measured value of σ_{sw} at 236 K and deviates most probably from the original value because σ_{sw}/dT is rounded in the paper to 0.1 J m$^{-2}$ K$^{-1}$.

Extrapolating the data of Gránásy et al. is giving a value of 28.6 \times 10$^{-3}$ J m$^{-2}$ for $\sigma_{\text{sw,0}}$ instead of the extrapolated value in the paper (27.1 \times 10$^{-3}$ J m$^{-2}$ ± 0.2 \times 10$^{-3}$ J m$^{-2}$). The equation for the activation energy of Khvorostyanov and Curry stated in Ervens and Feingold is incorrect. The unit should be erg rather than J (or a conversion factor has to be added) and it is 0.027 instead of 0.0027.

Acknowledgements

The authors would like to thank Joel Corbin for discussions and proof-reading, Matteo Tanadini (Tana) and Sarah Grimm for statistical consulting, Thea Schmitt for discussions about homogeneous freezing datasets, Aleksandra Borodina for the help with the Russian literature and the anonymous reviewers for their input and discussion.

References

Perspective