NETWORK APPROXIMATION FOR EFFECTIVE VISCOSITY OF CONCENTRATED SUSPENSIONS WITH COMPLEX GEOMETRY.

LEONID BERLYAND*, LILIANA BORCEA†, AND ALEXANDER PANCHENKO‡

Abstract. We study suspensions of rigid particles (inclusions) in a viscous incompressible fluid. The particles are close to touching, so that the suspension is near the packing limit, and the flow at small Reynolds number is modeled by the Stokes equations. The objective is to determine the dependence of the effective viscosity (μ) on the geometric properties of the particle array. We study spatially irregular arrays, for which the volume fraction alone is not sufficient to estimate the effective viscosity. We use instead the notion of the interparticle distance parameter δ, based on the Voronoi tessellation, and we obtain a discrete network approximation of (μ), as $\delta \to 0$. The asymptotic formulas for (μ), obtained in dimensions two and three, take into account translational and rotational motions of the particles. The leading term in the asymptotics is rigorously justified in two dimensions by constructing matching upper and lower variational bounds on μ. While the upper bound is obtained by patching together local approximate solutions, the construction of the lower bound cannot be obtained by a similar local analysis because the boundary conditions at fluid-solid interfaces must be resolved for all particles simultaneously. We observe that satisfying these boundary conditions, as well as the incompressibility condition, amounts to solving a certain algebraic system. The matrix of this system is determined by the total number of particles and their coordination numbers (number of neighbors of each particle). We show that the solvability of this system is determined by the properties of the network graph (which is uniquely defined by the array of particles), as well as by the conditions imposed at the external boundary.

Key words. effective viscosity, discrete network, variational bounds, concentrated suspension.

AMS subject classifications. 74Q, 35Q72, 74F10, 76T20

1. Introduction. In this paper, we obtain and justify approximate formulas for the effective viscosity (μ) of a highly-concentrated suspension of solid particles in a viscous incompressible fluid. We study generic, non-periodic spatial distributions of particles and we focus on a particular type of highly concentrated suspensions, which can be approximately modeled on the macroscale by a single phase fluid, called the effective fluid. The effective viscosity is determined from the equality of the viscous dissipation rates in the suspension and the effective fluid. This is a classical approach that goes back to Einstein [15], who approximates the effective viscosity in the limit of an infinitely small particle concentration (the so-called dilute limit). Further results for dilute suspensions can be found in [3] and the references therein.

While in the dilute limit the interactions between the particles are negligible, the case of finite (non-small) concentrations is much harder to analyze because these interactions must be taken into account. In [27], an asymptotic expansion of the effective viscosity is constructed assuming a periodic distribution of particles. In [27], the formal two-scale homogenization is carried out under the assumption that the number of particles tends to infinity while their total volume remains constant. In this case, the distances between the particles are of the order of their sizes, which is the key feature of the so-called finite (moderate) concentration regime.

By contrast, our interest lies in the high concentration regime, where the particles are close to touching, so the typical interparticle distances are much smaller than their sizes. In this case, the hydrodynamic interactions lead to the blow-up of the dissipation rate in the thin gaps between the closely spaced particles. Note that the effective fluid can be either Newtonian [17] or non-Newtonian [1, 2, 5, 26]. We consider only the former case, following [17, 18, 29] (see also [21] for a review of physical data). Also, we consider only non-colloidal suspensions, which means that hydrodynamic interactions are much stronger than Brownian interactions, so the latter can be neglected. For effective rheology of colloidal suspensions, one may consult [13].

For periodic arrays of particles [17, 18, 29], the estimation of the effective viscosity reduces to solving the flow problem locally, in a thin gap between two neighboring particles. In [17], this is done by a formal asymptotic method, similar to the well known lubrication approximation, which takes into account only the translational motions of particles along the lines of their centers. The contributions of rotations and shear-type translations are neglected in [17]. In [18], a more general formula for the effective viscosity is...
obtained, which combines the results in [17] and [15], for dilute and high concentration regimes, respectively. In [29], the definition of the effective viscosity involves the traction exerted on a single sphere, by the fluid. This traction satisfies an integral equation which is derived and solved (for a cubic periodic lattice) in [29]. Note in particular that the periodicity assumption in [29] reduces the boundary conditions on the surface of the particles to just a rigid body rotation (no translations).

In this paper, we consider generic, non-periodic arrays, where different particles have different translational and rotational body motions. Since the rigid motions of the particles are not known apriori, the effective viscosity cannot be obtained by simply solving a local problem in the gap between adjacent particles. The motion of one particle influences the motion of all the particles in the array and, to find the effective viscosity, we must solve the global problem. A key ingredient in our method of solution is the so called discrete network approximation.

Discrete network models have been used in the engineering and physics literature [23, 19, 30, 31], although the relation between the continuum problem and the discrete network has not been established. The first rigorous mathematical characterization of high contrast media, in terms of discrete networks, has been obtained for electromagnetic transport problems in [9, 10, 11, 12], where the electrical conductivity (and permittivity) are modeled as exponentials of the form \(e^{S(x)/\epsilon} \). This continuum high contrast model is due to Kozlov [24], where \(S \) is a smooth, Morse function and where \(\epsilon \ll 1 \), such that, small variations of \(S \) are highly amplified by the exponential, thus giving the high contrast. Kozlov’s model is especially useful in the context of imaging [11], where the medium is not known and it is “approximated” by a generic, high contrast continuum. The high contrast continuum model leads to an explicit characterization of a two dimensional flow of d.c. (a.c.) electric current in the material, in terms of a network of resistors (and capacitors), which is uniquely defined by the distribution of critical points of \(S \). Explicitly, in the d.c. case, the nodes of the network are the local maxima of the electrical conductivity function (i.e. of \(S \)) and the branches of the network connect adjacent nodes through the saddle points of \(S \). The resistor associated with each branch is determined by the conductivity and by the curvatures of \(S \) at the saddle point, respectively. The boundary currents and voltages of the asymptotic network are also uniquely defined by \(S \) and by the boundary conditions specified for the continuum problem, so the asymptotic results in [10, 11, 12] give more than the homogenized electrical properties of the high contrast continuum. They give that the Neumann to Dirichlet map of the continuum problem is asymptotically equivalent to the discrete Neumann to Dirichlet map of the asymptotic network, in the limit \(\epsilon \to 0 \) [10, 12]. All the results in [9, 10, 11, 12] apply to the two dimensional case, for all smooth functions \(S \) with isolated, non-degenerate critical points. Extensions to three dimensions are straightforward for a special class of functions \(S \), but for a general \(S \), the network approximation may not apply.

In [6], another network approximation has been developed for a scalar, d.c. conductivity problem which models dispersive high contrast composites. In this case, \(S(x) \) is the characteristic function of the particles, the high contrast parameter is \(\epsilon = 0 \) (perfectly conducting particles), and the asymptotic analysis is carried out in the limit of the interparticle distance parameter \(\delta \) tending to zero. The particle radii are not treated as small parameters, and the number of the particles is sufficiently large, but bounded from above by \(N_{\text{max}} \), where \(N_{\text{max}} \) is the maximal close packing number. In [6], the connectivity patterns and the inter particle distance parameter for irregular spatial arrays of particles are rigorously defined using Voronoï tessellation. It is demonstrated that the network approximation is an efficient numerical tool, capable of capturing various percolation effects, as well as effects due to the polydispersity of particles. This approach also allows for analytical error estimates, which have been subsequently obtained in [7].

In [9, 10, 11, 12, 6], the network approximation is rigorously justified by employing variational duality. The key point is the construction of trial functions, the electric potential and current density, for the direct and dual variational problems, respectively. The choice of trial functions depends on both the mathematical and physical features of the problem. For example, the construction of trial functions in [6] is essentially different from the ones in [9, 10, 11, 12], and it requires the development of new mathematical tools. While the upper bound can be obtained by patching together the appropriate test functions based on the local analysis of [22], such a straightforward approach does not work for the lower bound. The difficulty in obtaining the latter consists in the construction of trial functions for the dual problem, when the boundary conditions on the surfaces of the particles cannot be satisfied independently for each particle, and one must deal with all inclusions at once. The dual (lower) bound is obtained in [6] by constructing an approximate,
divergence free trial electric current density in the gap between adjacent particles, and extending it to zero elsewhere in the domain. Then, the network equations are used to choose the unknown parameters in the dual trial field, so that the boundary conditions on the surface of the particles are satisfied exactly. Note however that this construction is specialized to the scalar, electrical conductivity problem, and it does not admit generalization to vectorial problems.

In this work, we study the vectorial problem described by Stokes’ flow in a closely packed suspension with rigid particles. Since the array of particles is irregular, our construction uses the interparticle distance parameter introduced in [6], based on the Voronoi tessellation. Due to the high concentration of particles of finite size, in a fixed volume, the particles are close to touching. Thus, we assume that distances \(\delta \) between adjacent particles \(D(i) \) and \(D(j) \) become infinitesimally small, but positive. More precisely, we say that \(c\delta \leq \delta^i \leq \delta \), for all pairs \(D(i), D(j) \) of neighboring particles, where \(0 < c < 1 \) is fixed, and where \(\delta \) is the small parameter of the problem. We are interested in the asymptotics of the effective viscosity as \(\delta \to 0 \), while the particle radii \(a_i \) are kept fixed and the number of particles \(N \) approaches \(N_{\text{max}} \), from below.

The goal of this paper is two-fold:

1. The first objective is to derive computationally efficient asymptotic formulas for the effective viscosity, which capture explicitly the effects of the complex geometry (the irregular distribution of the location and size of the particles). This is done in both two and three dimensions, and our derivation of these formulas is based on the generalization of the lubrication approximation technique. We take into account all possible translations and rotations of the rigid particles in the suspension, which we quantify by constant vectors \(T(p) \) and \(\omega(p) \), respectively, for \(1 \leq p \leq N \). Using the linearity of the problem, we approximate first the velocity, pressure and stress in the gaps (necks) between the particles, for translational and rotational motions, separately, and then, we superpose the results. The lubrication analysis is local, for each gap and, by summing the contribution of all the gaps, we obtain the discrete approximation of \(\mu \), parameterized in terms of the rigid body translational and rotational velocities \(T(p) \) and \(\omega(p) \), respectively, for \(1 \leq p \leq N \). These rigid body motions are not arbitrary, but they are calculated by solving a system of linear equations, which corresponds to the conditions of mechanical equilibrium for all particles in the suspension.

For a reader interested mainly in numerical estimation of the effective viscosity, we describe the use of our approach in Remark 3.1, Section 3 (see also the forthcoming paper [8] where the effective viscosity was computed for several boundary conditions and various particle arrays by adapting the approach developed in this paper.)

2. The second objective of the paper is to provide a rigorous mathematical justification of the asymptotic approximation of the effective viscosity. The rigorous justification of the leading order term in the asymptotic approximation is done here in two dimensions. The most subtle part of this justification is the construction of the dual trial function, for the lower bound on the effective viscosity. None of the techniques developed previously in [6, 7, 9, 10, 11, 12], for constructing trial functions for the dual problem, work here. There are two main difficulties in the construction of the bounds on the effective viscosity: The first difficulty is that the trial functions must be divergence free in the fluid domain. The second difficulty is raised by the boundary conditions on fluid-solid interfaces. While these issues can be handled in the upper bound construction with an approach inspired by the works in [9, 10, 11, 12, 6], the dual problem is significantly more challenging, because the trial fields are tensors. In the dual problem, neither of the above two difficulties can be resolved by doing local analysis, that is, by choosing approximate solutions in each gap followed by patching these solution together. First, we must consider the global problem, to ensure that the boundary conditions are satisfied for all inclusions at once. Second, we show that the divergence free requirement on the stress trial fields is also global, analogous to the interface conditions. Then, we observe that the solvability of a certain algebraic system is sufficient to ensure that these two global requirements are satisfied. The size of the matrix of the linear system is determined by \(N \), the total number of particles, and by their coordination number (number of neighbors). The solvability of the system, in turn, is determined by the connectivity and the coordination numbers of the network graph corresponding to the particle array, as well as by the conditions at the external boundary. We present geometric conditions for the network graph (topology), so that this linear system is solvable. In particular, we point out that these conditions are satisfied by network graphs which model typical close packing configurations.

3
The paper deals with irregular spatial arrays of particles. In this case, the total volume fraction of particles (which is the only parameter in the formulas from [15, 17]) is not sufficient for estimating the effective viscosity. Instead of a formula, we give an algorithm, which reduces computation of the effective viscosity essentially to solving a linear algebraic system for translational and angular velocities of particles. The gain here is that we obtain an accurate, yet computationally inexpensive approximation for the effective viscosity, which, unlike the above mentioned formulas, takes into account variable distances between neighboring particles. Note that variability in these distances for a fixed total volume fraction of particles may result in significant changes in the effective properties, due to percolation effects (see [7]).

The focus of this paper is on derivation and, particularly, analytical justification of this algorithm, while its implementation will be investigated elsewhere (see for example a forthcoming paper [8], where both shear and compression boundary conditions for various arrays of particles are investigated). The paper, however, contains results of immediate practical interest, such as determination of the order of magnitude of the effective viscosity in the interparticle distance parameter \(\delta \). An interesting feature of the vectorial problem which distinguishes it from the scalar case considered in [6, 7, 9, 10, 11, 12], is that the order of magnitude of the effective viscosity depends crucially on the geometry of the particle array and on the boundary conditions. For the scalar problem, the order of magnitude is the same for all networks satisfying a natural connectedness assumption [6], which is not the case in our vectorial problem. In Section 6.2.6 we give a sufficient condition on the particle array so that the effective viscosity blows up at the rate \(\delta^{−3/2} \), in two dimensions, and the leading term in the asymptotics of \(\langle \mu \rangle \) is given by the so called spring network approximation, in which only the translational motions of adjacent particles, along the axis of their centers, are taken into account. In this case, the rotations of the particles do not contribute to the leading term of the asymptotics of \(\langle \mu \rangle \). If an array does not satisfy this condition, the rate of blow up may be weaker (\(\delta^{−1/2} \)) in which case rotational contributions cannot be ignored. A detailed study of this phenomenon will be presented in the upcoming paper [8], where we also use network approximation to explain the discrepancy, observed in [33], between the effective shear viscosity formulas for periodic arrays, and estimates obtained from experimental results and computer simulations.

In this paper, we give the rigorous justification of the spring network approximation. An important physical problem is to calculate the second order term in \(\langle \mu \rangle \), which depends on the rotational motions of particles. The two-term (formal) asymptotics obtained here provides physical insight and the quantitative estimate of the contributions of rotations, as well as the effects of variable size distribution. Rigorous justification of these formulas requires a more careful lower bound construction than we attempt here, and it remains an interesting and challenging open problem.

Another feature of the vectorial problem which distinguishes it from the scalar case considered in [6, 7, 9, 10, 11, 12], is that the order of magnitude of the effective viscosity depends crucially on the geometry of the particle array and on the boundary conditions. For the scalar problem, the order of magnitude is the same for all networks satisfying a natural connectedness assumption [6], which is not the case in our vectorial problem. This dependence is investigated in detail in [8]. Here, we present a sufficient condition which ensures that the leading term in the asymptotics of \(\langle \mu \rangle \) is given by the spring network approximation (and it grows as \(\delta^{−3/2} \)), in two dimensions.

Our study is motivated by the problem of transport of highly concentrated slurries, which arises in numerous industrial applications, ranging from construction engineering to combustion processes ([32], [34]). It is often necessary to use slurries with high solid content (highly packed). The transport of such slurries is impeded by the fact that their effective viscosity is very high. Thus the goal is to find an optimal balance between the effective viscosity and the concentration of the solid phase. The first step in achieving this goal is to obtain relatively simple formulas which show how the effective viscosity depends on the control parameters (e.g., geometrical parameters, such as the particle size distributions, particle locations, shapes etc). The network approximation which we propose here can be used in the prediction of optimal properties of such slurries.

The paper is organized as follows: In section 2, we give the mathematical formulation of the problem. Section 3 deals with the discrete network approximation of the effective viscosity. We also give here, and in section 4, the lubrication approximation of \(\langle \mu \rangle \), in two and three dimensions. In section 5, we construct the upper bound on the effective viscosity, which accounts for both translational and rotational motions of the inclusions. In section 6, we give the rigorous justification of the spring network approximation of the
effective viscosity. This accounts just for the leading order term in the asymptotics of the effective viscosity of the high contrast, closely packed suspension of particles. Finally, in section 7, we give a summary and conclusions.

2. Formulation of the problem.

2.1. The Stokes flow problem. Consider a cube

$$\Omega = \left\{ \mathbf{x} = \sum_{j=1}^{n} x_j \mathbf{e}_j, -L \leq x_j \leq L, 1 \leq j \leq n \right\},$$

(2.1)
of volume $|\Omega| = (2L)^n$, where $n = 2$ or 3 and where $\{\mathbf{e}_1, \ldots, \mathbf{e}_n\}$ is an orthonormal basis. We suppose that Ω is filled with N, non-overlapping, rigid balls (particles) $D^{(j)}$, of radius a_j, suspended in an incompressible fluid of viscosity μ. We study the Stokes flow of this suspension, where the fluid occupies the perforated, connected domain

$$\Omega_F = \Omega \setminus \bigcup_{j=1}^{N} D^{(j)}.$$

(2.2)

We are particularly interested in concentrated suspensions with volume fraction

$$\alpha = 1 - \frac{|\Omega_F|}{|\Omega|},$$

(2.3)
close to maximal packing (neighboring particles are close to touching).

Let $\mathbf{u}(\mathbf{x})$ be the velocity field at point $\mathbf{x} \in \Omega_F$ and let $\mathbf{E}(\mathbf{x})$ be the rate of strain tensor

$$\mathbf{E}(\mathbf{x}) = \frac{1}{2} \left[\nabla \mathbf{u}(\mathbf{x}) + (\nabla \mathbf{u}(\mathbf{x}))^T \right],$$

(2.4)

which satisfies

$$\text{trace} \mathbf{E}(\mathbf{x}) = \text{div} \mathbf{u}(\mathbf{x}) = 0,$$

(2.5)

by incompressibility. The stress in the fluid is

$$\mathbf{S}(\mathbf{x}) = -P(\mathbf{x}) I + 2\mu \mathbf{E}(\mathbf{x}),$$

(2.6)

where μ is the viscosity, P is the hydrostatic pressure and I denotes the unit tensor. In the rigid balls, $\mathbf{E} = 0$.

In the absence of external forces, the velocity field $\mathbf{u}(\mathbf{x})$ in the fluid satisfies Stokes’ equation

$$\text{div} \mathbf{S}(\mathbf{x}) = \mu \Delta \mathbf{u}(\mathbf{x}) - \nabla P(\mathbf{x}) = 0,$$

(2.7)

and the incompressibility constraint (2.5).

Let us denote by $\partial \Omega^+$ and $\partial \Omega^-$, the top and bottom parts of the external boundary $\partial \Omega$, respectively,

$$\partial \Omega^+ = \{ \mathbf{x} \in \partial \Omega : x_n = L \} \quad \text{and} \quad \partial \Omega^- = \{ \mathbf{x} \in \partial \Omega : x_n = -L \}.$$

(2.8)

The boundary conditions are prescribed as follows: On $\partial \Omega^+ \cup \partial \Omega^-$, the velocity satisfies

$$\mathbf{u}(\mathbf{x}) = \mathbf{g}(\mathbf{x}), \quad \text{where} \quad \mathbf{g}(\mathbf{x}) = \begin{cases} -\frac{\mathbf{e}_n}{2L} & \text{on } \partial \Omega^- \smallsetminus \partial \Omega^+ \smallsetminus \partial \Omega^- \smallsetminus \partial \Omega^+, \\ \frac{\mathbf{e}_n}{2L} & \text{on } \partial \Omega^+. \end{cases}$$

(2.9)

and, the remaining part of $\partial \Omega$ is traction free

$$\mathbf{S}(\mathbf{x}) \mathbf{n}(\mathbf{x}) = \mathbf{0}, \quad \text{for } \mathbf{x} \in \partial \Omega \setminus \{ \partial \Omega^+ \cup \partial \Omega^- \}.$$

(2.10)
At the surface of each rigid ball \(D^{(j)} \), the velocity satisfies
\[
\mathbf{u}(\mathbf{x}) = \mathbf{\omega}^{(j)} \times (a_j \mathbf{n}^{(j)})(\mathbf{x}) + \mathbf{T}^{(j)} \quad \text{on } \partial D^{(j)}, \quad j = 1, 2, \ldots, N,
\] (2.11)
where \(\mathbf{\omega}^{(j)} \), \(\mathbf{T}^{(j)} \) are constant, but unknown rotational and translational velocities of \(D^{(j)} \), and where \(\mathbf{n}^{(j)}(\mathbf{x}) \) is the outer normal at \(\partial D^{(j)} \). Finally, since each rigid ball is in equilibrium, the total force and torque exerted on \(D^{(j)} \), by the fluid, must be zero,
\[
\int_{\partial D^{(j)}} \mathbf{S} \mathbf{n}^{(j)} \, ds = 0 \quad \text{and} \quad \int_{\partial D^{(j)}} \mathbf{n}^{(j)} \times \mathbf{S} \mathbf{n}^{(j)} \, ds = 0, \quad \text{for } j = 1, 2, \ldots, N.
\] (2.12)

It is known that equations (2.7) and (2.5), with boundary conditions (2.9), (2.11) and (2.12), have a unique solution \(\mathbf{u}(\mathbf{x}) \), at least in the weak sense, with components in \(H^1(\Omega_F) \).

2.2. The effective viscosity

The rate of viscous dissipation of the energy is given by [25]
\[
E = \frac{1}{2} \int_{\Omega_F} (\mathbf{S}(\mathbf{x}), \mathbf{E}(\mathbf{x})) \, d\mathbf{x},
\] (2.13)
where \((\cdot, \cdot)\) denotes the Frobenius tensor inner product
\[
(\mathbf{S}(\mathbf{x}), \mathbf{E}(\mathbf{x})) = \sum_{i,j=1}^{n} S_{ij}(\mathbf{x}) E_{ij}(\mathbf{x}).
\] (2.14)

Integrating by parts and using (2.5), (2.6), (2.9), (2.10), (2.11) and the identity
\[
(\mathbf{S}, \mathbf{E}) = -P \text{trace } \mathbf{E} + 2\mu (\mathbf{E}, \mathbf{E}) = \frac{\mu}{2} (\nabla \mathbf{u} + (\nabla \mathbf{u})^T, \nabla \mathbf{u} + (\nabla \mathbf{u})^T),
\] (2.15)
we obtain
\[
E = \frac{1}{2} \int_{\partial \Omega^+ \cup \partial \Omega^-} \frac{\mathbf{e}_n}{2L} \cdot \mathbf{S}(\mathbf{x}) \mathbf{e}_n \, ds - \frac{1}{2} \sum_{j=1}^{N} \int_{\partial D^{(j)}} \left(\mathbf{\omega}^{(j)} \times \mathbf{n}^{(j)}(\mathbf{x}) + \mathbf{T}^{(j)} \right) \cdot \mathbf{S}(\mathbf{x}) \mathbf{n}^{(j)} \, ds.
\] (2.16)

Furthermore, due to the balance equations (2.12), the integrals at the surface of the particles vanish and (2.13) can be rewritten as
\[
E = \frac{1}{4L} \int_{\partial \Omega^+ \cup \partial \Omega^-} \mathbf{e}_n \cdot \mathbf{S}(\mathbf{x}) \mathbf{e}_n \, ds.
\] (2.17)

The effective viscosity \(\langle \mu \rangle \) is defined by the equation
\[
\frac{\langle \mu \rangle}{\mu} = \frac{E}{E^0} = \frac{\int_{\partial \Omega^+ \cup \partial \Omega^-} \mathbf{e}_n \cdot \mathbf{S}(\mathbf{x}) \mathbf{e}_n \, ds}{\int_{\partial \Omega^+ \cup \partial \Omega^-} \mathbf{e}_n \cdot \mathbf{S}^0(\mathbf{x}) \mathbf{e}_n \, ds},
\] (2.18)

where \(\mathbf{S}^0(\mathbf{x}) \) is the stress tensor that would occur in \(\Omega \), in the absence of all the particles, under the same external boundary conditions (2.9), (2.10), and \(E^0 \) is the corresponding rate of dissipation (see for example [17]). An equivalent definition of \(\langle \mu \rangle \) can be obtained directly from (2.13) and (2.15), by equating the viscous dissipation rates
\[
< \mu > E^0 = \langle \mu \rangle \int_{\Omega} (\mathbf{E}^0, \mathbf{E}^0) \, d\mathbf{x} = \mu \int_{\Omega_F} (\mathbf{E}, \mathbf{E}) \, d\mathbf{x} = \mu E.
\] (2.19)

We remark that the definition of the effective viscosity, via the dissipation rate, is introduced in [4] for dilute suspensions, where the energy of the particulate phase is negligible. However, since the particles are rigid, and condition (2.12) holds, the total mechanical energy of the particles is conserved. Thus, definitions (2.18) and (2.19) can be used for the suspensions considered in this paper, as well.
2.3. The variational principles. The dissipation rate (2.13) or, equivalently, the effective viscosity (2.18), have a primal and dual variational formulation. The primal variational principle is widely known (see for example [14]),

\[E = \min_{u \in \mathcal{U}} W_{\Omega_F}(u), \quad \text{where} \quad W_{\Omega_F}(u) = \frac{\mu}{4} \sum_{i,j=1}^{n} \int_{\Omega_F} \left(\frac{\partial u_i(x)}{\partial x_j} + \frac{\partial u_j(x)}{\partial x_i} \right)^2 dx, \tag{2.20} \]

and where the function space \(\mathcal{U} \) of admissible velocity fields is

\[\mathcal{U} = \left\{ u = \sum_{j=1}^{n} u_j e_j, \quad u_j \in H^1(\Omega_F), \quad j = 1 \ldots n, \quad \text{div} u = 0, \quad (2.9) \text{ and (2.11) hold} \right\}. \tag{2.21} \]

Note that the minimizer in (2.20) is the solution of Stokes’ flow equation (2.7), where \(P(x) \) is the Lagrange multiplier for the incompressibility constraint \(\text{div} u(x) = 0 \).

The dual variational principle, which we derive in Appendix A, is

\[E = \max_{S \in \mathcal{F}} \left\{ \frac{1}{2L} \int_{\partial \Omega^+ \cup \partial \Omega^-} e_n \cdot S(x) e_n ds - \frac{1}{4\mu} \int_{\Omega_F} \left[(S(x), S(x)) - \frac{\text{trace} S(x)^2}{n} \right] dx \right\}, \tag{2.22} \]

where we maximize over the space \(\mathcal{F} \) of admissible stress fields

\[\mathcal{F} = \{ S \in \mathbb{R}^{n \times n}, \quad S = S^T, \quad \text{div} S = 0, \quad S_{ij} \in L^2(\Omega_F), \quad i, j = 1 \ldots n, \quad (2.10) \text{ and (2.12) hold} \}. \tag{2.23} \]

The maximizer in (2.22) is the stress field \(S(x) \), which determines the minimizing velocity field \(u(x) \) in (2.20), by Newton’s law (2.6), where

\[P(x) = -\frac{\text{trace} S(x)}{n}. \tag{2.24} \]

3. The discrete approximation of the effective viscosity. Intuitively, in highly packed suspensions, we expect that most energy is dissipated in the thin gaps between the rigid particles. Then, let us define the local dissipation rate in a gap \(\Pi \), between two adjacent particles in \(\Omega_F \), by

\[W_{\Pi}(u) = \mu \int_{\Pi} \langle \mathcal{E}(u), \mathcal{E}(u) \rangle dx. \tag{3.1} \]

In this paper, we show that, in the asymptotic limit of infinitesimally small gap thickness

\[\frac{\delta}{a} = \max_{j,k} \frac{\delta_{jk}}{a} \to 0, \tag{3.2} \]

the effective viscosity is determined by the sum of local dissipation rates (3.1), over all the gaps in \(\Omega_F \). In a highly packed suspension, the rate of dissipation of the energy can be written as an asymptotic series, in the limit (3.2), with the first and second terms blowing up at different rates (as powers or at least as \(\ln(a/\delta) \)). The remainder of the series is \(O(1) \). We calculate exactly the first terms in the asymptotic series and, consequently, we obtain a very accurate approximation of \(E \) (or \(\langle \mu \rangle \)). The method of solution consists of deriving lower and upper bounds on \(E \), by using test functions \(u(x) \) and \(S(x) \) in variational principles (2.20) and (2.22), respectively. In order to obtain tight, matching to leading orders bounds on \(E \), we construct test functions which capture the physics of the problem. Explicitly, \(u(x) \) and \(S(x) \) are approximations of the local solutions of the Stokes flow problem in the gaps, and they are extended to the remainder of \(\Omega_F \) in such a way that all conditions in (2.21) and (2.23) are satisfied. The resulting estimate of the average dissipation rate has a discrete interpretation, as follows: The strongest contribution to \(E \) is due to the motion of pairs of neighboring particles along the axis of their centers and, to first order, we can approximate the suspension by an oscillating network of springs, where each spring represents a gap between two adjacent particles. Other motions of the particles, such as rotations and translations in directions orthogonal to the axes of the centers, have a lesser effect on the dissipation rate, and they contribute to the second term in the asymptotics of \(E \).
3.1. Connectivity patterns for densely packed suspensions. In case of regular (cubic, hexagonal, etc.) arrays of particles in Ω, the volume fraction is sufficient to describe the distance between the particles and therefore the effective behavior of the suspension. However, for general distributions of particles in highly packed suspensions, one has to consider irregular connectivity patterns.

Let us consider an arbitrary distribution of particles $D^{(i)}$, centered at $x^{(i)} \in \Omega$, for $i = 1, 2, \ldots, N$. We suppose that N is close to N_{max}, such that particles can get close to touching one another. The concept of adjacent particles is essential to the analysis and, to make it rigorous, we use Voronoi tessellations.

Definition 3.1. The Voronoi cell V_i, corresponding to $x^{(i)}$, is the polyhedron

$$V_i = \left\{ x \in \Omega, \text{ such that } |x - x^{(i)}| \leq |x - x^{(j)}|, \text{ for all } j = 1, 2, \ldots, N, j \neq i \right\}.$$

The plane faces of V_i can lie either on $\partial \Omega$ or in the interior of Ω. On each face of V_i, that lies inside Ω, $|x - x^{(i)}| = |x - x^{(j)}|$, for some $i \neq j$.

In Figure 1, we illustrate a Voronoi tessellation, in two dimensions.

![Two dimensional Voronoi tessellation](image)

Definition 3.2. Given the Voronoi tessellation and an arbitrary $D^{(i)}$, for $i = 1, 2, \ldots, N$, we define the set of indices of its neighbors as $N_i = \{ j \in \mathbb{N}, j \neq i, \text{ such that } V_i \text{ and } V_j \text{ have a common face} \}$. The coordination number of $D^{(i)}$ is equal to the cardinal number of N_i.

Neighboring particles $D^{(i)}$ and $D^{(j)}$ are separated by a gap (neck) Π^{ij} (see Figure 3 below), of minimum thickness

$$\delta^{ij} = |x^{(i)} - x^{(j)}| - (a_i + a_j) \quad (3.3)$$

and width $R^{ij} = O(\alpha^{ij})$, where

$$a^{ij} = \frac{2a_i a_j}{a_i + a_j} \quad (3.4)$$

Then, the topology of network Γ, needed in the asymptotic approximation of $\langle \mu \rangle$, in the limit $\delta^{ij}/a^{ij} \to 0$, for $i = 1, \ldots, N$ and $j \in N_i$, is uniquely defined, as follows:

Definition 3.3. The interior vertices of the network (graph) Γ are given by $x^{(i)}$, the locations of the centers of particles $D^{(i)}$ in Ω, for $i = 1, 2, \ldots, N$. The interior branches (edges) b^{ij} of the network connect vertices $x^{(i)}$ and $x^{(j)}$ ($j \in N_i$) through the gaps (necks) Π^{ij}. For Voronoi cells V_i, with faces belonging to $\partial \Omega^+ \cup \partial \Omega^-$, we join $x^{(i)}$ with $\partial \Omega^\pm$ through a normal segment b^i (exterior branch or edge) and we call the intersection $\hat{x}^{(i)}$ an exterior vertex. Finally, we let B be the set of indices i corresponding to the boundary Voronoi cells, that is, the cells at least one face of which belongs to $\partial \Omega^+ \cup \partial \Omega^-$.

Assumption 3.1. We assume that the distances between the neighboring balls are bounded below by $c\delta$, where $c > 0$ is fixed and δ is the small parameter of the problem. Thus the length of each edge in the graph is larger than $2A + c\delta$, where A is the smallest ball radius. Note that Γ is the Delaunay graph, which is dual to the Voronoi tessellation. The Delaunay graph for the two dimensional tessellation of Figure 1 is shown in Figure 2. Note also the following properties of Γ, which we prove in Appendix B, and which we use in the analysis:
Property 3.1. \(\Gamma \) is connected in the following sense: each pair of interior vertices can be connected by a path consisting entirely of interior edges.

Property 3.2. Suppose there exists a Voronoi cell contained strictly inside \(\Omega \). Then, there exists a closed path consisting entirely of interior edges.

Property 3.3. At least two edges originate at each interior vertex of \(\Gamma \).

\[
\begin{align*}
\text{Fig. 3. Two nearby particles } D^{(i)} \text{ and } D^{(j)}, \text{ of radii } a_i \text{ and } a_j, \text{ separated by a gap } \delta^{ij}. \\
\end{align*}
\]

3.2. The two term discrete asymptotic approximation. The asymptotic approximation of the viscous dissipation rate in the high contrast suspension is obtained by summing the local dissipation rates \(W_{ij} \) in the gaps \(\Pi^{ij} \) between \(D^{(i)} \) and \(D^{(j)} \), for \(i = 1, \ldots, N \) and \(j \in N_i \). Then, focusing attention on one such gap (see Figure 3), we introduce a local system of coordinates \((x_1, \ldots, x_n)\) in \(\Pi^{ij} \), with the origin at \((x^{(i)} + x^{(j)})/2\) and coordinate \(x_n \) measured along the axis of the centers, pointing from \(x^{(j)} \) towards \(x^{(i)} \).

The width of the gap is \(R^{ij} = O(a^{ij}) \) and the thickness (thickness) is

\[
h(r) = \delta^{ij} + a_i \left(1 - \sqrt{1 - \frac{r^2}{a_i^2}} \right) + a_j \left(1 - \sqrt{1 - \frac{r^2}{a_j^2}} \right), \quad r = \sqrt{\sum_{k=1}^{n-1} x_k^2} \leq R^{ij}. \tag{3.5}
\]

The dissipation rate density \(\mu(\mathcal{E}, \mathcal{E}) \) is expected to be highest at radial distances \(r \ll \min(a_i, a_j) \), so, in the calculation of \(W_{ij} = \mu \int_{\Pi^{ij}}(\mathcal{E}, \mathcal{E})dx \), we can approximate the spherical surfaces by paraboloids, and the thickness of the gap by

\[
h(r) \approx \delta^{ij} + \frac{r^2}{a^{ij}}. \tag{3.6}
\]

3.2.1. The two dimensional discrete approximation of \(\langle \mu \rangle \). Clearly, \(W_{ij} \) depends on the velocity at the top and bottom surfaces of the gap, where \(x_2 = \pm h(x_1)/2 \), in two dimensions. Using boundary conditions (2.11) at \(\partial D^{(i)} \) and \(\partial D^{(j)} \), we have

\[
u(x_1, \frac{h(x_1)}{2}) = (T^{(i)}_1 - a_i n^{(i)}_2 \omega^{(i)})e_1 + (T^{(j)}_2 + a_i n^{(i)}_1 \omega^{(i)})e_2
\]

\[\approx (T^{(i)}_1 + a_i \omega^{(i)})e_1 + (T^{(j)}_2 + \omega^{(i)} x_1) e_2, \tag{3.7}\]

\[
u(x_1, -\frac{h(x_1)}{2}) = (T^{(j)}_1 - a_j n^{(j)}_2 \omega^{(j)})e_1 + (T^{(j)}_2 + a_j n^{(j)}_1 \omega^{(j)})e_2
\]

\[\approx (T^{(j)}_1 - a_j \omega^{(j)})e_1 + (T^{(j)}_2 + \omega^{(j)} x_1) e_2, \tag{3.8}\]

where we have approximated the outer normals as \(n^{(i)} \approx \frac{x}{a_i} e_1 - e_2 \) and \(n^{(j)} \approx \frac{x}{a_j} e_1 + e_2 \), which are the normal vectors to the parabolas touching the disks (see (3.6)). Equivalently, we write in short,

\[
u(x_1, \pm\frac{h(x_1)}{2}) \approx \pm (T^{(i)}_2 - T^{(j)}_2) \frac{x_1}{\delta} \pm (T^{(i)}_1 - T^{(j)}_1 + a_i \omega^{(i)} + a_j \omega^{(j)}) \frac{e_2}{\delta}
\]

\[\pm (\omega^{(i)} - \omega^{(j)}) x_1 e_2 + \mathcal{R}, \tag{3.9}\]
where

\[\mathcal{R} = \left[T_2^{(i)} + T_2^{(j)} + (\omega^{(i)} + \omega^{(j)}) x_1 \right] \frac{\varepsilon^{(j)}}{2} + \left(T_1^{(i)} + T_1^{(j)} + a_i \omega^{(i)} - a_j \omega^{(j)} \right) \frac{\varepsilon^{(i)}}{2}. \] (3.10)

Equation (3.9) can be viewed as a decomposition of \(u \) in the following elementary velocity fields:

1. The first elementary velocity field in (3.9) is \(u_{sp} \), and it solves Stokes’ equations in \(\Pi^{ij} \), with boundary conditions

\[u_{sp} \left(x_1, \frac{h(x_1)}{2} \right) = \pm \left(T_2^{(i)} - T_2^{(j)} \right) \frac{\varepsilon^{(j)}}{2}. \] (3.11)

We can associate \(u_{sp} \) with the oscillatory motion, along \(e_2 \), of two particles joined by a spring, with elastic constant \(C^{ij}_{sp} = O \left((a^{ij}/\delta^{ij})^{3/2} \right) \) (see sections 4, 5 and 6). The velocity \(\left(T_2^{(i)} - T_2^{(j)} \right) /2 \) of the particles is constant and unknown, so far. It is to be determined later from the global conditions of mechanical equilibrium of all inclusions in the suspension.

2. The second term in (3.9), denoted by \(u_{sh} \), satisfies Stokes’ equations in \(\Pi^{ij} \), with boundary conditions

\[u_{sh} \left(x_1, \frac{h(x_1)}{2} \right) = \pm \left(T_1^{(i)} - T_1^{(j)} + a_i \omega^{(i)} + a_j \omega^{(j)} \right) \frac{\varepsilon^{(i)}}{2}. \] (3.12)

This accounts for a shear strain in the gap, where the fluid moves to the right and left, at the top and bottom surfaces of \(\Pi^{ij} \), respectively, at constant, unknown velocity \(\left(T_1^{(i)} - T_1^{(j)} + a_i \omega^{(i)} + a_j \omega^{(j)} \right) /2 \). The contribution of this term to the dissipation rate is \(C^{ij}_{sh} = O \left(\sqrt{a^{ij}/\delta^{ij}} \right) \) (see sections 4, 5).

3. The third term in (3.9) corresponds to a shear strain in the gap due to rotations. The boundary conditions are given by

\[u_{rot} \left(x_1, \frac{h(x_1)}{2} \right) = \pm \left(\omega^{(i)} - \omega^{(j)} \right) x_1 e_2, \] (3.13)

as if the fluid where “pushed” and “pulled”, in direction \(e_2 \), on the left and right sides of \(\Pi^{ij} \), respectively (see Figure 6). The contribution of this term to the dissipation rate is \(C^{ij}_{rot} = O \left(\sqrt{a^{ij}/\delta^{ij}} \right) \) (see sections 4, 5).

4. Finally, the remainder \(\mathcal{R} \), corresponds to a constant, \(O(1) \) shear strain in the gap and, as such, it gives an \(O(1) \) contribution to \(W_{\Pi^{ij}} \) (see sections 4, 5).

In section 4, we obtain the formal asymptotic approximation

\[W_{\Pi^{ij}} \approx C^{ij}_{sp} \left(T_2^{(i)} - T_2^{(j)} \right)^2 + C^{ij}_{sh} \left(T_1^{(i)} - T_1^{(j)} + a_i \omega^{(i)} + a_j \omega^{(j)} \right)^2 + C^{ij}_{rot} \left(\omega^{(i)} - \omega^{(j)} \right)^2 + O(1), \] (3.14)

where

\[C^{ij}_{sp} = \frac{3\pi \mu}{4} \left(\frac{a^{ij}}{\delta^{ij}} \right)^2 + \frac{12\pi \mu}{5} \sqrt{\frac{a^{ij}}{\delta^{ij}}}, \quad C^{ij}_{sh} = \frac{\pi \mu}{2} \sqrt{\frac{a^{ij}}{\delta^{ij}}} \quad \text{and} \quad C^{ij}_{rot} = \frac{9\pi \mu}{16} \sqrt{\frac{a^{ij}}{\delta^{ij}}}. \] (3.15)

In section 5, we calculate an upper bound on the rate of dissipation in \(\Omega_F \). We show there that the contribution of gap \(\Pi^{ij} \), to \(E \), is bounded above by the local dissipation

\[W^{U}_{\Pi^{ij}} = C^{ij}_{sp} \left(T_2^{(i)} - T_2^{(j)} \right)^2 + C^{ij}_{sh} \left(T_1^{(i)} - T_1^{(j)} + a_i \omega^{(i)} + a_j \omega^{(j)} \right)^2 + C^{ij}_{rot} \left(\omega^{(i)} - \omega^{(j)} \right)^2 + O(1), \]

with a modified (at second order) spring constant

\[\hat{C}^{ij}_{sp} = \frac{3\pi \mu}{4} \left(\frac{a^{ij}}{\delta^{ij}} \right)^2 + \frac{27\pi \mu}{10} \sqrt{\frac{a^{ij}}{\delta^{ij}}}. \]
The lower bound on \(E \) and, subsequently, the rigorous justification of the spring network approximation of \(\langle \mu \rangle \), are obtained in section 6. In particular, it follows from section 6 that the contribution of gap \(\Pi^i \), to \(E \), is bounded below by the local dissipation \(W_{\Pi^i}^L \), satisfying

\[
W_{\Pi^i}^L = W_{\Pi^i}^j + O \left(\sqrt{\frac{a^{ij}}{\delta^j}} \right),
\]

so the leading order term in (3.14) is estimated correctly by the formal asymptotics.

The approximation (3.14) applies to interior inclusions \(D^{(i)} \). For \(i \in \mathcal{B} \), we have \(D^{(i)} \) joined to a fictitious disk, of infinite radius (i.e. \(\partial \Omega^+ \) or \(\partial \Omega^- \)) and the harmonic average of the radii is \(a^i = 2a_i \). Given boundary conditions (2.9) at \(\partial \Omega^\pm \), we have, similar to (3.14),

\[
W_{\Pi^i} \approx C_{sp}^i \left(T_2^{(i)} - g \cdot e_2 \right)^2 + C_{sh}^i \left(T_1^{(i)} - g \cdot e_1 + a_i \omega^{(i)} \right)^2 + C_{rot}^i \left(2\omega^{(i)} \right)^2 + O(1),
\]

where \(C_{sp}^i, C_{sh}^i \) and \(C_{rot}^i \) are given by (3.15), with \(a^{ij} \) replaced by \(a^i = 2a_i \) and \(\delta^{ij} \) replaced by \(\delta^i \), the distance between \(\partial D^{(i)} \) and the upper or lower boundary \(\partial \Omega^\pm \).

Next, we approximate \(E \) by summing the local dissipation rates in all gaps \(\Pi^j \), for \(i = 1, \ldots, N, i \notin \mathcal{B}, j \notin N_i \) and \(\Pi^i \), for \(i \in \mathcal{B} \). For this purpose, let us rename the orthonormal basis vectors in each gap \(\Pi^j \), as

\[
q^{ij} = \frac{x^{ij} - x^{j}}{|x^{ij} - x^{j}|} \quad \text{and} \quad p^{ij} = \text{the rotated } q^{ij}, \text{ clockwise, by } \pi/2, \text{ in the 2-D plane.}
\]

In the boundary gaps \(\Pi^j \), forming a particle \(D^{(i)} \) with \(\partial \Omega^\pm \), these vectors are called \(q^i \) and \(p^i \), respectively. The discrete approximation of \(\langle \mu \rangle \) is given by (2.19), with the right hand side

\[
E \approx \min_{\mathbf{T}, \omega} \sum_{i=1}^{N} \sum_{j \notin N_i} \left\{ C_{sp}^{ij} \left[(\mathbf{T}^{(i)} - \mathbf{T}^{(j)}) \cdot q^{ij} \right]^2 + C_{sh}^{ij} \left[(\mathbf{T}^{(i)} - \mathbf{T}^{(j)}) \cdot p^{ij} + a_i \omega^{(i)} + a_j \omega^{(j)} \right]^2
+ C_{rot}^{ij} \left(\omega^{(i)} - \omega^{(j)} \right)^2 \right\} + \sum_{i \notin \mathcal{B}} \left\{ C_{sp}^i \left[(\mathbf{T}^{(i)} - \mathbf{g}) \cdot q^i \right]^2 + C_{rot}^i \left(2\omega^{(i)} \right)^2 \right\} + O(1).
\]

Note that, in (3.17), we minimize a quadratic functional, over translational and rotational velocities \(\mathbf{T}^{(i)} \) and \(\omega^{(i)} \), for \(i = 1, \ldots, N \), respectively. This is equivalent to solving the Euler-Lagrange equations

\[
\sum_{j \notin N_i} \left\{ C_{sp}^{ij} \left[(\mathbf{T}^{(i)} - \mathbf{T}^{(j)}) \cdot q^{ij} \right] q^j + C_{sh}^{ij} \left[(\mathbf{T}^{(i)} - \mathbf{T}^{(j)}) \cdot p^{ij} + a_i \omega^{(i)} + a_j \omega^{(j)} \right] p^j \right\} + \mathbf{F}_G(\mathbf{T}^{(i)}, \omega^{(i)}) = 0,
\]

\[
\sum_{j \notin N_i} \left\{ C_{sh}^{ij} \left[(\mathbf{T}^{(i)} - \mathbf{T}^{(j)}) \cdot p^{ij} + \omega^{(i)} + \omega^{(j)} \right] + C_{rot}^{ij} \left(\omega^{(i)} - \omega^{(j)} \right) \right\} + \mathbf{M}_G(\mathbf{T}^{(i)}, \omega^{(i)}) = 0,
\]

for all \(i = 1, \ldots, N \), where

\[
\mathbf{F}_G(\mathbf{T}^{(i)}, \omega^{(i)}) = \left\{ C_{sp}^i \left[(\mathbf{T}^{(i)} - \mathbf{g}) \cdot q^i \right] q^i + C_{sh}^i \left[(\mathbf{T}^{(i)} - \mathbf{g}) \cdot p^i + a_i \omega^{(i)} \right] p^i \right\} \text{ if } i \in \mathcal{B},
\]

\[
0 \quad \text{otherwise},
\]

\[
\mathbf{M}_G(\mathbf{T}^{(i)}, \omega^{(i)}) = \left\{ C_{sh}^i \left[(\mathbf{T}^{(i)} - \mathbf{g}) \cdot p^i + a_i \omega^{(i)} \right] + 4C_{rot}^i \omega^{(i)} \right\} \text{ if } i \in \mathcal{B},
\]

\[
0 \quad \text{otherwise}.
\]

These are the equations of force and torque balance of the inclusions, and the minimization in (3.17) ensures that the rigid body translational and rotational velocities are chosen in such a way that the suspension is in mechanical equilibrium.
3.2.2. The three dimensional discrete approximation of $\langle \mu \rangle$. Consider the local system of coordinates described at the beginning of section 3.2, in three dimensions. We begin the estimation of the local dissipation rate $W_{\Pi^{ij}}$, by decomposing $\omega^{(i)}(\omega^{(j)})$ in terms of scalar rotation velocities $\omega_k^{(i)}(\omega_k^{(j)})$, in the plane orthogonal to e_k. We have from (2.11)

$$u \left(x_1, x_2, \frac{h(x_1, x_2)}{2} \right) = \left(T_1^{(i)} + a_i n_3^{(i)} \omega_2^{(i)} - a_i n_2^{(i)} \omega_3^{(i)} \right) e_1 + \left(T_2^{(i)} - a_i n_3^{(i)} \omega_1^{(i)} + a_i n_1^{(i)} \omega_3^{(i)} \right) e_2$$

$$+ \left(T_3^{(i)} + a_i n_2^{(i)} \omega_1^{(i)} - a_i n_1^{(i)} \omega_2^{(i)} \right) e_3$$

(3.22)

$$\approx \left(T_1^{(i)} - a_i \omega_2^{(i)} \right) e_1 + \left(T_2^{(i)} + a_i \omega_1^{(i)} \right) e_2 + \left(T_3^{(i)} + \omega_1^{(i)} x_2 - \omega_2^{(i)} x_1 \right) e_3,$$

$$u \left(x_1, x_2, -\frac{h(x_1, x_2)}{2} \right) = \left(T_1^{(j)} + a_j n_3^{(j)} \omega_2^{(j)} - a_j n_2^{(j)} \omega_3^{(j)} \right) e_1 + \left(T_2^{(j)} - a_j n_3^{(j)} \omega_1^{(j)} + a_j n_1^{(j)} \omega_3^{(j)} \right) e_2$$

$$+ \left(T_3^{(j)} + a_j n_2^{(j)} \omega_1^{(j)} - a_j n_1^{(j)} \omega_2^{(j)} \right) e_3$$

(3.23)

$$\approx \left(T_1^{(j)} + a_j \omega_2^{(j)} \right) e_1 + \left(T_2^{(j)} - a_j \omega_1^{(j)} \right) e_2 + \left(T_3^{(j)} + \omega_1^{(j)} x_2 - \omega_2^{(j)} x_1 \right) e_3,$$

where we approximate the outer normals by

$$n^{(i)} \approx \frac{x_1}{a_i} e_1 + \frac{x_2}{a_i} e_2 - e_3 \quad \text{and} \quad n^{(j)} \approx \frac{x_1}{a_j} e_1 + \frac{x_2}{a_j} e_2 + e_3.$$

which are the normal vectors to paraboloids touching the spheres (see (3.6)). Similar to our two dimensional calculation, we write (3.22) and (3.23), in short, as

$$u \left(x_1, x_2, \mp \frac{h(x_1, x_2)}{2} \right) \approx \pm \left(T_3^{(i)} - T_3^{(j)} \right) \frac{\omega_3}{2} \pm \left(T_1^{(i)} - T_1^{(j)} - a_i \omega_2^{(i)} - a_j \omega_2^{(j)} \right) \frac{\omega_2}{2}$$

$$\pm \left(T_2^{(i)} - T_2^{(j)} + a_i \omega_1^{(i)} + a_j \omega_1^{(j)} \right) \frac{\omega_1}{2} \pm \left(\omega_1^{(i)} - \omega_1^{(j)} \right) \frac{\omega_1 e_3}{2}$$

(3.24)

$$\pm \left(\omega_2^{(i)} - \omega_2^{(j)} \right) \frac{x_1 e_3}{2} + \mathcal{R},$$

where the remainder is

$$\mathcal{R} = \left(T_3^{(i)} + T_3^{(j)} \right) \frac{\omega_3}{2} + \left(T_1^{(i)} + T_1^{(j)} - a_i \omega_2^{(i)} + a_j \omega_2^{(j)} \right) \frac{\omega_2}{2}$$

$$+ \left(T_2^{(i)} + T_2^{(j)} + a_i \omega_1^{(i)} - a_j \omega_1^{(j)} \right) \frac{\omega_1}{2} + \left(\omega_1^{(i)} + \omega_1^{(j)} \right) \frac{\omega_1 e_3}{2}$$

$$- \left(\omega_2^{(i)} - \omega_2^{(j)} \right) \frac{x_1 e_3}{2}.$$

As in two dimensions, we associate the first term in (3.24), due to the motion of the inclusions along the axis of their centers, with the oscillatory motion of two particles joined by a spring of elastic constant $C_{st}^{ij} = O \left(a^{ij} / \delta^{ij} \right)$. The next two terms in (3.24) correspond to shear strains in the gap, where the fluid is “pulled” in the positive and negative directions of e_1 and e_2, at the top and bottom surfaces of Π^{ij}, respectively. The contribution of these terms to the dissipation rate is $C_{st}^{ij} = O \left(\ln a^{ij} / \delta^{ij} \right)$. The fourth and fifth terms in (3.24) correspond to a shear strain in the gap, as well, but now the fluid is “pushed” and “pulled”, in direction e_3, on opposite sides of the axis of Π^{ij}, respectively. The contribution of these terms to the dissipation rate is $C_{st}^{ij} = O \left(\ln a^{ij} / \delta^{ij} \right)$. Finally, the remainder \mathcal{R} gives an $O(1)$ contribution to $W_{\Pi^{ij}}$.

A formal asymptotic analysis, which is very similar to the two-dimensional one in section 4 and, as such, is not detailed here, gives

$$W_{\Pi^{ij}} \approx C_{st}^{ij} \left(T_3^{(i)} - T_3^{(j)} \right)^2 + C_{st}^{ij} \left(\omega_1^{(i)} - \omega_1^{(j)} \right)^2 + \left(\omega_2^{(i)} - \omega_2^{(j)} \right)^2$$

$$+ C_{st}^{ij} \left(T_1^{(i)} - T_1^{(j)} - a_i \omega_2^{(i)} + a_j \omega_2^{(j)} \right)^2 + \left(T_2^{(i)} - T_2^{(j)} + a_i \omega_1^{(i)} + a_j \omega_1^{(j)} \right)^2 + O(1),$$

(3.26)
Next, solve the Stokes equations in the domain Ω.

Remark 3.1. Computation of the effective viscosity.

Finally, as in section 3.2.1, the minimization in (3.29), over translational and rotational velocities $\mathbf{T}^{(i)}$ and $\mathbf{\omega}^{(i)}$, for $i = 1, \ldots, N$, ensures that all the inclusions in the suspension are in mechanical equilibrium.

Remark 3.1. Computation of the effective viscosity. We now summarize the steps necessary to compute the effective viscosity in the problem (2.7)-(2.12). First, compute the approximate dissipation rate E by minimizing the quadratic functional (3.17) (in two dimensions), or (3.29) (in three dimensions). Next, solve the Stokes equations in the domain Ω (see (2.1) with viscosity equal to one and boundary conditions given by (2.9), (2.10). Then compute the corresponding strain rate $\mathcal{E}^0 = 1/2(\nabla \mathbf{u}^0 + \nabla^T \mathbf{u}^0)$ and the
normalized dissipation rate \(\int_{\Omega} e_{ij}^0 e_{ij}^0 \, d\mathbf{x} \). Finally, compute the approximate value of the effective viscosity by the formula

\[
< \mu > = \frac{E}{\int_{\Omega} e_{ij}^0 e_{ij}^0 \, d\mathbf{x}}.
\]

(3.30)

When the contributions of rotations can be neglected, the leading term in (3.30) is given by the leading term in the formula (6.85). Note that this term corresponds to the spring network approximation which takes into account only motions of particles along the line of their centers. Detailed analysis of computational formulas for \(< \mu > \), based on the approach developed in this paper, for various boundary conditions and different arrays of particles is presented in the forthcoming work [8].

4. The local dissipation rate in a gap between two adjacent particles. Formal asymptotics in two dimensions. We begin our estimation of \(E \) with a formal asymptotic analysis which extends the lubrication approximations in [17, 18, 29] beyond the leading term by accounting for all possible rigid body motions of the inclusions in the suspension. To find \(E \), we construct a velocity field in \(\Omega \) which satisfies boundary conditions (2.11) but solves Stokes’ equations approximately, in the following sense: Since the density \(\mu (E, \mathcal{E}) \) of the viscous dissipation rate is very high near the axis of the centers of adjacent inclusions \(D^{(i)} \) and \(D^{(j)} \), we approximate \(u \) in each gap \(\Pi^{ij} \) by the solution of Stokes’ problem between two parallel plates, at distance \(h \) (which we pretend is a constant) apart, and we calculate the corresponding rate of strain \(E \). Then, we integrate over the gap to obtain the local dissipation rate

\[
W_{\Pi^{ij}} \approx \int_{-a^{ij}}^{a^{ij}} dx_1 \int_{h(x_1)}^{h(x_1)+\epsilon} dx_2 \mu (E, \mathcal{E}) .
\]

Since most energy is dissipated in the gaps, we expect that the contribution to \(E \) of from the region outside the gaps remains uniformly bounded in the limit \(\delta \to 0 \).

Let us denote by \(E^\alpha \) the approximation of the dissipation rate, obtained with the formal asymptotic, lubrication type, approach. Since \(E^\alpha \) is a heuristic estimate, it requires rigorous justification, which we give in sections 5 and 6, where we calculate upper and lower variational bounds on \(E \), that match \(E^\alpha \) to leading order. Nevertheless, both bounds are inspired to some extent by the calculation of \(E^\alpha \), so we describe next, in detail, our formal asymptotic analysis.

We begin by recalling the local system of coordinates \((x_1, x_2)\) in gap \(\Pi^{ij} \), as defined in section 3.2. At the surface of \(D^{(i)} \), the velocity is given by (see (3.7))

\[
u \mid_{\partial D^{(i)}} = \left(T_1^{(i)} + a_i \omega^{(i)} \right) e_1 + \left(T_2^{(i)} + a_i \omega^{(i)} n_1^{(i)} \right) e_2 - a_i \omega^{(i)} \left(n_2^{(i)} + 1 \right) e_1,
\]

and the two components of the outer normal at \(\partial D^{(i)} \) are \(n_1^{(i)} = \frac{x_1}{a_1} \) and \(n_2^{(i)} = -\sqrt{1 - \frac{x_1^2}{a_1^2}} \). Similarly,

\[
u \mid_{\partial D^{(j)}} = \left(T_1^{(j)} - a_j \omega^{(j)} \right) e_1 + \left(T_2^{(j)} + a_j \omega^{(j)} n_1^{(j)} \right) e_2 - a_j \omega^{(j)} \left(n_2^{(j)} - 1 \right) e_1,
\]

where \(n_1^{(j)} = \frac{x_1}{a_1} \) and \(n_2^{(j)} = \sqrt{1 - \frac{x_1^2}{a_1^2}} \). Equivalently, we rewrite the boundary conditions on \(u \) as,

\[
u \left(x_1, \pm \frac{\epsilon}{2} \right) = \pm \left(T_1^{(i)} - T_1^{(j)} + \omega^{(i)} \sqrt{a_1^2 - x_1^2} + \omega^{(j)} \sqrt{a_2^2 - x_1^2} \right) \frac{\epsilon^a}{2} \pm \left(T_2^{(i)} - T_2^{(j)} \right) \frac{\epsilon^a}{2}
\]

\[
\pm (\omega^{(i)} - \omega^{(j)}) \frac{\epsilon^a x_1}{2} + \left(T_1^{(i)} + T_1^{(j)} + \omega^{(i)} \sqrt{a_1^2 - x_1^2} - \omega^{(j)} \sqrt{a_2^2 - x_1^2} \right) \frac{\epsilon^a}{2}
\]

\[
+ \left(T_2^{(j)} + T_2^{(j)} \right) \frac{\epsilon^a}{2} + (\omega^{(i)} + \omega^{(j)}) \frac{x_1 \epsilon^a}{2} \approx u^\alpha \left(x_1, \pm \frac{\epsilon}{2} \right),
\]

where \(u^\alpha \) is an approximation of the velocity field, near the axis of the gap (i.e. for \(x_1/a^{ij} \ll 1 \), where the
density of the dissipation rate is highest). The boundary conditions on \(u^a \) are

\[
u^a (x_1, \pm \frac{h}{2}) = \pm \left(T_1^{(i)} - T_1^{(j)} + a_i \omega^{(i)} + a_j \omega^{(j)} \right) \frac{e_i}{2} \pm \left(T_2^{(i)} - T_2^{(j)} \right) \frac{e_j}{2} \pm (\omega^{(i)} - \omega^{(j)}) \frac{\chi e_i}{2} \]

\[
+ \left(T_1^{(i)} + T_1^{(j)} + a_i \omega^{(i)} - a_j \omega^{(j)} \right) \frac{e_i}{2} + \left(T_2^{(i)} + T_2^{(j)} \right) \frac{e_j}{2} + (\omega^{(i)} + \omega^{(j)}) \frac{\chi e_i}{2}
\]

and, using the linearity of the problem, we decompose \(u^a \) as

\[
u^a = (T_1^{(i)} - T_1^{(j)} + \omega^{(i)} + \omega^{(j)}) \chi_i + (T_2^{(i)} - T_2^{(j)}) \chi_j + (\omega^{(i)} - \omega^{(j)}) \lambda + \mathcal{R}, \quad (4.2)
\]

where \(\chi_1, \chi_2, \lambda \) and \(\mathcal{R} \) are elementary velocity fields satisfying

\[
\chi_k \left(x_1, \frac{h}{2} \right) = -\chi_k \left(x_1, -\frac{h}{2} \right) = \frac{1}{2} \mathcal{O}_k, \quad k = 1, 2,
\]

\[
\lambda \left(x_1, \frac{h}{2} \right) = -\lambda \left(x_1, -\frac{h}{2} \right) = \frac{x_1}{2} \mathcal{O}_2,
\]

\[
\mathcal{R} \left(x_1, \pm \frac{h}{2} \right) = \left[T_2^{(i)} + T_2^{(j)} + (\omega^{(i)} + \omega^{(j)}) x_1 \right] \frac{e_2}{2}
\]

\[\quad + \left(T_1^{(i)} + T_1^{(j)} + a_i \omega^{(i)} - a_j \omega^{(j)} \right) \frac{e_1}{2}. \quad (4.5)
\]

We approximate all elementary velocity fields in the decomposition (4.2) by solving the simplified Stokes flow problem between two parallel plates, at distance \(h \) (treated as constant) apart.

Clearly, velocity field

\[
\mathcal{R}(x_1, x_2) = \left[T_2^{(i)} + T_2^{(j)} + (\omega^{(i)} + \omega^{(j)}) x_1 \right] \frac{e_2}{2} + \left(T_1^{(i)} + T_1^{(j)} + a_i \omega^{(i)} - a_j \omega^{(j)} \right) \frac{e_1}{2}
\]

is divergence free and it satisfies equation (2.7), for a constant pressure field. Moreover, its rate of strain is uniformly bounded in the asymptotic limit \(\delta^{ij}/\alpha^{ij} \to 0 \) and the contribution of \(\mathcal{R} \) to the local dissipation rate in \(\Pi^{ij} \) is negligible.

Next, we use the generic notation \(v(x_1, x_2) = v_1(x_1, x_2)e_1 + v_2(x_1, x_2)e_2 \) and \(p(x_1, x_2) \) in our calculation of the remaining elementary velocity fields in (4.2) (i.e. \(\chi_1, \chi_2 \) or \(\lambda \)) and the corresponding pressure, respectively. Given the scaling

\[
z = \frac{x_2}{h}, \quad (4.7)
\]

we seek the unknown functions \(v_1, v_2 \) and \(p \) as power series in \(h \)

\[
v_1(x_1, z) = h^{-\gamma - 1} \sum_{k=0}^{\infty} v_{1,k}(x_1, z) h^k, \quad (4.8)
\]

\[
v_2(x_1, z) = h^{-\gamma} \sum_{k=0}^{\infty} v_{2,k}(x_1, z) h^k, \quad (4.9)
\]

\[
p(x_1, x_2) = h^{-\eta} \sum_{k=0}^{\infty} p_k(x_1, z) h^k, \quad (4.10)
\]

for leading orders \(\gamma \) and \(\eta \) to be determined. Then, we require that \(v_{1,k}, v_{2,k} \) and \(p_k, \) for \(k \geq 0, \) satisfy the Stokes equations

\[
\sum_{k=0}^{\infty} \frac{\partial v_{1,k}(x_1, z)}{\partial x_1} h^{k-\gamma - 1} = \mu \sum_{k=0}^{\infty} \frac{\partial^2 v_{1,k}(x_1, z)}{\partial x_2^2} h^{k-\gamma - 3} + \mu \sum_{k=0}^{\infty} \frac{\partial^2 v_{1,k}(x_1, z)}{\partial x_1^2} h^{k-\gamma - 1}, \quad (4.11)
\]

\[
\sum_{k=0}^{\infty} \frac{\partial v_{2,k}(x_1, z)}{\partial z} h^{k-\eta - 1} = \mu \sum_{k=0}^{\infty} \frac{\partial^2 v_{2,k}(x_1, z)}{\partial x_2^2} h^{k-\gamma - 2} + \mu \sum_{k=0}^{\infty} \frac{\partial^2 v_{2,k}(x_1, z)}{\partial x_1^2} h^{k-\gamma}, \quad (4.12)
\]

\[
\sum_{k=0}^{\infty} \frac{\partial p_k(x_1, z)}{\partial x_1} h^k = \mu \sum_{k=0}^{\infty} \frac{\partial^2 p_k(x_1, z)}{\partial x_2^2} h^{k-\gamma - 1} + \mu \sum_{k=0}^{\infty} \frac{\partial^2 p_k(x_1, z)}{\partial x_1^2} h^{k-\gamma - 1}, \quad (4.13)
\]

\[
\sum_{k=0}^{\infty} \frac{\partial p_k(x_1, z)}{\partial z} h^{k-\eta} = \mu \sum_{k=0}^{\infty} \frac{\partial^2 p_k(x_1, z)}{\partial x_2^2} h^{k-\gamma - 2} + \mu \sum_{k=0}^{\infty} \frac{\partial^2 p_k(x_1, z)}{\partial x_1^2} h^{k-\gamma}, \quad (4.14)
\]
the incompressibility conditions

\[
\frac{\partial v_{1,k}(x_1, z)}{\partial x_1} + \frac{\partial v_{2,k}(x_1, z)}{\partial z} = 0, \quad \text{for all } k \geq 0, \quad (4.13)
\]

and the appropriate boundary conditions selected from the list (4.3)-(4.4).

Velocity field \(\chi_1 \): As we zoom in near the axis of the centers \(x^{(i)} \) and \(x^{(j)} \), the top and bottom boundaries of \(\Pi^{ij} \), which belong to \(\partial D_i \) and \(\partial D_j \), respectively, are approximated by parallel planes which move in opposite directions, as shown in Figure 4. With the notation introduced above, we have

\[
\chi_1(x_1, z) = v_1(x_1, z)e_1 + v_2(x_1, z)e_2, \quad \text{where } v_1 \big|_{z=\pm\frac{h}{2}} = \pm \frac{1}{2}, \ v_2 \big|_{z=\pm\frac{h}{2}} = 0, \quad (4.14)
\]

and we set \(\gamma = -1 \) in (4.8) and (4.9), to satisfy (4.14). To determine the possible values of \(\eta \), we balance the leading order terms in equations (4.11) and (4.12). The two possibilities are \(\eta = 0 \) and \(\eta = 2 \). After straightforward calculations, it turns out that both choices lead to the same result:

\[
v_1(x_1, x_2) \approx \frac{x_2}{h} + \frac{C}{2\mu} \left(x_2^2 - \frac{h^2}{4} \right), \ v_2(x_1, x_2) = 0 \quad \text{and} \quad p(x_1, x_2) \approx Cx_1, \quad (4.15)
\]

where \(C = O(1) \) is the constant pressure gradient. (Note that since \(h \) is assumed constant, \(\text{div} \chi_1 = \frac{\partial v_1}{\partial x_1} = 0 \) and \(\nabla P = Ce_1 = \mu \Delta \chi_1 \), as required.) Then, using (4.15) and integrating\(^1\) over the gap of thickness (3.6), we have

\[
W^{\chi_1}_{\Pi^{ij}} = \frac{h}{4} \int_{-a^{ij}}^{a^{ij}} dx_1 \int_{-\frac{h(x_1)}{a^{ij}}}^{\frac{h(x_1)}{a^{ij}}} dx_2 \left(\nabla \chi_1 + \nabla \chi_1^T, \nabla \chi_1 + \nabla \chi_1^T \right) \approx \frac{\pi \mu}{2} \sqrt{\frac{a^{ij}}{\delta^{ij}}} + O(1). \quad (4.16)
\]

Velocity field \(\chi_2 \): We approximate \(\chi_2 \) by the velocity of an incompressible fluid between two parallel plates which move at constant speed away from each other, along the axis \(e_2 \) (see Figure 5). The velocity field is decomposed as \(\chi_2 = v_1 e_1 + v_2 e_2 \), with components \(v_1 \) and \(v_2 \) given by (4.8) and (4.9), and the

\(^1\)The integration is done in MAPLE
pressure field is \((4.10)\). Due to boundary conditions \(v_2 \mid_{z=\pm \frac{1}{2}} = \pm \frac{1}{4}\), we set \(\gamma = 0\) and we balance the terms in equation \((4.12)\) by taking \(\eta = 3\). Then, the leading order equations

\[
\frac{\partial v_{1,0}(x_1, z)}{\partial x_1} + \frac{\partial v_{2,0}(x_1, z)}{\partial z} = 0, \quad (4.17)
\]

\[
\frac{\partial p_0(x_1, z)}{\partial x_1} = \mu \frac{\partial^2 v_{1,0}(x_1, z)}{\partial z^2}, \quad (4.18)
\]

\[
\frac{\partial p_0(x_1, z)}{\partial z} = 0, \quad (4.19)
\]

have solutions which are found by separation of variables:

\[
v_{1,0}(x_1, z) = 6x_1 \left(z^2 - \frac{1}{4} \right), \quad v_{2,0}(x_1, z) = -2z^3 + \frac{3}{2}z \text{ and } p_0(x_1) = 6\mu x_1^2 + C_0. \quad (4.20)
\]

The equations for the next order are similar to the above except that both \(v_{1,1}\) and \(v_{2,1}\) satisfy homogeneous boundary conditions at \(z = \pm 1/2\). We find

\[
v_{1,1} = v_{2,1} = 0 \text{ and } p_1 = C_1. \quad (4.21)
\]

Next, we have equations

\[
\frac{\partial v_{1,2}(x_1, z)}{\partial x_1} + \frac{\partial v_{2,2}(x_1, z)}{\partial z} = 0, \quad (4.22)
\]

\[
\frac{\partial p_2(x_1, z)}{\partial x_1} = \mu \frac{\partial^2 v_{1,2}(x_1, z)}{\partial z^2} + \mu \frac{\partial^2 v_{2,0}(x_1, z)}{\partial x_1^2}, \quad (4.23)
\]

\[
\frac{\partial p_2(x_1, z)}{\partial z} = \mu \frac{\partial^2 v_{2,0}(x_1, z)}{\partial z^2}, \quad (4.24)
\]

and the solution is

\[
v_{1,2} = v_{2,2} = 0 \text{ and } p_2 = -6\mu \left(z^2 - \frac{1}{4} \right). \quad (4.25)
\]

We continue in this fashion and find

\[
\chi_2(x_1, x_2) \approx \frac{6x_1}{h} \left(\frac{x_2^2}{h^2} - \frac{1}{4} \right) e_1 + \left[\frac{3x_2}{2h} - 2 \left(\frac{x_2}{h} \right) \right] e_2, \quad (4.26)
\]

\[
p(x_1, x_2) \approx \frac{6\mu x_1^2}{h^3} - \frac{6\mu}{h} \left(\frac{x_2^2}{h^2} - \frac{1}{4} \right) + C. \quad (4.27)
\]

Then (see footnote 1),

\[
W_{\Omega}^{\chi_2} = \frac{\mu}{4} \int_{-a}^{a'} dx_1 \int_{\frac{b(x_1)}{\gamma(x_1)}}^{\frac{b(x_1)}{\gamma(x_1)}} dx_2 (\nabla \chi_2 \cdot \nabla \chi_2^T) \nabla \chi_2 + \nabla \chi_2^T)
\]

\[
\approx \frac{3\pi \mu}{4} \left(\frac{a(x_1)}{\gamma(x_1)} \right)^2 + \frac{12\pi \mu}{8} \sqrt{\frac{\gamma(x_1)}{\pi}} + O(1). \quad (4.28)
\]

Velocity field \(\lambda\): The setup for the calculation of \(\lambda\) is shown in Figure 6 and the asymptotic analysis is almost the same as that for \(\chi_2\). For example, the leading order equations \((4.17)-(4.19)\) and boundary conditions \(v_{2,0} \mid_{z=\pm \frac{1}{2}} = \pm \frac{1}{2}\), \(v_{1,0} \mid_{z=\pm \frac{1}{2}} = 0\) give

\[
v_{1,0}(x_1, z) = 3x_1^2 \left(z^2 - \frac{1}{4} \right), \quad v_{2,0}(x_1, z) = -2x_1 z^3 + \frac{3}{2}x_1 z \text{ and } p_0(x_1, z) = 2\mu x_1^3. \quad (4.29)
\]
To next order, we find similar to (4.21),

$$v_{1,1} = v_{2,1} = 0 \text{ and } p_1 = C_1$$

(4.30)

and so on. In the end, we obtain

$$\lambda(x_1, x_2) \approx \frac{3x_1^2}{h} \left(\frac{x_2^2}{h^2} - \frac{1}{4} \right) e_1 + \left(\frac{3x_1}{2} \frac{x_2}{h} - 2 \frac{x_1 x_2^2}{h^3} \right) e_2,$$

(4.31)

and (see footnote 1)

$$W_{\Pi^{i,j}}^\lambda = \frac{\mu}{4} \int_{x_1 = -a^{i,j}}^{a^{i,j}} dx_1 \int_{x_2 = -h(x_1)}^{h(x_1)} dx_2 \left(\nabla \lambda + \nabla \lambda^T, \nabla \lambda + \nabla \lambda^T \right) \approx \frac{9\pi \mu}{16} \sqrt{\frac{a^{i,j}}{\delta}} + O(1).$$

Finally, using straightforward MAPLE calculations, we find the cross terms

$$\int_{x_1 = -a^{i,j}}^{a^{i,j}} dx_1 \int_{x_2 = -h(x_1)}^{h(x_1)} dx_2 \left(\nabla \chi_i + \nabla \chi_i^T, \nabla \chi_i + \nabla \chi_i^T \right) = O(1),$$

(4.34)

$$\int_{x_1 = -a^{i,j}}^{a^{i,j}} dx_1 \int_{x_2 = -h(x_1)}^{h(x_1)} dx_2 \left(\nabla \chi_i + \nabla \chi_i^T, \nabla \lambda + \nabla \lambda^T \right) = O(1),$$

(4.35)

$$\int_{x_1 = -a^{i,j}}^{a^{i,j}} dx_1 \int_{x_2 = -h(x_1)}^{h(x_1)} dx_2 \left(\nabla \lambda + \nabla \lambda^T, \nabla \chi_i + \nabla \chi_i^T \right) = O(1)$$

(4.36)

and, gathering all the results, we have

$$W_{\Pi^{i,j}} \approx \left[\frac{3\pi \mu}{4} \left(\frac{a^{i,j}}{\delta^2} \right)^2 + \frac{12\pi \mu}{9} \sqrt{\frac{a^{i,j}}{\delta^3}} \right] \left(T_2^{(i)} - T_2^{(j)} \right)^2 + \frac{2\pi}{9} \sqrt{\frac{a^{i,j}}{\delta^3}} \left(T_1^{(i)} - T_1^{(j)} + a_i \omega^{(i)} + a_j \omega^{(j)} \right)^2$$

+ \frac{9\pi \mu}{16} \sqrt{\frac{a^{i,j}}{\delta^3}} \left(\omega^{(i)} - \omega^{(j)} \right)^2 + O(1).$$

(4.37)

This is precisely result (3.14) and the approximation E^δ of the viscous dissipation rate in the suspension is obtained by summing contributions (4.37) of all the gaps, as explained in section 3.2.

5. The upper bound. Any test velocity field $u \in \mathcal{U}$ gives an upper bound on the viscous dissipation rate E, when used in variational principle (2.20). However, of all choices of u, we are interested in those that give tight, correct to leading orders, bounds on E. In this section, we give the construction of such a velocity field in two dimensions. We begin with the construction of u in the gap $\Pi^{i,j}$ between two adjacent particles $D^{(i)}$ and $D^{(j)}$ (see section 5.1) and, to capture the important features of the flow, we use the formal asymptotic analysis of section 4 as a guide. Then, in section 5.2, we extend u to the remainder of the domain, where the flow is diffuse and, as such, contributes to $O(1)$ terms in E.
5.1. Definition of the trial velocity field u in a gap Π^{ij}. The local construction of section 4 captures the important features of the flow in the gap Π^{ij} between adjacent particles $D^{(i)}$ and $D^{(j)}$. However, since the gap thickness $h(x_1)$ is not a constant (as it is treated in section 4), u^h derived in section 4 is not divergence free and, therefore, it is not an admissible trial field in variational principle (2.20). In this section, we modify the velocity field calculated in section 4, in such a way that the incompressibility condition is satisfied and yet, the effect of the corrections on E are minimal.

Using (4.1), (4.2) and the linearity of the problem, we decompose trial velocity field u as

$$u(x) = \left(T_1^{(i)} - T_1^{(j)} + a_i \omega^{(i)} + a_j \omega^{(j)} \right) \chi_1(x) + \left(T_2^{(i)} - T_2^{(j)} \right) \chi_2(x) + (\omega^{(i)} - \omega^{(j)}) \lambda(x)$$

(5.1)

where \mathcal{R} is given by (4.6), χ_1, χ_2 and λ satisfy boundary conditions (4.3)-(4.4), and

$$\mathcal{C} (x, \pm \frac{h(x_1)}{2}) = \left(\sqrt{1 - \frac{x_2^2}{a_1^2}} + \sqrt{1 - \frac{x_2^2}{a_2^2}} - 2 \right) \left(\pm \frac{\omega^{(i)} + \omega^{(j)}}{2} + \frac{\omega^{(i)} - \omega^{(j)}}{2} \right) \frac{\partial \chi_1}{\partial x_2}$$

(5.2)

and $\nabla \perp = (-\partial / \partial x_2, \partial / \partial x_1)$. Then,

$$\chi_1(x_1, x_2) = \nabla \perp F(x_1, x_2), \text{ where } F(x_1, x_2) = -\frac{x_2^2}{2h(x_1)} - \frac{h(x_1)}{8}$$

(5.4)

and $\nabla = (-\partial / \partial x_2, \partial / \partial x_1)$. Then,

$$\chi_1(x_1, x_2) = \frac{x_2}{h(x_1)} e_1 + \frac{1}{2} \frac{dh(x_1)}{dx_1} \left(\frac{x_2^2}{h^2(x_1)} - \frac{1}{4} \right) e_2, \text{ div} \chi_1(x_1, x_2) = 0$$

(5.5)

and, on the top/bottom parts of boundary $\partial \Pi^{ij}$, $\chi_1(x_1, x_2) = \pm h(x_1)/2 = \pm e_1/2$. The calculation of local rate of dissipation $W_{\Pi^{ij}}^{\chi_1}$ is now straightforward (see footnote 1) and the result coincides with (4.16).

Velocity field χ_2: Using the formal asymptotic analysis of section 4, we have that (see equation (4.15))

$$\chi_1(x_1, x_2) \sim \frac{x_2}{h(x_1)} e_1.$$

(5.3)

However, the right hand side in (5.3) is not divergence free, so we correct (5.3) as

$$\chi_2(x_1, x_2) = \nabla \perp F(x_1, x_2), \text{ where } F(x_1, x_2) = -\frac{x_2^2}{2h(x_1)}$$

(5.4)

and $\nabla \perp = (-\partial / \partial x_2, \partial / \partial x_1)$. Then,

$$\chi_1(x_1, x_2) = \frac{x_2}{h(x_1)} e_1 + \frac{1}{2} \frac{dh(x_1)}{dx_1} \left(\frac{x_2^2}{h^2(x_1)} - \frac{1}{4} \right) e_2, \text{ div} \chi_1(x_1, x_2) = 0$$

(5.5)

and, on the top/bottom parts of boundary $\partial \Pi^{ij}$, $\chi_1(x_1, x_2) = \pm h(x_1)/2 = \pm e_1/2$. The calculation of local rate of dissipation $W_{\Pi^{ij}}^{\chi_1}$ is now straightforward (see footnote 1) and the result coincides with (4.16).

Velocity field χ_2: The formal asymptotic analysis of section 4 gives

$$\chi_2(x_1, x_2) \sim \frac{6x_1}{h(x_1)} \left(\frac{x_2^2}{h^2(x_1)} - \frac{1}{4} \right) e_1 + \left[\frac{3x_2}{2h(x_1)} - \frac{1}{2} \right] e_2.$$

(5.6)

but, since h is in truth a function of x_1, (5.6) is not divergence free and it cannot be used as such in the upper bound calculation. Instead, we define the trial field

$$\chi_2(x_1, x_2) = \nabla \perp F(x_1, x_2), \text{ where } F(x_1, x_2) = -\frac{2x_1x_2^3}{h^3(x_1)} + \frac{3x_1x_2}{2h(x_1)}$$

(5.7)

such that

$$\chi_2(x_1, x_2) = \frac{6x_1}{h(x_1)} \left(\frac{x_2^2}{h^2(x_1)} - \frac{1}{4} \right) e_1 + \left[\frac{3x_2}{2h(x_1)} - \frac{1}{2} \right] e_2$$

(5.8)

$$+ \frac{6x_1x_2}{h^2(x_1)} \left(\frac{x_2^2}{h^2(x_1)} - \frac{1}{4} \right) \frac{dh(x_1)}{dx_1} e_2.$$
The corresponding local dissipation rate $W^{N_2}_{\Pi^{ij}_0}$ is (see footnote 1)

$$W^{N_2}_{\Pi^{ij}_0} = \frac{\mu}{4} \int_{a^{ij}} d\Gamma_1 \int_{\frac{\mu}{\sqrt{a^{ij}}} x_2}^{\frac{h(x_1)}{2}} dx_2 (\nabla x_2 + \nabla x_2^T, \nabla x_2 + \nabla x_2^T)$$

(5.9)

and we note that it coincides, to leading order, with (4.28).

Velocity field λ: We define a divergence free trial field λ, which is approximately equal to (4.31), as

$$\lambda(x_1, x_2) = \nabla^\perp F(x_1, x_2), \text{ where } F(x_1, x_2) = \left(\frac{3x_1^2 x_2}{4h(x_1)} - \frac{x_2^2}{h^3(x_1)}\right),$$

(5.10)

such that

$$\lambda(x_1, x_2) = \frac{3x_1^2}{h(x_1)} \left(\frac{x_2^2}{h^3(x_1)} - \frac{1}{4}\right) e_1 + \left(\frac{3x_1^2 x_2}{h^3(x_1)} - 2x_1 \frac{x_2}{h^2(x_1)}\right) e_2 - \frac{3x_1^2 x_2}{a^2 h(x_1)} \left(\frac{x_2^2}{h^3(x_1)} - \frac{1}{4}\right) \frac{dh(x_1)}{dx_1} e_2.$$

(5.11)

Then, $\lambda(x_1, x_2 = \pm h(x_1)/2) = \pm \frac{3x_1}{h(x_1)} e_2$ and the corresponding local rate of dissipation $W^{\lambda}_{\Pi^{ij}_0}$ is given by (4.33) (see footnote 1).

Velocity field $C(x)$: We define trial field $C(x)$ as

$$C(x_1, x_2) = \left(\omega^{(i)} + \omega^{(j)}\right) \nabla^\perp F(x_1, x_2) + \left(\omega^{(i)} - \omega^{(j)}\right) \nabla^\perp G(x_1, x_2),$$

(5.12)

where

$$F(x_1, x_2) = \left(1 - \frac{x_1^2}{a_1^2} - \frac{x_2^2}{a_2^2}\right) \left(\frac{x_2^2}{2h(x_1)} + \frac{h(x_1)}{8}\right) + \int_{0}^{x_1} \frac{h(s)}{8} ds \left(\frac{x_2^2}{2} + \frac{h(x_1)}{2}\right) - \int_{0}^{x_1} \frac{h(s)}{8} ds \left(\frac{x_2^2}{2} + \frac{h(x_1)}{2}\right) \times$$

$$\left[\frac{1}{2} \frac{h(s)}{2} \left(\frac{s/a_1^2}{\sqrt{1-s^2/a_1^2}} - \frac{s/a_1^2}{\sqrt{1-s^2/a_1^2}}\right) + \frac{dh(s)}{ds} \left(\sqrt{1-s^2/a_1^2} - \sqrt{1-s^2/a_1^2}\right)\right] ds$$

and

$$G(x_1, x_2) = -\left(1 - \frac{x_1^2}{a_1^2} - \frac{x_2^2}{a_2^2}\right) \left(\frac{x_2^2}{2h(x_1)} - \frac{h(x_1)}{4}\right) - \frac{1}{2} \int_{0}^{x_1} \frac{dh(s)}{ds} \sqrt{1-s^2/a_1^2} \sqrt{1-s^2/a_2^2} ds$$

$$+ \frac{x_2^2}{2} + \sqrt{1-x_1^2/a_1^2 + \sqrt{1-x_1^2/a_1^2}} - \frac{x_2^2}{2} + \frac{3h(x_1)}{2h(x_1)} - \frac{2x_2}{h(x_1)} \times$$

$$\left[\frac{1}{2} - \frac{h(s)}{2} \left(\frac{s/a_1^2}{\sqrt{1-s^2/a_1^2}} + \frac{s/a_1^2}{\sqrt{1-x_1^2/a_1^2}}\right) + \frac{dh(s)}{ds} \left(\sqrt{1-s^2/a_1^2} + \sqrt{1-s^2/a_1^2}\right)\right] ds.$$

Although the expression (5.12) is rather complicated, it can be checked with straightforward calculations (which we have done in MAPLE) that it satisfies boundary conditions (5.2) and, as such, it is an admissible trial field, which gives a local rate of dissipation $W^{C}_{\Pi^{ij}_0} = O(1)$.

Finally, we find through MAPLE calculations the cross terms in the gap dissipation rates

$$W^{\mu, w}_{\Pi^{ij}_0} = \frac{\mu}{4} \int_{x_1 = -a^{ij}}^{a^{ij}} dx_1 \int_{x_2 = -\frac{h(x_1)}{2}}^{\frac{h(x_1)}{2}} dx_2 (\nabla v + \nabla v^T, \nabla \omega + \nabla \omega^T) = O(1),$$

20
where \(\mathbf{v} \) and \(\mathbf{w} \) stand for either of the elementary velocity fields \(\mathbf{v}_1, \mathbf{v}_2, \mathbf{w} \), \(\mathbf{R}(\mathbf{x}) \), or \(\mathbf{C}(\mathbf{x}) \).

We have now defined a trial velocity field which satisfies the exact boundary conditions on the top and bottom boundaries of the gap \(\Gamma^j \), is divergence free and, most importantly, gives an upper bound on the gap dissipation rate which agrees, to leading order, with the formal asymptotic result of section 4.

5.2. Extension of the trial velocity field \(\mathbf{u} \) outside the gaps between the particles in suspension. Let us denote the union of all gaps by \(U_\Pi \) and define the complement in \(\Omega_F \) of the union of all gaps

\[
U_E = \Omega_F \setminus U_\Pi
\]

(5.13)

We wish to extend the trial velocity field \(\mathbf{u} \), from the gaps \(\Gamma^j \), to \(U_E \), so that the leading order terms of the dissipation rate are not affected. Clearly, when there are many particles in the suspension, the set \(U_E \) is the union of many disjoint, connected components, which we denote by \(C_j \). Let us then focus attention on one such component and drop the subscript \(j \) (see Figure 7). To avoid boundary corners in the connected component \(C \), we take a slightly larger domain \(\tilde{C} \subset \Omega_F \), such that \(C \subset \tilde{C} \) and \(\partial \tilde{C} \) is smooth\(^2\). Note that the construction of section 5.1 gives a trial velocity of the form \(\mathbf{u} = \nabla F \) and, since the gap thickness is \(h = O(a) \gg \delta^j \) at \(\partial \Gamma^j \cap \partial \tilde{C} \), the first and second derivatives of \(F \) are uniformly bounded on \(\partial \tilde{C} \), as \(\delta \to 0 \).

We now wish to extend \(\mathbf{u} \) to the interior of \(\tilde{C} \).

Let us take a \(\gamma > 0 \), independent of \(\delta \), and define the boundary layer

\[
C_\gamma = \left\{ \mathbf{x} \in \tilde{C} \text{ such that } \text{dist} (\mathbf{x}, \partial \tilde{C}) < \gamma \right\}.
\]

(5.14)

Since the arcs in \(\partial \tilde{C} \) are independent of \(\delta \), we can choose a cover \(\mathcal{P}_j, j = 1, 2 \ldots J \), independent of \(\delta \), and a subordinate partition of unity \(\phi_j \), with support \(\phi_j = \tilde{P}_j \subset \mathcal{P}_j \), such that \(\tilde{P}_j \cap \tilde{C} \subset C_\gamma \). Then, let us extend \(\mathbf{u} \) in \(\tilde{P}_j \) and, for simplicity of notation, drop the index \(j \).

In \(\tilde{P} \), define local coordinates \(\mathbf{y} = (y_1, y_2) \), such that \(y_2 = 0 \) at \(\partial \tilde{P} \cap \partial \tilde{C} \), and \(\tilde{P} \cap \tilde{C} \) is mapped into a tensor product of intervals \(I_1(y_1) \times I_2(y_2) \), for \(y_2 > 0 \). Take then a smooth function \(g(y_2) \), which vanishes outside interval \(I_2(y_2) \) and, at \(y_2 = 0, g(0) = 1 \), and define the extension of \(F \), from \(\tilde{P} \cap \partial \tilde{C} \), to \(\tilde{P} \cap \tilde{C} \), as\(^3\)

\[
F(y_1, y_2) = g(y_2) \left[F(y_1, 0) + y_2 \frac{\partial F(y_1, 0)}{\partial y_2} \right].
\]

(5.15)

Clearly, the extended \(F \) is smooth and its first derivatives are equal to the previously specified values on \(\tilde{P} \cap \partial \tilde{C} \). We also have

\[
\|F(y_1, y_2)\|_{H^2(I_1 \times I_2)} \leq A,
\]

(5.16)

\(^2\partial \tilde{C} \) is the union of arcs which lie either inside a gap \(\Gamma^j \), or on the boundary of a surrounding particle.

\(^3\)Note that (5.15) is a simplified version of the classic Borel construction in [20], theorem 1.2.6.
for a bounded, independent of δ, constant A. Repeating the same procedure, we extend F to all $\tilde{\mathcal{P}}_j \cap \tilde{\mathcal{C}}$, $j = 1 \ldots J$ or, equivalently, to $\tilde{\mathcal{C}}$. Then, taking $\mathbf{u} = \nabla^\perp F$, we have $\text{div} \, \mathbf{u} = 0$, and the strain tensor $\mathcal{E}(\mathbf{u})$ with components in $L^2(\tilde{\mathcal{C}})$, and a corresponding viscous dissipation rate

$$
\int_{\tilde{\mathcal{C}}} \mu (\mathcal{E}(\mathbf{u}), \mathcal{E}(\mathbf{u})) \, d\mathbf{x} \leq A|\tilde{\mathcal{C}}|.
$$

(5.17)

We end this section with the remark that it is not necessary that $\tilde{\mathcal{C}}$ lie inside Ω_F for estimate (5.17) to hold (see Fig. 7). Indeed, even if the connected component C intersects the exterior boundary $\partial \Omega$, we can always extend F to a smooth, H^2 function which is supported away from the corners of $\partial \Omega$ and (5.17) follows.

Gathering all the results in this section, we have, in the notation of section 3.2.1, the upper bound

$$
E \leq \min_{T, \omega} \sum_{i=1}^{N} \sum_{j \in N_i} \left\{ \left[\frac{3 \pi \mu}{4} \left(\frac{a_{ij}}{\delta^2} \right)^2 + \frac{27 \pi \mu}{10} \sqrt{\frac{2 a_{ij}}{\delta^2}} \right] \left[(\mathbf{T}^{(i)} - \mathbf{T}^{(j)}) \cdot \mathbf{q}^{ij} \right]^2
\right.
$$

$$
+ \frac{\pi \mu}{2} \sqrt{\frac{a_{ij}}{\delta^2}} \left[(\mathbf{T}^{(i)} - \mathbf{T}^{(j)}) \cdot \mathbf{p}^{ij} \right]^2 + \sum_{i \in \mathcal{B}} \left\{ \left[\frac{3 \pi \mu}{4} \left(\frac{2 a_{ij}}{\delta^2} \right)^2 + \frac{27 \pi \mu}{10} \sqrt{\frac{2 a_{ij}}{\delta^2}} \right] \left[(\mathbf{T}^{(i)} - \mathbf{g}) \cdot \mathbf{q}^{i} \right]^2
\right.
$$

$$
+ \frac{\pi \mu}{2} \sqrt{\frac{2 a_{ij}}{\delta^2}} \left[(\mathbf{T}^{(i)} - \mathbf{g}) \cdot \mathbf{p}^{i} \right]^2 \right\} + O(1),
$$

(5.18)

where, for the boundary nodes $i \in \mathcal{B}$, δ^i is the distance between $\partial D^{(i)}$ and the upper or lower boundary $\partial \Omega^\pm$.

6. Rigorous justification of the leading-order spring network approximation. In this section, we derive and justify rigorously the spring network approximation in two dimensions (recall section 3.2.1, by constructing a lower bound on E, which agrees with (5.18), to $O \left(\left(\frac{\delta}{\delta} \right)^2 \right)$.

6.1. A simplified upper bound. Since the leading order term is not affected by the rotations of the particles, we set in (5.18) $\omega^{(i)} = 0$, for all $i = 1, \ldots, N$, and we obtain a less precise, but simplified upper bound

$$
E \leq \min_{T, \omega} \sum_{i=1}^{N} \sum_{j \in N_i} \left\{ \left[\frac{3 \pi \mu}{4} \left(\frac{a_{ij}}{\delta^2} \right)^2 + \frac{27 \pi \mu}{10} \sqrt{\frac{2 a_{ij}}{\delta^2}} \right] \left[(\mathbf{T}^{(i)} - \mathbf{T}^{(j)}) \cdot \mathbf{q}^{ij} \right]^2
\right.
$$

$$
+ \frac{\pi \mu}{2} \sqrt{\frac{a_{ij}}{\delta^2}} \left[(\mathbf{T}^{(i)} - \mathbf{T}^{(j)}) \cdot \mathbf{p}^{ij} \right]^2 + \sum_{i \in \mathcal{B}} \left\{ \left[\frac{3 \pi \mu}{4} \left(\frac{2 a_{ij}}{\delta^2} \right)^2 + \frac{27 \pi \mu}{10} \sqrt{\frac{2 a_{ij}}{\delta^2}} \right] \left[(\mathbf{T}^{(i)} - \mathbf{g}) \cdot \mathbf{q}^{i} \right]^2
\right.
$$

$$
+ \frac{\pi \mu}{2} \sqrt{\frac{2 a_{ij}}{\delta^2}} \left[(\mathbf{T}^{(i)} - \mathbf{g}) \cdot \mathbf{p}^{i} \right]^2 \right\} + O(1).
$$

(6.1)

Except for the $O(1)$ term, the right hand side of (6.1) involves the minimization of a quadratic form in the translation velocities $\mathbf{T}^{(i)}$, for $i = 1, \ldots, N$, and the minimum is achieved by the solution of the linear system of equations

$$
\sum_{j \in \mathcal{N}_i} \left\{ \left[\frac{3 \pi \mu}{4} \left(\frac{a_{ij}}{\delta^2} \right)^2 + \frac{27 \pi \mu}{10} \sqrt{\frac{2 a_{ij}}{\delta^2}} \right] \left[(\mathbf{T}^{(i)} - \mathbf{T}^{(j)}) \cdot \mathbf{q}^{ij} \right] \mathbf{q}^{ij} + \frac{\pi \mu}{2} \sqrt{\frac{a_{ij}}{\delta^2}} \left[(\mathbf{T}^{(i)} - \mathbf{T}^{(j)}) \cdot \mathbf{p}^{ij} \right] \mathbf{p}^{ij} \right\}
$$

$$
+ \mathbf{F}_g(\mathbf{T}^{(i)}) = \mathbf{0}, \text{ for } 1 \leq i \leq N,
$$

(6.2)

where

$$
\mathbf{F}_g(\mathbf{T}^{(i)}) = \left\{ \begin{array}{ll}
\left[\frac{3 \pi \mu}{4} \left(\frac{2 a_{ij}}{\delta^2} \right)^2 + \frac{27 \pi \mu}{10} \sqrt{\frac{2 a_{ij}}{\delta^2}} \right] \left[(\mathbf{T}^{(i)} - \mathbf{g}) \cdot \mathbf{q}^{i} \right] \mathbf{q}^{i} + \frac{\pi \mu}{2} \sqrt{\frac{2 a_{ij}}{\delta^2}} \left[(\mathbf{T}^{(i)} - \mathbf{g}) \cdot \mathbf{p}^{i} \right] \mathbf{p}^{i} & \text{if } i \in \mathcal{B},
0 & \text{otherwise,}
\end{array} \right.
$$

(6.3)
where matrix τ of equations (6.2) has a unique solution

$$\tau = \left(T_1^{(1)}, T_2^{(1)}, \ldots, T_1^{(N)}, \ldots, T_2^{(N)} \right)^T \in \mathbb{R}^{2N},$$

where superscript T stands for transpose. Proof. Let us write the upper bound (6.1) in compact form as

$$E \leq \min_{\mathbf{r}} (\tau \cdot A\mathbf{r} - 2\tau \cdot \mathbf{f}) + r + O(1),$$

(6.4)

where matrix $A \in \mathbb{R}^{2N \times 2N}$ is symmetric, $\mathbf{f} \in \mathbb{R}^{2N}$ and $r \in \mathbb{R}$. We prove the unique solvability of (6.2) (i.e. of $A\tau = \mathbf{f}$), by showing that A is positive definite. Since we take the limit $\delta \to 0$, we have from (6.1) and (6.4) that

$$\tau \cdot A\tau = \sum_{i=1}^{N} \sum_{j \in N_i \atop j < i} \left\{ \left[\frac{8\mu}{3} \left(\frac{1}{\bar{\omega}} \right)^{2} + \frac{12\mu}{3} \sqrt{\frac{2\mu}{3}} \right] \left[(T^{(i)} - T^{(j)}) \cdot \mathbf{q}^{(j)} \right]^2 + \frac{12\mu}{3} \left[(T^{(i)} - T^{(j)}) \cdot \mathbf{p}^{(j)} \right]^2 \right\}$$

$$+ \sum_{i \in B} \left\{ \left[\frac{2\mu}{3} \left(\frac{1}{\bar{\omega}} \right)^{2} + \frac{8\mu}{3} \sqrt{\frac{2\mu}{3}} \right] (T^{(i)} \cdot \mathbf{q}^{(i)})^2 + \frac{8\mu}{3} \left(T^{(i)} \cdot \mathbf{p}^{(i)} \right)^2 \right\}$$

$$\geq C\delta^{-\frac{1}{4}} \sum_{i=1}^{N} \sum_{j \in N_i \atop j < i} \left[(T^{(i)} - T^{(j)}) \cdot \mathbf{q}^{(j)} \right]^2 + \left[(T^{(i)} - T^{(j)}) \cdot \mathbf{p}^{(j)} \right]^2$$

$$+ C\delta^{-\frac{1}{4}} \sum_{i \in B} \left[(T^{(i)} \cdot \mathbf{q}^{(i)})^2 + (T^{(i)} \cdot \mathbf{p}^{(i)})^2 \right]$$

$$= C\delta^{-\frac{1}{4}} \left[\sum_{i=1}^{N} \sum_{j \in N_i \atop j < i} |T^{(i)} - T^{(j)}|^2 + \sum_{i \in B} |T^{(i)}|^2 \right] = \tau \cdot \bar{\mathbf{A}} \tau,$$

(6.5)

where C is independent of δ and matrix $\bar{\mathbf{A}}$ is clearly symmetric, nonnegative definite. To show that $\bar{\mathbf{A}}$ is, in fact, positive definite, let us suppose that there exists a nontrivial τ in the null space of $\bar{\mathbf{A}}$. Then, by (6.5), we have $T^{(i)} - T^{(j)} = 0$ for $i = 1, \ldots, N$, $j \in N_i$, and $T^{(i)} = 0$ for $i \in B$. Since the graph Γ is connected (Property 3.1), this implies $T^{(i)} = 0$ for all $i = 1, \ldots, N$, or, equivalently $\tau = 0$. However, this contradicts our initial assumption on τ, so the null space of $\bar{\mathbf{A}}$ must be trivial. This implies, in turn, that A is positive definite and that the linear system of equations (6.2) is uniquely solvable. □

Remark 6.1. In the remainder of this paper, we denote by \mathbf{u} the trial velocity field constructed in section 5, where all rotational velocities $\omega^{(i)}$ are set to zero and where translational velocities $T^{(i)}$ solve linear system of equations (6.2), for $1 \leq i \leq N$. In particular, in gap $\Pi^{(i)}$, connecting adjacent disks $D^{(i)}$ and $D^{(j)}$, the trial field is

$$\mathbf{u}(x) = \left[\left(T^{(i)} - T^{(j)} \right) \cdot \mathbf{e}_1 \right] \mathbf{x}_1(x) + \left[\left(T^{(i)} - T^{(j)} \right) \cdot \mathbf{e}_2 \right] \mathbf{x}_2(x) + \frac{1}{2} \left(T^{(i)} + T^{(j)} \right),$$

(6.6)

where \mathbf{x}_1 and \mathbf{x}_2 are given by (5.5) and (5.8), respectively. Note that this trial field yields upper bound (see (6.1))

$$E \leq W_{\Omega_F}(\mathbf{u}),$$

(6.7)

when used in variational principle (2.20).

6.2. Lower Bound.

6.2.1. Outline of the construction. Given a subdomain M of Ω_F, define a functional

$$W_M^*(S) = \int_{\partial \Omega \cap M} g \cdot \mathbf{S} \mathbf{n} ds - \int_M F(S) dx,$$

(6.8)
where \(\bar{M} \) is the closure of \(M \), \(g \) is defined by (2.9),

\[
F(S) = \frac{1}{4\mu} \left[(S, S) - \frac{1}{2} (\text{trace } S)^2 \right],
\]

and \(S \) is a symmetric (stress) tensor in \(\mathcal{F} \). In the context of this paper, subdomain \(M \) stands for either a gap \(\Pi^j \) between adjacent particles or a connected component \(C \) in \(U_E \), where the flow is diffuse (see section 5.2). Then, \(W^*_\Omega \) is given by the sum of \(W^*_\Omega(S) \), for all such disjoint subdomains in \(\Omega_F \).

For any \(S \in \mathcal{F} \), we have by dual variational principle (2.22),

\[
W^*_\Omega(S) \leq E \leq W_{\Omega}(u).
\]

Our goal in this section is to construct a trial tensor \(S \in \mathcal{F} \) such that \(W^*_\Omega(S) \) matches to leading order upper bound \(W_{\Omega}(u) \).

The construction of the trial tensor \(S \) proceeds as follows:

Step 1. In an ideal case, where \(\hat{u} \) and \(\hat{S} \), the minimizer and maximizer of the direct and dual problems (2.20) and (2.22), respectively, would be known, the constitutive equations for the incompressible fluid would give

\[
\int_{\Omega} F(\hat{S})d\mathbf{x} = W_M(\hat{u}) = \mu \int_{\Omega} (\mathcal{E}(u), \mathcal{E}(u)) d\mathbf{x},
\]

and, by integration by parts,

\[
\int_{\partial\Omega \cap \bar{M}} g : \hat{S} \mathbf{n} d\mathbf{s} = 2W_M(\hat{u}).
\]

However, we don’t know \(\hat{u} \), so we use instead trial velocity field \(u \) described in Remark 6.1. With this \(u \), we find, as a first step in our construction, an approximate pressure \(P \) and the corresponding approximate stress tensor \(S_0 = 2\mu \mathcal{E}(u) - P \mathbf{T} \).

For this purpose, let us focus on a gap \(\Pi^j \), where \(S_0 \) satisfies

\[
\int_{\Pi^j} F(S_0)d\mathbf{x} = W_{\Pi^j}(u) = O \left(\frac{\alpha^{ij}}{\delta^{ij}} \right)^{\frac{1}{2}}.
\]

Note however that \(S_0 \notin \mathcal{F} \), because \(\text{div}S_0 \neq 0 \), so we define the trial tensor in \(\Pi^j \) as

\[
S = S_0 - \mathcal{K},
\]

where \(\mathcal{K} \) is a compensating tensor chosen such that \(\text{div} (S_0 - \mathcal{K}) = 0 \) in \(\Pi \), and

\[
\int_{\Pi^j} F(S)d\mathbf{x} = W_{\Pi^j}(u) + O \left(\sqrt{\frac{\alpha^{ij}}{\delta^{ij}}} \right).
\]

Step 2. This is the crucial step in the construction of the lower bound. In step 1, we have obtained tensor \(S(x) \) in \(\Pi^j \) and, in particular, on the portion of \(\partial D^{(j)} \) which belongs to the neck \(\Pi^j \). In the second step, we extend \(S \) to the remaining parts of \(\partial D^{(j)} \), so that the net force and torque conditions (2.12) hold. Such an extension cannot be constructed for each \(\partial D^{(j)} \) individually. Recall that \(U_\Pi \) is the union of all gaps. For each connected component \(C \) of the set \(U_E = \Omega_F \setminus U_\Pi \), where the flow is diffuse, we must have

\[
\int_{\partial C} S \mathbf{n} d\mathbf{s} = 0.
\]

\(^4 \)Observe that \(W^*_\Omega \) is the functional for the dual problem defined in Appendix A.
for any divergence free extension of S, from Π to \mathcal{C}. But, since each $\partial \mathcal{C}$ contains parts of the boundaries of several neighboring disks, the extensions of S to the boundaries of these disks must be coupled. An attempt to satisfy the balance of forces and torques (2.12) for an individual disk $D^{(j)}$, influences the balance on all neighboring disks. Since these disks have other neighbors, as well (recall that the graph Γ is connected), the extension of S from the necks $\Pi^{(j)}$ to the remaining parts of $\partial D^{(j)}$, for $1 \leq j \leq N$, is a global problem.

Note that a similar difficulty arises in the scalar problem of electrical conduction [6], where a simple construction of the dual trial field (which is a vector flux) is given as follows: In a gap $\Pi^{(j)}$, the dual trial field is taken as the vector $\mathbf{j} = (0, \zeta(x_1))$, where ζ is a smooth function of x_1, the local coordinate in the direction orthogonal to the axis of symmetry of the gap. Outside the union of all gaps, the dual trial field is extended to 0. While this choice satisfies the divergence free condition, locally, in each subdomain of Ω_F, one must ensure that the total flux through $\partial D^{(j)}$ intersects with the union of all the gaps connected with $D^{(j)}$, is zero, for all $1 \leq j \leq N$, as well. The latter condition is satisfied in [6] by setting

$$
\int_{\partial D^{(j)} \cap \Pi^{(j)}} \mathbf{j} \cdot \mathbf{n}^{(i)} \, ds = J_{\Pi^{(j)}},
$$

where J_{Π} is the net current flowing through the corresponding branch of the asymptotic network (graph Γ). More explicitly, the condition of flux balance at $\partial D^{(j)}$ is formulated as Kirchhoff’s current law at the node $x^{(j)}$ in the asymptotic network.

While in the scalar problem, the two conditions (divergence free and flux balance) on the dual trial field can be dealt with, separately, in the vectorial problem which we consider here, they appear to be coupled, and one cannot simply generalize the construction in [6] to find an admissible $S \in \mathcal{F}$. We introduce in section 6.2.3 our novel construction of the extension of S which is divergence free and satisfies the momentum balance equations for all disks.

Step 3. Extend the tensor S, defined so far in the gaps and at $\partial D^{(j)}$, for $1 \leq j \leq N$, to the whole Ω_F. The main point of this step is to control the energy of the extension in such a way that

$$
W^*_{\Omega_F \backslash \Pi} (S) \ll O \left(\delta^{-\frac{3}{2}} \right), \quad (6.16)
$$

Step 4. In this step we gather all the results of the previous steps and we show that $W_{\Omega_F} (\mathbf{u})$ and $W^*_{\Omega_F} (S)$ are the same to leading order.

6.2.2. The trial field S in a gap

We begin our construction of S in a gap $\Pi^{(j)}$, with the help of velocity field (6.6). Recall from sections 4 and 5 that (6.6) is divergence free and, furthermore, it is an approximate solution of Stokes’ equations in the following sense: If the gap thickness h were a constant, we would have $\nabla \cdot \mathbf{u} = 0$, the pressure would be well defined by $\mu \Delta \mathbf{u} = \nabla P$ and the stress

$$
S_0 = 2\mu \mathbf{E}(\mathbf{u}) - P \mathbf{I}
$$

would be divergence free. However, in truth, gap $\Pi^{(j)}$ is not flat and the condition $\nabla \cdot S = 0$, that any dual trial field S must satisfy, needs to be ensured for the variable thickness $h(x_1)$. In that case, $\Delta \mathbf{u}$ is not a gradient of a scalar function, so we introduce an approximate pressure P and a “compensating” symmetric tensor \mathcal{K} such that

$$
S = S_0 - \mathcal{K}, \quad (6.17)
$$

is divergence free. Because $\nabla \cdot \mathbf{u} = 0$, we have

$$
F(S_0) = \frac{1}{4\mu} \left[(S_0, S_0) - \frac{1}{2} (\text{trace } S_0)^2 \right] = \frac{1}{4\mu} \left[(2\mu \mathbf{E}(\mathbf{u}) - P \mathbf{I}, 2\mu \mathbf{E}(\mathbf{u}) - P \mathbf{I}) - 2P^2 \right] = \mu (\mathbf{E}(\mathbf{u}, \mathbf{E}(\mathbf{u}))
$$

and

$$
\int_{\Pi^{(j)}} F(S_0) \, dx = W_{\Pi^{(j)}} (\mathbf{u}) = O \left(\frac{\delta^{\frac{3}{2}}}{\delta} \right), \quad (6.18)
$$
so, to get a lower bound that matches the upper one, to leading order, we wish that

\[
\int_{\Pi_{ij}} |F(S) - F(S_0)| \, dx = O \left(\sqrt{\frac{a_{ij}}{\delta_{ij}}} \right). \tag{6.19}
\]

This can be accomplished, for example, by choosing \(P \) and \(K \) to satisfy

\[
\int_{\Pi_{ij}} (S_0, K) \, dx = O \left(\sqrt{\frac{a_{ij}}{\delta_{ij}}} \right) \quad \text{and} \quad \int_{\Pi_{ij}} (K, K) \, dx = O \left(\sqrt{\frac{a_{ij}}{\delta_{ij}}} \right) \tag{6.20}
\]

since

\[
F(S) - F(S_0) = -2 (S_0, K) + (K, K) + \text{tr}\, S_0 \text{trace} K - \frac{1}{2} (\text{trace} K)^2.
\]

Let us then begin our search for \(K \), by rewriting equation \(\text{div}S = 0 \), in terms of the components of \(K \), as

\[
\partial_{x_1} K_{11} + \partial_{x_2} K_{12} = R_1, \\
\partial_{x_2} K_{12} + \partial_{x_1} K_{22} = R_2, \tag{6.21}
\]

where the discrepancy vector

\[
R = \text{div} S_0 = \mu \Delta u - \nabla P \tag{6.22}
\]

depends on the choice of \(P \). We define the approximate pressure by

\[
P(x) = \mu \int_{-h/2}^{x_2} \Delta u_2(s_1, s_2) \, ds_2 + \mu \int_{-R^{1j}}^{x_1} r_1(s_1) \, ds_1, \tag{6.23}
\]

where \(r_1(x_1) \) is given in terms of the Laplacian of the first component of \(u \), as

\[
\Delta u_1(x_1, x_2) = r_1(x_1) + r_2(x_1, x_2). \tag{6.24}
\]

Then, we set the first entry \(K_{11} \) in the compensating tensor to zero, and we find from (6.21)

\[
K_{12}(x) = \int_{-h/2}^{x_2} R_1(s_1, s_2) \, ds_2, \quad K_{22}(x) = -\int_{-R^{1j}}^{x_1} R_1(s_1, s_2) \, ds_2, \tag{6.25}
\]

for discrepancy vector

\[
R(x) = \mu \Delta u(x) - \nabla P(x) = \left(\begin{array}{c}
\mu \Delta u_1(x) - \partial_{x_1} P(x) \\
0
\end{array} \right). \tag{6.26}
\]

Now, in order to verify that estimates (6.20) hold, we note that the components of \(\Delta u \) are sums of terms of the form

\[
\text{const} \frac{x_1^k x_2^l}{h(x_1)^m}, \tag{6.27}
\]

for some non-negative integers \(k, l, m \), and that we have the following estimate:

Lemma 6.2. For \(k \) even, there exists a bounded, positive constant \(c \) such that

\[
\int_{\Pi_{ij}} \frac{x_1^{k/2} x_2^l}{h^m} \, dx \leq c \int_{-R^{1j}}^{R^{1j}} \frac{x_1^{k/2} x_2^{l+1/2 - m/2}}{h^m} \, dx. \tag{6.28}
\]

If \(k \) is odd,

\[
\int_{\Pi_{ij}} \frac{x_1^{k/2} x_2^l}{h^m} \, dx = 0. \tag{6.29}
\]
Moreover, for any positive integer p, we have
\[
\int_{-R^{ij}}^{R^{ij}} \frac{dx_1}{R^{ij} + x_1^2/a^{ij})^p} = O \left(\left(\frac{a^{ij}}{\delta^{ij}} \right)^{p-\frac{1}{2}} \right). \tag{6.30}
\]

Proof. To prove (6.30), we write $\int_{-R^{ij}}^{R^{ij}} (\delta^{ij} + x_1^2/a^{ij})^{-p} dx_1 = \mathcal{I}_1 + \mathcal{I}_2$, where
\[
\mathcal{I}_1 = \int_{-\sqrt{\delta^{ij}}}^{\sqrt{\delta^{ij}}} \frac{dx_1}{(\delta^{ij} + x_1^2/a^{ij})^p}.
\]
Scaling x_1 by $\sqrt{\delta^{ij}}$, we get
\[
\mathcal{I}_1 = (\delta^{ij})^{1/2-p} \int_{-1}^{1} \frac{dt}{(1 + t^2/a^{ij})^p} = c_1(p, a^{ij})(\delta^{ij})^{1/2-p},
\]
where c_1 is independent of δ^{ij}. For \mathcal{I}_2, we have
\[
\mathcal{I}_2 = 2 \int_{\sqrt{\delta^{ij}}}^{R^{ij}} \frac{dx_1}{(\delta^{ij} + x_1^2/a^{ij})^p} \leq 2 \int_{\sqrt{\delta^{ij}}}^{R^{ij}} \frac{(a^{ij})^p}{x_1^p} dx_1 = \frac{2}{2p-1} \left[(\delta^{ij})^{p-1} - (R^{ij})^{p-2} \right] \leq c_2(p)(\delta^{ij})^{1/2-p}
\]
and the proof of (6.30) is complete. Identity (6.29) follows immediately because the integrand is an odd function of x_1. Finally, (6.29) and $x_1^2/a^{ij} < h(x_1)$ imply (6.28). \(\square\)

In light of Lemma 6.2, we obtain with explicit calculations that (6.20) holds and, therefore,
\[
\int_{\Pi^{ij}} F(S)dx = W_{\Pi^{ij}}(\mathbf{u}) + O \left(\sqrt{\frac{a^{ij}}{\delta^{ij}}} \right). \tag{6.31}
\]

In the next section, we extend \mathcal{S} from Π^{ij} to $\partial D^{(i)}$ and $\partial D^{(j)}$, in such a way that the net force and torque on $D^{(i)}$ and $D^{(j)}$ vanish. For that purpose, we need to examine the integrals of $\mathbf{S}n$ over various parts of $\partial \Pi^{ij}$. We show that, roughly speaking, the integrals of $\mathbf{S}n$ over opposite sides of $\partial \Pi^{ij}$ cancel each other. To make this precise, let us denote the lateral parts of $\partial \Pi^{ij}$ by
\[
L_{\pm} = \{(x_1, x_2) : x_1 = \pm R^{ij}, -\frac{1}{2} h(R^{ij}) < x_2 < \frac{1}{2} h(R^{ij})\}.
\]

Proposition 6.3.
\[
\int_{L_{+}} \mathbf{S}n \, ds + \int_{L_{-}} \mathbf{S}n \, ds = 0.
\]

Proof. Since $\mathbf{S}n = (\mathcal{S}_{11}(\pm R^{ij}, x_2), \mathcal{S}_{12}(\pm R^{ij}, x_2))^T$ on L_{\pm}, we must show that
\[
\int_{-\frac{1}{2} R^{ij}}^{\frac{1}{2} R^{ij}} \mathcal{S}_{1k}(-R^{ij}, x_2) dx_2 = \int_{-\frac{1}{2} R^{ij}}^{\frac{1}{2} R^{ij}} \mathcal{S}_{1k}(R^{ij}, x_2) dx_2, \quad \text{for } k = 1, 2. \tag{6.32}
\]
This, in turn, follows, by direct calculation, from the expression of trial stress field \mathcal{S} constructed above. \(\square\)

Remark 6.2. Since $\text{div} \, \mathcal{S} = 0$ in Π^{ij}, $\int_{\partial \Pi^{ij}} \mathbf{S}n \, ds = 0$ and, by Proposition 6.3, we have for the top and bottom parts of $\partial \Pi^{ij}$:
\[
\int_{\partial D^{(i)} \cap \Pi^{ij}} \mathbf{S}n^{(i)} \, ds = - \int_{\partial D^{(j)} \cap \Pi^{ij}} \mathbf{S}n^{(j)} \, ds. \tag{6.33}
\]
6.2.3. Extension of S to the boundaries of the disks. In section 6.2.2, we have defined S in Π^{ij}, and, in particular, on $\partial D^{(j)} \cap \Pi^{ij}$. Here, we wish to extend S to the whole boundary $\partial D^{(j)}$, in such a way that

$$\int_{\partial D^{(j)}} S \mathbf{n}^{(j)} ds = 0 \quad \text{and} \quad \int_{\partial C} S \mathbf{n} ds = 0,$$

for any connected component C of diffuse flow, in $U_E = \Omega_F \setminus \bar{U}_{\Pi}$, and for all $j = 1, \ldots, N$. We note that $\partial D^{(j)} \cap U_E$ is a union of circular, complementary arcs, and we let vectors $\mathbf{\beta}^k$ denote the unknown integrals of $S \mathbf{n}^{(j)}$ over various parts of $\partial D^{(j)} \cap U_E$, for $1 \leq j \leq N$. We begin by showing that there exist vectors $\mathbf{\beta}^k$ which are consistent with (6.34). This is done first for a simple, three disk network and it is generalized later to N disks. Then, we construct S on $\partial D^{(j)} \cap U_E$, for $1 \leq j \leq N$, so the integral of $S \mathbf{n}^{(j)}$, over the kth complementary arc, is equal to $\mathbf{\beta}^k$, for all k.

Part I: A simple, three disk network

To simplify the presentation, let us begin by considering a simple three disk network, as shown in Figure 8, where there are three connected regions C_1, C_2 and C_3 of diffuse flow. The unknown integrals of $S \mathbf{n}$ over the complementary arcs in $\partial D^{(j)} \cap U_E$, for $j = 1, 2, 3$, are denote by $\mathbf{\beta}^k$, $1 \leq k \leq 8$ (see Figure 9). We also let \mathbf{F}^k, and \mathbf{B}^k, for $1 \leq k \leq 5$, be the known integrals of $S \mathbf{n}$ over the parts of $\partial D^{(j)} \cap \bar{U}_{\Pi}$, and the lateral segments of the gaps, respectively (see Figure 10 and recall Proposition 6.3). Finally, for connected components C_1 and C_3, we need $S \mathbf{n}$ on the exterior boundaries $\partial \Omega \setminus \bar{U}_{\Pi}$ of the domain. On the vertical segments of the external boundary, we set $S = 0$ and on the horizontal segments, we let S be constant. Letting \mathbf{D}^1 and \mathbf{D}^2
be the net traction over $\partial C_3 \cap \partial \Omega$ and $\partial C_1 \cap \partial \Omega$, respectively, we can now write equations (6.34) as follows:

$$F^1 + D^1 + F^5 + D^2 = 0,$$

(6.35)

$$\beta^1 + \beta^2 + \beta^3 = Q^1, \quad Q^1 = -F^2 - F^4 + F^1,$$

$$\beta^4 + \beta^5 = Q^2, \quad \text{where } Q^2 = -F^3 + F^2,$$

$$\beta^6 + \beta^7 + \beta^8 = Q^3, \quad Q^3 = F^3 + F^4 + F^5,$$

(6.36)

and

$$\beta^2 + \beta^4 + \beta^6 = Q^4, \quad Q^4 = -B^1 - B^2 - B^3 - B^5 - D^1,$$

$$\beta^3 + \beta^5 + \beta^8 = Q^5, \quad \text{where } Q^5 = -B^4 + B^2 + B^3,$$

$$\beta^1 + \beta^7 = Q^6, \quad Q^6 = B^1 + B^4 + B^5 - D^2.$$

(6.37)

We now have an underdetermined system of six vectorial equations (6.36), (6.37), with eight unknown vectors β^k, for $1 \leq k \leq 8$, with right hand sides satisfying constraint (6.35).

Proposition 6.4. There exist solutions of the linear system of equations (6.36), (6.37). Proof. Note that the vector system (6.36), (6.37) is equivalent to two scalar systems, with the same matrix, for the components of β^j. It is therefore sufficient to prove the proposition for any one of the two scalar system. The matrix A is

$$A = \begin{pmatrix}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{pmatrix},$$

(6.38)

and we denote its rows by a_j, for $1 \leq j \leq 6$. We call the first three rows in A disk-rows, or simply d-rows, and the last three rows c-rows (in reference to the connected components C_j). We observe that each arc in $\partial D^{(j)} \cap \overline{U_E}$ belongs to exactly one disk and one connected component and thus, exactly two entries in each column are equal to 1. Moreover, matrix A possesses the following "two ones" property: one of these unit entries appears in a d-row, and another one in a c-row.

Next, we show that each equation in (6.36), (6.37) is a linear combination of the other five. Indeed, summing up, first the equations in (6.36), and then, the equations in (6.37), we obtain

$$\sum_{j=1}^{8} \beta^j = F_1 + F_5 \quad \text{and} \quad \sum_{j=1}^{8} \beta^j = -(D_1 + D_2),$$

respectively. These equations are consistent, by (6.35), which gives $F_1 + F_5 = -(D_1 + D_2)$, and the rows of A are clearly linearly dependent.

Let us then eliminate one equation, say, the first one, from the original system of equations, and show that the reduced system is solvable. Let A_R be the matrix of the reduced system. The rows of A_R are a_j with $2 \leq j \leq 6$. We show next that the rows of A_R are linearly independent (i.e. rank$A_R = 5$) and then, the existence of solutions follows from standard linear algebra.

Arguing by contradiction, suppose that there exists a k, between 2 and 6, such that a_k is a linear combination of a_p, for $2 \leq p \leq 6, \ p \neq k$. Explicitly, we have

$$a_k = \sum_{m=2, m \neq k}^{6} \lambda_m a_m,$$

(6.39)

where not all λ_m are zero. By the two ones property, three rows a_4, a_5, a_6 have a unit entry at a column where all other rows of A_R have zeros. Take for example row a_4. It has a unit entry in column 2 whereas the other four remaining rows $a_j, 2 \leq j \leq 6, j \neq 4$, have zeros in this column. Hence, (6.39) implies that
\[k \neq 4. \] The same argument shows that \(k \neq 5, k \neq 6. \) When \(k = 2 \) or 3, direct inspection of the first column of \(A_R \) shows that \(\lambda_0 \) from (6.39) is zero. Similarly we obtain \(\lambda_4 = \lambda_5 = 0. \) Then (6.39) reduces to \(a_2 = \lambda a_3 \) which is impossible since \(a_2 \) and \(a_3 \) are linearly independent. \(\square \)

Part II: A general, \(N \) disk network with \(M \) connected components

Analogous to (6.36), we write the momentum balance equations on the boundary of each disk \(D^{(j)} \), for \(1 \leq j \leq N \). We call these equations \(d \)-equations. Furthermore, analogous to (6.37), we write the equations for each connected component \(C_p \), \(1 \leq p \leq M \), where \(M \geq N \). These are referred to as \(c \)-equations. As above, we consider the scalar system of \(N + M \) equations, for the components of unknown vectors \(\beta^p \), \(1 \leq p \leq P \) \((P = 8 \) in the example with three disks). This linear system is referred to as the \(d \)-system. Similar to the case of 3 disks, the right hand side of the system involves integrals of \(S \) over parts of \(\partial \Omega \) which do not belong to gaps. We assume that \(S \) is extended to the external boundary \(\partial \Omega \) so that condition \(\int_{\partial \Omega} Sn \, ds = 0 \) holds.

The solvability of the \(d \)-system is determined by matrix \(A \), which has \(M + N \) rows \(a_i \), \(i = 1, \ldots, M + N \), and \(P \) columns. The rows of \(A \) which correspond to \(d \)-equations are called \(d \)-rows, and the remaining ones are called \(c \)-rows. The entries of \(A \) are again, either zero or one. Since each complementary arc in \(\partial D^{(j)} \cap \overline{U_F} \) belongs to exactly one disk and one connected component, we observe that, in each column of \(A \), exactly two entries are equal to 1. One of these entries appears in a \(d \)-row, and the other in a \(c \)-row (\(A \) has the "two ones" property).

In what follows, we recall from section 3.1 that network \(\Gamma \) is a Delaunay graph corresponding to a Voronoi tessellation of \(\Omega \). We restrict our attention to the case of large \(N \) (for technical reasons it is sufficient to have \(N \geq 3 \)) and we consider only Voronoi tessellations with at least one Voronoi cell being strictly inside \(\Omega \). We also make use of Properties 3.1-3.3 of \(\Gamma \) (see section 3.1).

Theorem 6.5. The \(d \)-system has a solution. *Proof.* First, we show that the \(d \)-system is underdetermined (i.e. \(P > M + N \)). Indeed, by Property 3.2, at least two edges of \(\Gamma \) originate from each interior vertex, (which is the center of some disk \(D^{(i)} \)). Then, \(P \geq 2N \). Next, by Property 3.3, there exists a closed path which consists of interior edges. Therefore, there exists a connected component \(C_j \), with its closure disjoint from \(\partial \Omega \) and, as such, there are at least three edges and three arcs in \(\partial C_j \). If the connected component would contain parts of \(\partial \Omega \), there would be at least two arcs in its boundary. Thus \(^5\) \(2M < P \) and, since \(P \geq 2N \), \(P > M + N \). \(\square \)

Next, we show that matrix \(A \) of the \(d \)-system has linearly dependent rows. Indeed, similar to the case of three disks, we have that the sum of the \(d \)-equations is equal to the sum of \(k \)-equations. Then, we eliminate the first equation in the \(d \)-system and we denote by \(A_R \) the reduced \((M + N - 1) \times P \) matrix. To finish the proof of the theorem, we now show that the reduced system is full rank.

Lemma 6.6. The rank of \(A_R \) is \(M + N - 1 \). *Proof.* We argue by contradiction. Assume that the rows of \(A_R \) are linearly dependent, that is for some \(k > 1 \),

\[
a_k = \sum_{m \neq k, m=2}^{M+N} \lambda_m a_m, \tag{6.40}
\]

where at least one \(\lambda_m \) is nonzero. We take the following strategy: Introduce a multi-step procedure, where on each consecutive step \(l \), we have a set \(X_l \) of \(d \)-rows and a set \(Y_l \) of \(c \)-rows and we show that the rows from \(X_l \cup Y_l \) cannot appear on the left hand side of (6.40). Furthermore, we show that, if either of these rows are present in the right hand side of (6.40), then the coefficients \(\lambda_m \) in front of these rows in (6.40) must be zero. The process is stopped after \(L \) steps, when either all \(d \)-rows are included in \(\bigcup_{l=1}^{L} X_l \), or all \(c \)-rows belong to \(\bigcup_{l=1}^{L} Y_l \). At that point, (6.40) contains only \(d \)-rows (or only \(c \)-rows). Then, the lemma follows from the linear independence of the \(d \)-rows and \((c \)-rows), respectively.

Before giving the multi-step procedure, let us introduce some notation: Given a collection \(S = \{D^{(i_1)}, D^{(i_2)}, \ldots D^{(i_k)}\} \) of disks, denote by \(C(S) \) the set of all connected components of \(\Omega_F \setminus \Omega_\Pi \), adjacent to a disk in \(S \). Also, given a collection \(Q \) of connected components \(C_j \), denote by \(D(Q) \) the set of all disks having an arc in common with the boundary of an element of \(Q \). Moreover, since there is a one-to-one correspondence between a disk

\(^5\)Note that, in fact, for large \(N \), and \(M \), we have \(P > 3M - O(1) \) as \(M \to \infty \).
and a d-row, use X_l to denote both the sets of disks and the corresponding sets of d-rows. Similarly, use the same notation for the set Y_l of connected components and the corresponding set of c-rows.

The multi-step procedure is:

Step 1: Set $X_1 = D^{(1)}$ and $Y_1 = C(X_1)$. The set Y_1 consists of all connected components adjacent to $D^{(1)}$. We also identify X_1 with the d-row a_1. Recall that X_1 is eliminated in the above reduction. The two ones property implies that, for each $a_j \in Y_1$, there is a column of A_R with the only non-zero entry belonging to row a_j. This is the "single one" property and it follows from the two ones property, after the elimination of X_1. This shows that if $a_k \in Y_1$, it cannot appear in the left hand side of (6.40) and so, it appears in the right hand side of (6.40), with coefficient $\lambda^k = 0$.

Step 2: Let $X_2 = D(Y_1) \setminus X_1$ and observe that X_2 consists of all disks, except $D^{(1)}$, which have a part of the boundary in common with one of the connected components in Y_1. Then, define $Y_2 = C(X_2) \setminus Y_1$. The elements of Y_2 are connected components, which do not belong to Y_1, and whose boundary intersects the boundary of some disk from X_2. Again, none of the vectors in $X_2 \cup Y_2$ can be in the left hand side of (6.40), and so, they must be in the right hand side of (6.40), with corresponding coefficients λ^m equal to zero.

Step 3: define Y_l, X_l recursively by

$$X_l = D(Y_{l-1}) \setminus X_{l-1}, \quad Y_l = C(X_l) \setminus Y_{l-1}.$$

The elements of X_l are disks which do not belong to X_{l-1} and whose boundary intersects the boundary of some connected component in Y_{l-1}. The set Y_l consists of the connected components which do not belong to Y_{l-1}, and whose boundary intersects the boundary of some disk in X_l. Repeating the argument used in the previous step we show that all corresponding λ_m must be zero.

By Property 3.2 of graph Γ, sets Y_l and X_l are nonempty, unless for some $L, Y_{L-1} = Y_L = \Omega_0 \setminus U_1$, or $X_L = X_{L-1} = \{D^{(1)}, \ldots, D^{(N)}\}$. Then, we stop the process and we note that the rows remaining in (6.40) are either all d-rows or all c-rows. By the two ones property, we obtain that if a d-row has a unit entry in some column, the other d-rows have zeros in the same column. Hence all d-rows are linearly independent. The same reasoning yields linear independence of all c-rows. This means that by the time we stop the process, all vectors possibly remaining in (6.40) are linearly independent, and that the coefficients λ_m in front of these rows must be zero. This finishes the proof of Lemma 6.6 and of Theorem 6.5. □

Remark 6.3. The above iterative procedure can be illustrated as follows: Remove a disk $D^{(1)}$ from Ω. This disk has adjacent connected components, say three of them, if there are three edges originating from $x^{(1)}$. Remove these connected components. Now, the just removed connected components were adjacent to 3 disks (2^{nd} generation of disks) which are neighbors of $D^{(1)}$. Remove the second generation of disks and consider the remaining connected components (2^{nd} generation of connected components) adjacent to them. Remove the second generation of connected components. The remaining neighbors of 2^{nd} generation disks are called 3^{rd} generation disks. Remove them and consider the remaining connected components adjacent to 3^{rd} generation disks. Continue removing objects from Ω until there is nothing left. Due to the connectedness of the graph (Proposition 3.1), the process does not stop until all the disks and all the connected components are removed.

Part III. Extending S to $\partial D^{(j)} \cap \overline{U_E}$

We wish to define a trial tensor S along the p^{th} complementary arc in $\partial D^{(j)} \cap \overline{U_E}$, such that its integral is equal to β^p, for some $1 \leq j \leq N$, and for $1 \leq p \leq P$. This ensures that conditions (6.34) hold and the existence of vectors β^p has been proved in Parts I and II. However, the trial stress tensor must also satisfy the balance of angular momentum

$$\int_{\partial D^{(j)}} \mathbf{n}^{(j)} \times S \mathbf{n}^{(j)} \, ds = 0, \quad (6.41)$$

for all $1 \leq j \leq N$. Let us then focus attention on one disk, say $D^{(j)}$, of radius a_j, centered at $x^{(j)}$. At $\partial D^{(j)}$, $x = x^{(j)} + a_j \mathbf{n}^{(j)}$, so we rewrite (6.41) as

$$x_0 \times \int_{\partial D^{(j)}} S \mathbf{n}^{(j)} \, ds + a_j \int_{\partial D^{(j)}} \mathbf{n}^{(j)} \times S \mathbf{n}^{(j)} \, ds = 0.$$
Due to (6.34), the first integral is zero, and (6.41) reduces to

\[
\int_{\partial D^{(j)}} \mathbf{n}^{(j)} \times \mathbf{S} \mathbf{n}^{(j)} \, ds = 0.
\]

Let \(\mathbf{\tau} \) be the tangent unit vector at \(\partial D^{(j)} \), pointing in the clockwise direction. Since \(\mathbf{S} \mathbf{n}^{(j)} = (\mathbf{S} \mathbf{n}^{(j)} \cdot \mathbf{\tau}) \mathbf{\tau} + (\mathbf{S} \mathbf{n}^{(j)} \cdot \mathbf{n}^{(j)}) \mathbf{n}^{(j)} \) and \(\mathbf{n}^{(j)} \cdot \mathbf{\tau} = 0 \), we have

\[
0 = \int_{\partial D^{(j)}} \mathbf{n}^{(j)} \times \mathbf{S} \mathbf{n}^{(j)} \, ds = k \int_{\partial D^{(j)}} \mathbf{S} \mathbf{n}^{(j)} \cdot \mathbf{\tau} \, ds,
\]

where \(k = \mathbf{n}^{(j)}(x) \times \mathbf{\tau}(x) \) is a constant (independent of \(x \)) unit vector, orthogonal to the two dimensional plane, and pointing into it. Therefore, any tensor \(\mathbf{S} \) obeying the balance of angular momentum (6.41), satisfies

\[
\int_{\partial D^{(j)} \cap \overline{U_E}} \mathbf{S} \mathbf{n}^{(j)} \cdot \mathbf{\tau} \, ds = -\int_{\partial D^{(j)} \cap \overline{U_E}} (\mathbf{S} \mathbf{n}^{(j)} \cdot \mathbf{\tau}) \, ds.
\] \hspace{1cm} (6.42)

Now, since \(\mathbf{S} \) is already defined in \(U_\Pi \), we estimate the integral in the right hand side of (6.42): In the local coordinates of gap \(\Pi^{ij} \), a complementary arc in \(\partial D^{(j)} \cap \overline{U_E} \) is given by equation \(f(x_1, x_2) = x_2 - \delta^{ij}/2 - a_j + \sqrt{a_j^2 - x_1^2} = 0 \). Then

\[
\mathbf{n}^{(j)} = \frac{1}{a_j} \left(-\left(a_j^2 - x_1^2 \right)^{1/2} \right), \quad \mathbf{\tau} = \frac{1}{a_j} \left(\left(a_j^2 - x_1^2 \right)^{1/2} \right). \] \hspace{1cm} (6.43)

Using the explicit expression of \(\mathbf{S} \) from section 6.2.2 and Lemma 6.2, we obtain

\[
\int_{\partial D^{(j)} \cap \overline{U_E}} \mu \mathbf{E}(\mathbf{u}) \mathbf{n}^{(j)} \cdot \mathbf{\tau} \, ds = O \left(\sqrt{\frac{\mu}{\delta^{ij}}} \right), \] \hspace{1cm} (6.44)

and

\[
\int_{\partial D^{(j)} \cap \overline{U_E}} \mathbf{K} \mathbf{n}^{(j)} \cdot \mathbf{\tau} \, ds = O(1). \] \hspace{1cm} (6.45)

Let \(\mathcal{A}_{\Pi^{ij}} \) be a complementary arc from \(\partial D^{(j)} \cap \overline{U_E} \), adjacent to gap \(\Pi^{ij} \) and oriented in the clockwise direction. We wish to construct tensor \(\mathbf{S} \) on \(\mathcal{A}_{\Pi^{ij}} \) so that

\[
\int_{\mathcal{A}_{\Pi^{ij}}} \mathbf{S} \mathbf{n}^{(j)} \, ds = \beta, \] \hspace{1cm} (6.46)

and

\[
\int_{\mathcal{A}_{\Pi^{ij}}} \mathbf{S} \mathbf{n}^{(j)} \cdot \mathbf{\tau} \, ds = -\rho. \] \hspace{1cm} (6.47)

Here, \(\beta \) is found by solving the \(d-c \)-system, and \(\rho \) stands for the sum of the integrals in (6.44), (6.45). Parameterize \(\mathcal{A}_{\Pi^{ij}} \) as follows:

\[
\mathcal{A}_{\Pi^{ij}} = \left\{ (x_1, x_2) \in \partial D^{(j)} : x_1 = a_j \cos t, x_2 = a_j \sin t, \ t \in [0, \alpha] \right\}. \] \hspace{1cm} (6.48)

Then, we rewrite (6.46), (6.47) as

\[
a \int_{0}^{\alpha} (S_{11}(t) \cos t - S_{12} \sin t) \, dt = \beta_1, \] \hspace{1cm} (6.49)

\[
a_j \int_{0}^{\alpha} (S_{12}(t) \cos t - S_{22} \sin t) \, dt = \beta_2, \]
Thus, unless the symmetry of \(\Pi \) functions obtained in each gaps is complete. Finally, all cases of \(M \) singular can be eliminated. Indeed, \(\alpha = 0 \) is discarded by the observation that it implies an empty \(A_{I^{(i)}} \). The other cases, \(\alpha = \pi/2 \) or \(\pi \), can also be avoided by modifying the length of \(A_{I^{(i)}} \), i.e., by changing slightly the widths of gaps \(\Pi^{(j)} \) adjacent to \(A_{I^{(i)}} \).

6.2.4. Extension of \(S \) in the set \(U_E \) of connected components. The goal of this section is to extend \(S \) outside the gaps, in such a way that the global dissipation rate in \(U_E \) is much smaller than \(O(\delta^{-3/2}) \). First, we show that the components of the extended \(S \), at complementary arcs \(A_{I^{(i)}} \in \partial D^{(j)} \) (see section 6.2.3), for \(1 \leq j \leq N \) and \(i \in N_j \), are bounded, pointwise, by \(C_{kl}\delta^{-1/2} \). Then, we consider the extension of \(S \), from \(A^+ = U_\Pi \cap \partial \Omega^+ \) and \(A^- = U_\Pi \cap \partial \Omega^- \) (the parts of \(\partial \Omega^\pm \) which are included in gaps) to the whole \(\partial \Omega \) and we prove the pointwise estimate \(|S_{kl}| \leq C_{kl}\delta^{-1/2} \), for \(k,l = 1,2 \). Finally, we extend \(S \) in the interior of \(U_E \) and we show that the dissipation rate there is at most \(O(\delta^{-1}) \). Once this is done, the first three steps in the outline of section 6.2.1 would be completed. The fourth step in section 6.2.1 is accomplished in section 6.2.6, where we give the main theorem of the paper.

Part I: Estimates on the boundaries of the disks

To prove the desired pointwise estimates of the components of \(S \), at \(\partial D^{(i)} \), for \(1 \leq i \leq N \), we need the following proposition:

Proposition 6.7. For each disk \(D^{(i)} \), we have

\[
\sum_{j \in N_i} \int_{\partial D^{(i)} \cap \Pi} S_n^{(i)} ds = O(\delta^{-1/2}), \quad \text{for } i = 1, \ldots, N.
\]

This proposition states that, if we fix a disk \(D^{(i)} \) and we consider the forces that act on each arc in \(\partial D^{(i)} \cap \Pi \), then the sum of these forces over all the arcs is \(O(\delta^{-1/2}) \), whereas the force on each disk may be of order \(\delta^{-3/2} \). Thus, we have a cancellation of terms, which is due to the fact that the forces depend on translation velocities \(\mathbf{T}^{(i)} \), the solutions of network equations (6.2). This is yet another manifestation of the global nature of the lower bound construction, which cannot be obtained by simply patching together trial functions obtained in each gaps \(\Pi^{(j)} \).

Proof of Proposition 6.7: Fix a gap \(\Pi^{(j)} \) which joins disks \(D^{(i)} \) and \(D^{(j)} \) and use (6.22) to calculate

\[
\int_{\Pi^{(j)}} (\mu \nabla u - \nabla P) \cdot \mathbf{u} dx = \int_{\Pi^{(j)}} \text{div} (2\mu \mathcal{E}(u) - P T) \cdot \mathbf{u} dx,
\]

where \(\mathbf{u} \) is defined by (6.6). The approximate pressure \(P \) is defined by (6.23). Integrating by parts, using the symmetry of \(\mathcal{E} \) and the incompressibility of \(\mathbf{u} \), we have

\[
\int_{\Pi^{(j)}} (\mu \nabla u - \nabla P) \cdot \mathbf{u} dx = -2\mu \int_{\Pi^{(j)}} \mathcal{E}(u) \cdot \mathbf{u} dx + \int_{\partial \Pi^{(j)}} S_{ij} n \cdot \mathbf{u} ds.
\]

Finally, we extend \(S \) in the interior of \(U_E \) and we show that the dissipation rate there is at most \(O(\delta^{-1}) \). Once this is done, the first three steps in the outline of section 6.2.1 would be completed. The fourth step in section 6.2.1 is accomplished in section 6.2.6, where we give the main theorem of the paper.
Recall that $\mu \Delta u - \nabla P = \text{div} \, S_0 = \text{div} \, K$, where K is the compensating tensor defined in (6.25). Write $S_0 = S + K$ and integrate by parts to obtain

$$2\mu \int_{\Omega} \mathcal{E}(u) \cdot \mathcal{E}(u) dx = \int_{\partial \Omega} S \cdot u d\Gamma + \int_{\Omega} K \cdot \mathcal{E}(u) dx. \quad (6.52)$$

In section 6.1, we have shown that $\int_{\Omega} K \cdot \mathcal{E}(u) dx = O(\delta^{-1/2})$. Then, rewrite the first integral in the right hand side of (6.52) as

$$\int_{\partial \Omega} S \cdot u ds = \int_{\partial D^{(i)} \cap \partial \Omega} S^{(i)} \cdot u ds + \int_{\partial D^{(j)} \cap \partial \Omega} S^{(j)} \cdot u ds + \int_{\partial \Omega \setminus \partial \Omega^i} S \cdot u ds =$$

$$\int_{\partial D^{(i)} \cap \partial \Omega} S^{(i)} \cdot T^{(i)} ds + \int_{\partial D^{(j)} \cap \partial \Omega} S^{(j)} \cdot T^{(j)} ds + \int_{\partial \Omega \setminus \partial \Omega^i} S \cdot u ds +$$

$$\int_{\partial D^{(i)} \cap \partial \Omega} S^{(i)} \cdot (u - T^{(i)}) ds + \int_{\partial D^{(j)} \cap \partial \Omega} S^{(j)} \cdot (u - T^{(j)}) ds.$$

However, by Proposition 6.3, we have

$$\int_{\partial D^{(i)} \cap \partial \Omega} S^{(i)} \cdot u ds = - \int_{\partial D^{(j)} \cap \partial \Omega} S^{(j)} \cdot u ds$$

and, using the constructed S and u (see sections 6.1 and 6.2.2) and Lemma 6.2, gives

$$\int_{\partial \Omega} S \cdot u ds = (T^{(i)} - T^{(j)}) \cdot \int_{\partial D^{(i)} \cap \partial \Omega} S^{(i)} ds + O(\delta^{-1/2}).$$

Finally, combining this with (6.52) yields

$$W_{\Omega^i}(u) = \frac{1}{2} (T^{(i)} - T^{(j)}) \cdot \int_{\partial D^{(i)} \cap \partial \Omega} S^{(i)} ds + O(\delta^{-1/2}). \quad (6.53)$$

Next, recall that $W_{\Omega^i}(u)$ in the left hand side of (6.53) is a quadratic form in $T^{(i)} - T^{(j)}$, for $i = 1, \ldots, N$ and $j \in N_i$ (see section 6.1). Denote the matrix of this quadratic form by $A(\delta)$. From the definition (6.6) of u, it follows that S is a linear function of $T^i - T^j$, so we write

$$\frac{1}{2} \int_{\partial D^{(i)} \cap \partial \Omega} S^{(i)} ds = B(\delta)(T^{(i)} - T^{(j)}), \quad (6.54)$$

where the matrix $B(\delta)$ is independent of T^i, T^j. Then, the first term in the right hand side of (6.53) is a quadratic form in $T^{(i)} - T^{(j)}$. Replacing the terms in (6.53) with the corresponding quadratic forms we obtain

$$(T^{(i)} - T^{(j)}) \cdot A(\delta)(T^{(i)} - T^{(j)}) = (T^{(i)} - T^{(j)}) \cdot B(\delta)(T^{(i)} - T^{(j)}) + O(\delta^{-1/2}). \quad (6.55)$$

Summing up over all disks $D^{(i)}, i = 1, \ldots, N$ and then differentiating with respect to the components of a fixed vector $T^{(i)}$, we have

$$\sum_{j \in N_i} A(\delta)(T^{(i)} - T^{(j)}) = \sum_{j \in N_i} B(\delta)(T^{(i)} - T^{(j)}) + O(\delta^{-1/2}), \quad (6.56)$$

for each disk $D^{(i)}, i = 1, \ldots, N$. However, by the network equations (6.2), the left hand side in (6.56) is zero and so,

$$0 = \sum_{j=1}^{J_i} B(\delta)(T^i - T^j) + O(\delta^{-1/2}).$$
This completes the proof of Proposition 6.7. □

Part II: Controlled extension of S to $\partial \Omega$

In this step, we deal with the extension of S from A^\pm, to $\partial \Omega$.

Proposition 6.8.

$$\int_{A^+} S_n \, ds + \int_{A^-} S_n \, ds = O(\delta^{-1/2}).$$

Proof. Since S is divergence-free in each gap Π_{ij}, we have

$$\sum_{ij} \int_{\partial \Pi_{ij}} S_n \, ds = 0,$$

where the sum is taken over all gaps. If a gap is connected to $\partial \Omega$, its boundary consists of a segment from A^+ or A^-, an arc which belongs to one of the disks, and two lateral segments. The boundary of an interior gap contains two disk arcs and two lateral segments. By Proposition 6.3, the sum of the integrals over the lateral parts of $\partial \Pi_{ij}$ is zero. Thus (6.57) reduces to

$$\int_{A^+ \cup A^-} S_n \, ds + \sum_{j=1}^N \int_{\partial D(j) \cap U} S_n \, ds = 0,$$

where the sum is taken over all disks. By Proposition 6.7,

$$\sum_{j=1}^N \int_{\partial D(j) \cap U} S_n \, ds = O(\delta^{-1/2}),$$

and Proposition 6.8 follows. □

To obtain pointwise estimates on the complementary arcs, we restrict our attention to the example of a three-disk network from section 6.2.3, Figure 8, and to the corresponding algebraic system (6.36), (6.37). Generalizing our arguments, to the general case of N disks, is straightforward.

Let us denote the vector $F^1 + F^2$ by $-P$. By Proposition 6.8, $P = O(\delta^{-1/2})$. Define $S = 0$ on the lateral part of $\partial \Omega$. On $\partial \Omega \setminus A^+$ (or $\partial \Omega \setminus A^-$), we choose the constant components $S_{11} = 0$,

$$S_{12} = \pm \frac{1}{2} \frac{P_1}{|\partial \Omega \setminus A^+|}, \quad S_{22} = \pm \frac{1}{2} \frac{P_2}{|\partial \Omega \setminus A^-|},$$

where $|\cdot|$ denotes the length of a curve. Then

$$\int_{\partial \Omega \setminus A^+} S_n \, ds = \int_{\partial \Omega \setminus A^-} S_n \, ds = \frac{1}{2} P, \quad \int_{\partial \Omega} S_n \, ds = 0,$$

and

$$\sup_{\partial \Omega \setminus (A^+ \cup A^-)} |S_{kl}| \leq c_{kl} \delta^{-1/2}, \quad k, l = 1, 2$$

with c_{kl} independent of δ. Thus, we can define S on $\partial \Omega \setminus (A^+ \cup A^-)$ so that (6.35) is satisfied and

$$D^1 = O(\delta^{-1/2}), \quad D^1 = O(\delta^{-1/2}).$$

From the definitions of $u, P, \text{ and } S$, it follows that $|S_{kl}|$ are pointwise bounded independent of δ on the lateral parts of the gap boundaries. Hence,

$$B^j = O(1), \quad \text{for } 1 \leq j \leq 4.$$
Moreover, by Proposition 6.7,

\[-F^1 + F^3 + F^4 = O(\delta^{1/2}), \quad -F^2 + F^3 = O(\delta^{1/2}), \quad -F^4 - F^3 - F^5 = O(\delta^{1/2}) \quad (6.61)\]

and, combining (6.59)-(6.61) we see that the components of the right hand side of the algebraic system (6.36), (6.37) are bounded by $c\delta^{-1/2}$ with c independent of δ. Since the matrix of this algebraic system is independent of δ, as well, we can choose a solution of (6.36), (6.37) so that all its components are bounded by $c\delta^{-1/2}$ with c independent of δ. This means that for each complementary arc in $\partial D^{(j)} \cap \partial U_E$, $1 \leq j \leq 8$, \[\int_{\partial D^{(j)} \cap \partial U_E} S \mathbf{n} ds = O(\delta^{-1/2}).\] The latter implies that the right hand side of algebraic system (6.50) is bounded by $c\delta^{-1/2}$ and, since matrix M is independent of δ and invertible, we can find a stress field S at the boundaries of the disks, which is bounded by $c\delta^{-1/2}$ with c independent of δ. Then, for each complementary arc, we have

\[\sup_{\partial D^{(j)} \cap \partial U_E} |S_{kl}| \leq c_j \delta^{-1/2}, \quad 1 \leq j \leq N, \quad (6.62)\]

with c_j independent of δ.

The boundary of each connected component C_j of U_E consists of complementary arcs, pieces of the external boundary $\partial \Omega$ and lateral parts of gap boundaries. Thus the estimates (6.58), (6.62) and the uniform estimates on the lateral segments yield:

Proposition 6.9. For each connected component C_j of U_E we have

\[\sup_{\partial C_j} |S_{kl}| \leq c_j \delta^{-1/2}, \quad k, l = 1, 2,\]

with c_j independent of δ.

PART III: Extension from the boundary, to the connected components

Now, S is defined on the boundary of each connected component C_j of $U_E = \Omega_F \setminus U_\Pi$. Moreover, we have

\[\int_{\partial C_j} S \mathbf{n} ds = 0 \quad (6.63)\]

and

\[\sup_{\partial C_j} |S(\mathbf{x})| \leq c \delta^{-1/2} \quad (6.64)\]

with c independent of δ. Next, we construct a divergence free extension of S, from ∂U_E to U_E.

Proposition 6.10. Let $C_j \subset U_E$ be a connected component, and let \mathbf{S} be the trial tensor defined on ∂C_j, satisfying (6.63), (6.64). Then, there exists an extension $\hat{\mathbf{S}} \in L^2(C_j)$ in C_j such that $\text{div} \hat{\mathbf{S}} = 0$ in C_j, $\hat{\mathbf{S}} = S$ on ∂C_j and

\[\int_{C_j} \hat{\mathbf{S}} \cdot \hat{\mathbf{S}} ds \leq c \delta^{-1},\]

with c independent of δ. The proof is given in Appendix C. The techniques are similar to those used in Section 5.2.

6.2.5. Estimates of the dual dissipation functional in the gaps. In our proof of the main theorem of the paper, (see section 6.2.6), we shall use the following estimate:

Proposition 6.11. Let \mathbf{u} be defined by (6.6) and let \mathbf{S} be the trial tensor defined by (6.17), (6.23)-(6.25). Then

\[W^*_{Un}(\mathbf{S}) = W^*_{Un}(\mathbf{u}) + O(\delta^{-1/2}). \quad (6.65)\]
Lemma 6.2. These calculations, already carried out in the proof of Proposition 6.31, show that the second integral in the definition of E_2 is estimated using the explicit expressions of K and $E(u)$ and then, by applying Lemma 6.2. These calculations, already carried out in the proof of Proposition 6.31, show that the second integral in the right hand side of (6.66) is $O(\delta^{-1/2})$. Summing up over all gaps we have
\[
\int_{\partial U} \mathbf{S} \cdot \mathbf{u} \, ds = 2W_{U}(\mathbf{u}) + O(\delta^{-1/2}).
\] (6.67)

Since ∂U is a union of circular arcs, lateral segments which belong to the gap boundaries, and a set $(\partial Q \cap \partial U) \subset \partial Q$, we write
\[
\int_{\partial U} \mathbf{g} \cdot \mathbf{S} \, ds = \int_{\partial U} \mathbf{u} \cdot \mathbf{S} \, ds - \sum_{j=1}^{N} T^{(j)} \cdot \int_{\partial D^{(j)} \cap \mathbf{T} \, \mathbf{S} \, ds - \int_{\partial U \setminus (\cup_{j} \partial D^{(j)})} \mathbf{u} \cdot \mathbf{S} \, ds + O(\delta^{-1/2}).
\] (6.68)

Here, we use the same technique that gave (6.53), from (6.52). By Proposition 6.7, the sum of the second and third terms in the right hand side of (6.68) is $O(\delta^{-1/2})$. Hence,
\[
\int_{\partial U} \mathbf{g} \cdot \mathbf{S} \, ds = \int_{\partial U} \mathbf{u} \cdot \mathbf{S} \, ds + O(\delta^{-1/2}).
\] (6.69)

Combining (6.67) and (6.69), we obtain
\[
\int_{\partial U} \mathbf{g} \cdot \mathbf{S} \, ds = 2W_{U}(\mathbf{u}) + O(\delta^{-1/2}).
\] (6.70)

Finally, to estimate the second integral in the definition of W_{U}, we apply Proposition 6.31 and we sum up over all gaps:
\[
\int_{U} F(S)\, dx = W_{U}(\mathbf{u}) + O(\delta^{-1/2}).
\] (6.71)

The estimate (6.65) follows from (6.70) and (6.71). \Box

We remark here that construction of lower bound which accounts for rotations (with the error term $O(1)$) requires developing more sophisticated techniques even for periodic densely packed arrays, and will be addressed elsewhere.

6.2.6. The main theorems. The trial field for the upper bound (6.7) is constructed by patching up the local approximate solutions (6.6), which depend on the translational particle velocities $T^{(i)}$, $i = 1, \ldots, N$ minimizing the quadratic functional
\[
Q = \sum_{i=1}^{N} \sum_{j < k, j \in N_i} \left\{ \left[\frac{3\pi}{4} \left(\frac{a}{\sqrt{\gamma}} \right)^2 + \frac{27\pi}{10} \frac{a}{\sqrt{\gamma}} \right] \left[(T^{(i)} - T^{(j)}) \cdot q^{(i)} \right]^2 + \frac{3\pi}{2} \frac{a}{\sqrt{\gamma}} \left[(T^{(i)} - T^{(j)}) \cdot p^{(i)} \right]^2 \right\}
+ \sum_{i \in B} \left\{ \left[\frac{3\pi}{4} \left(\frac{2a}{\sqrt{\gamma}} \right)^2 + \frac{27\pi}{10} \frac{2a}{\sqrt{\gamma}} \right] \left[(T^{(i)} - g) \cdot q^{(i)} \right]^2 + \frac{3\pi}{2} \frac{2a}{\sqrt{\gamma}} \left[(T^{(i)} - g) \cdot p^{(i)} \right]^2 \right\},
\] (6.72)

In this section we introduce the corresponding dissipation rate
\[
E_2 = \min_{T^{(i)}} Q(T^{(i)}_{\min}, i = 1, \ldots, N).
\] (6.73)
By Proposition 6.1, the minimizing collection of vectors $T_{\min}^{(i)}$ (solving the system (6.2)) is unique.

Since the error terms appearing in the construction of the lower bound are of order δ^{-1} (recall Proposition 6.10), we need to make sure that $E_2 \geq c\delta^{-3/2}$ with c independent of δ. So far, we know from the upper bound in section 6.1 that, if $(T^{(i)} - T^{(j)})_2 \neq 0$, the local dissipation rate in each gap Π^{ij} blows up as $\delta^{-3/2}$. Otherwise, the rate of growth is at most $\delta^{-1/2}$. The vectors $T_{\min}^{(i)}$ are solutions of a (large) system of network equations (6.2) and, until these are solved, we cannot say whether the quantities $\langle (T_{\min}^{(i)} - T_{\min}^{(j)}) \cdot q^{ij} \rangle_2^2$ vanish as $\delta \to 0$. That is, we cannot determine the global rate of blow up of E_2, as $\delta \to 0$. In the scalar case of electrical conduction, it has been shown in [6] that, for all connected graphs, the total energy blows up at the same rate as the energy in each gap. In the vectorial case considered here, connectivity is not sufficient to ensure the analogous property. The global rate of blow up depends on other geometrical characteristics of a connected graph (e.g., the coordination number, see [8] for details).

The functional Q depends on the interparticle distances $\delta^{ij} = \delta d^{ij}$, where the rescaled distances d^{ij} do not depend on δ, and $0 < c \leq d^{ij} \leq 1$ for all pairs of neighboring disks. To study asymptotic behavior of Q as $\delta \to 0$ we factor out the powers of δ and write

$$Q(T^{(1)}, \ldots, T^{(N)}) = \delta^{-3/2} \tilde{Q}(T^{(1)}, \ldots, T^{(N)}) + \delta^{-1/2}Q'(T^{(1)}, \ldots, T^{(N)}),$$

(6.74)

where the coefficients of Q and Q' do not depend on δ, and

$$\tilde{Q} = \sum_{i=1}^{N} \sum_{j \in X_i} A^{ij} \left[(T^{(i)} - T^{(j)}) \cdot q^{ij} \right]^2 + \sum_{i \in B} A^i \left[(T^{(i)} - g) \cdot q^i \right]^2,$$

(6.75)

with

$$A^{ij} = \frac{3\pi \mu}{4} \left(\frac{a}{d^{ij}} \right)^{\frac{3}{2}}, \quad A^i = \frac{3\pi \mu}{4} \left(\frac{2a}{d^i} \right)^{\frac{3}{2}}.$$

(6.76)

Note that our boundary conditions (2.9) correspond to $g = \pm e_2$ on $\partial\Omega^\pm$ and by Definition 3.3, $q^i = \pm e_2$ on $\partial\Omega^\pm$. We keep the general notation in (6.75) because it may be applied to more general boundary conditions. In this Section we use the rescaled dissipation rate

$$\tilde{E} = \min_{\tilde{T}(i), i = 1, \ldots, N} \tilde{Q},$$

(6.77)

which does not depend on δ, and the corresponding minimizers $\tilde{T}(i), i = 1, \ldots, N$. From (6.72) and (6.74),

$$\delta^{-3/2} \tilde{E} \leq \delta^{-3/2} \tilde{Q}(T_{\min}^{(i)}) \leq E_2 = Q(T_{\min}^{(i)}) \leq Q(\tilde{T}(i)) = \delta^{-3/2} \tilde{E} + \delta^{-1/2}Q'(\tilde{T}(i)).$$

(6.78)

Since Q' and $\tilde{T}(i)$ are independent of δ, (6.78) and (6.73) yield $\delta^{-3/2} \tilde{E} \leq E_2 \leq \delta^{-3/2} \tilde{E} + O(\delta^{-1/2})$ and thus

$$E_2 = \delta^{-3/2} \tilde{E} + O(\delta^{-1/2}).$$

(6.79)

Therefore, the inequality

$$\tilde{E} > 0,$$

(6.80)

would imply $E_2 = O(\delta^{-3/2})$ as $\delta \to 0$, and the leading term of the asymptotics of E_2 would be determined by minimizing the δ-independent functional \tilde{Q}.

In this paper, we consider a mathematical model for uniformly closely packed suspensions. For geometrical arrays of particles which correspond to such suspensions, the inequality (6.80) does hold. The detailed investigation of geometric properties of arrays for which (6.80) does or does not hold under various external boundary conditions, is a subject of a separate investigation carried out in [5]. Here, we only describe one sufficient condition for validity of (6.80), discuss its physical relevance, and present an example which illustrates this condition.
Uniform, closely packed geometries can be modeled by the so-called densely packed quasi-triangular graphs. Roughly speaking, these are graphs such that each particle in the corresponding array has six neighbors, and the interparticle distances are uniformly small. More precisely, a quasi-triangular graph is defined as follows. We start with a graph Γ in Ω such that the interior vertices of Γ are points of the triangular periodic lattice. Then, Γ is obtained by perturbing the locations of the vertices of Γ' in such a way that, if two vertices were neighbors, they would remain neighbors. Moreover, a vertex of Γ' is connected to $\partial\Omega$ if and only if the corresponding vertex of Γ is connected to $\partial\Omega$. More precisely, let Γ denote a network graph, and Γ' be a graph corresponding to a periodic triangular lattice restricted to Ω. We also define K and K' to be (topological) complexes associated with Γ and Γ', respectively. We say that the graph Γ is quasi-triangular if K and K' are combinatorially equivalent (the definition of combinatorial equivalence can be found, for instance, in [28], p.4).

In order to define the close packing condition for such graphs, recall that the interior vertices of Γ' are the centers of disks of radius a and that the corresponding periodic lattice is closely packed if the interparticle distance $\delta = l - 2a \ll 1$, where l denotes the length of an interior edge. For a densely packed quasi-triangular graph, we require that

$$\max_{ij} \delta_{ij} = \max_{ij} (l_{ij} - 2a) \ll 1 \quad (6.81)$$

where the maximum is taken over all pairs of neighbors, and l_{ij} is the length of the corresponding interior edge of Γ.

In [8], we prove that (6.80) holds for a quasi-triangular graph, under the close packing condition. An example of a network satisfying (6.80) is presented in Appendix D.

We now formulate the main theorems.

Theorem 6.12. Let E be the dissipation rate (2.20) which is equal to the effective viscosity $\langle \mu \rangle$, up to a constant normalizing factor (see (2.19)). Then, as $\delta \to 0$,

$$E \leq E_2 + O(1), \quad (6.82)$$

and

$$E_2 + O(\delta^{-1}) \leq E, \quad \text{(6.83)}$$

where E_2 is the minimum of the quadratic form (6.72).

Theorem 6.13. For uniform, closely packed geometries, such that condition (6.80) holds, the rescaled effective viscosity (dissipation rate) E defined by (2.20), has the following asymptotic representation:

$$E = \delta^{-3/2} \hat{E} + O(\delta^{-1}), \quad \text{as } \delta \to 0, \quad (6.84)$$

where \hat{E} is a minimum of the quadratic form \hat{Q} defined by (6.75).

Corollary 6.14. Let $\mu > 0$ be the effective viscosity defined by (2.19), and let the conditions of Theorem 6.13 hold. Then

$$\langle \mu \rangle = \frac{\hat{E}}{\int_{\Omega} \langle E(u^0), E(u^0) \rangle dx} \delta^{-3/2} + O(\delta^{-1}), \quad \text{as } \delta \to 0, \quad (6.85)$$

where u^0 solves the Stokes equation $\Delta u^0 - \nabla P^0 = 0$ in Ω with the boundary conditions (2.9), (2.10).

Proof of the Theorem 6.12. Let us define the trial tensor S in Ω_T as follows. In each gap Π we use formula (6.17), and in each connected component C_i of $U_E = \Omega_T \setminus \cup \Pi$ we let S be an extension from ∂C_i, as given in Proposition 6.10. Note that, through our construction, we have ensured that $S \in \mathcal{F}$ and, as such, it is an admissible trial field for dual variational problem (2.22). Furthermore, let $u \in \mathcal{U}$, defined by (6.6) be the trial function for primal variational problem (2.20).

Let us evaluate the dual functional $W_{\Omega_T}^* (S)$ defined in (6.8), (6.9). Since $Sn = 0$ on $\partial \Omega \setminus (\partial \Omega^+ \cup \partial \Omega^-)$,

$$W_{\Omega_T}^* (S) = \int_{\partial \Omega^+ \cup \partial \Omega^-} g \cdot Snds - \int_{\Omega_T} F(S)dx.$$
First, we estimate the boundary integral. By Proposition 6.9, \(|S| \leq c\delta^{-1/2}\) on \((\partial\Omega^+ \cup \partial\Omega^-) \setminus \partial U_H\), and \(g\) is independent of \(\delta\). Hence,

\[
\int_{\partial\Omega^+ \cup \partial\Omega^-} g \cdot S nds = \int_{(\partial\Omega^+ \cup \partial\Omega^-) \cap \partial U_H} g \cdot S nds + O(\delta^{-1/2}). \tag{6.86}
\]

Next, we use the notation from (5.13) to write

\[
\int_{\Omega_F} F(S)dx = \int_{U_H} F(S)dx + \int_{U_E} F(S)dx \tag{6.87}
\]

The second integral in the right hand side of (6.87) is \(O(\delta^{-1})\) by Proposition 6.10. Using (6.8) with \(M = U_H\) and taking into account the boundary conditions (2.10) we write

\[
\int_{(\partial\Omega^+ \cup \partial\Omega^-) \cap \partial U_H} g \cdot S nds - \int_{U_H} F(S)dx = W_{U_H}^*(S) \tag{6.88}
\]

and, combining (6.88) with (6.86) and (6.87), we obtain

\[
W_{\Omega_F}^*(S) = W_{U_H}^*(S) + O(\delta^{-1}). \tag{6.89}
\]

Now Proposition 6.11 and (6.1), (6.72), (6.73) imply

\[
W_{\Omega_F}^*(S) = W_{U_H}(u) + O(\delta^{-1}) = E_2 + O(\delta^{-1}). \tag{6.90}
\]

Applying the direct and dual variational principles (2.20)-(2.21), (2.22)-(2.23) with the trial fields \(u\) defined in (6.6) and \(S\) defined in the beginning of the proof, we obtain

\[
W_{\Omega_F}^*(S) \leq E \leq W_{\Omega_F}(u). \tag{6.91}
\]

and the estimates (6.82), (6.83) follow. □

Proof of the Theorem 6.13. The inequalities (6.82), (6.83) imply \(E = E_2 + O(\delta^{-1})\). Together with (6.79), this yields \(E = E_2^* + O(\delta^{-1})\), which gives the representation (6.84) provided (6.80) holds. □

7. Summary. In this paper we obtain and rigorously justify an asymptotic formula for the effective viscosity of a suspension of closely packed solid particles in a viscous Newtonian fluid. This formula accounts for variable distances between particles which form a non periodic (e.g. random) array.

The rigorous justification is presented in two dimensions. It is based on a construction of matching, to the leading order, lower and upper bounds by means of two, dual to each other, variational principles for the effective viscosity. The key point here is the construction of the lower bound, which accounts for all pairwise interactions between neighboring particles as well as for the incompressibility condition in the fluid domain. These interactions influence each other over entire domain, which leads to considerable difficulties in the construction of the corresponding trial function.

In both three and two dimensions we obtain formal asymptotics formulas for the effective viscosity for non-periodic arrays of particles of different sizes. For a particular case of a periodic array, when identical particles move towards each other (along the line which joins their centers), the leading term in our formulas recovers the formal asymptotics previously obtained by [17, 18]. Our formulas also contain lower order terms which take into account the rotations and movements of adjacent particles in directions orthogonal to the axis of their centers. In our formal asymptotic analysis, we develop the corresponding generalization of the lubrication approximation.

While the previously obtained asymptotic formulas [17, 18, 29] capture the dependence of the effective viscosity on the volume fraction in a periodic array of closely packed particles, the network approximation proposed in this work also accounts for other geometrical characteristics such as variable distances between particles and the coordination number (the number of neighboring particles).

Appendix A. Duality. The primal variational formulation of the energy is given by (2.20) and we rewrite it in short as

\[
\mathcal{P} = \min_{u \in \mathcal{U}} \mathcal{W}(\mathcal{E}(u)) \tag{A.1}
\]
where we emphasize that the rate of strain \mathcal{E} depends on the velocity, as given by (2.4), and where

$$\mathcal{W}(\mathcal{E}) = \mu \int_{\Omega_F} (\mathcal{E}(x), \mathcal{E}(x)) \, dx.$$ \hspace{1cm} (A.2)

Let \mathcal{Y} be the space of symmetric tensors in $\mathbb{R}^{n \times n}$, with components in $L^2(\Omega_F)$. We define the perturbation (see [16])

$$\Phi(u, \Lambda) = \mathcal{W}(\mathcal{E} + \Lambda) - \int_{\Omega_F} P(x) \text{trace}(\Lambda(x)) \, dx,$$ \hspace{1cm} (A.3)

for an arbitrary $\Lambda \in \mathcal{Y}$ and some scalar function $P \in L^2(\Omega_F)$. The dual problem to (A.1) is (see [16])

$$\mathcal{P}^* = \max_{\Lambda^* \in \mathcal{Y}^*} \left[-\Phi^*(0, \Lambda^*) \right],$$ \hspace{1cm} (A.4)

where \mathcal{Y}^* is the dual of \mathcal{Y} and where

$$\Phi^*(u^*, \Lambda^*) = \max_{\begin{array}{c} u \in \mathcal{U} \\ \Lambda \in \mathcal{Y} \\ P \in L^2(\Omega_F) \end{array}} \left\{ \int_{\Omega_F} [u^* \cdot u + (\Lambda^*, \Lambda) + P(x) \text{trace}(\Lambda(x))] \, dx - \mathcal{W}(\mathcal{E}(u) + \Lambda) \right\}. \hspace{1cm} (A.5)$$

Then, letting $Q = \Lambda + \mathcal{E}(u)$, we have

$$\Phi^*(0, \Lambda^*) = \Psi^*(\Lambda^*) - \max_{\begin{array}{c} u \in \mathcal{U} \\ \Lambda \in \mathcal{Y} \\ P \in L^2(\Omega_F) \end{array}} \left\{ \int_{\Omega_F} [(\Lambda^*(x), Q(x)) + P(x) \text{trace}(Q(x))] \, dx - H(Q) \right\}, \hspace{1cm} (A.6)$$

where

$$\Psi^*(\Lambda^*) = \max_{\begin{array}{c} Q \in \mathcal{Y} \\ P \in L^2(\Omega_F) \end{array}} \left\{ \int_{\Omega_F} [(\Lambda^*(x), Q(x)) + P(x) \text{trace}(Q(x))] \, dx - H(Q) \right\}. \hspace{1cm} (A.7)$$

achieves its maximum for Q and P satisfying

$$\Lambda^*(x) = -P(x)I + 2\mu Q(x),$$

$$\text{trace}(Q(x)) = 0,$$ \hspace{1cm} (A.8)

$$P(x) = -\frac{1}{n}\text{trace}(\Lambda^*(x)).$$

Equivalently,

$$Q(x) = \frac{1}{2\mu} \Lambda^*(x) - \frac{1}{2n\mu} \text{trace}(\Lambda^*(x)) I,$$ \hspace{1cm} (A.9)

and, after some algebra, we have

$$\Psi^*(\Lambda^*) = \frac{1}{4\mu} \int_{\Omega_F} \left[(\Lambda^*(x), \Lambda^*(x)) - \frac{1}{n} (\text{trace}(\Lambda^*(x)))^2 \right] \, dx.$$ \hspace{1cm} (A.10)

In (A.6), we have by symmetry of Λ^* and (2.4),

$$\int_{\Omega_F} (\Lambda^*(x), \mathcal{E}(u(x))) \, dx = \sum_{i,j=1}^{d} \int_{\Omega_F} \Lambda^*_{ij}(x) \frac{\partial u_i(x)}{\partial x_j} \, dx = \int_{\partial \Omega} u(x) \cdot \Lambda^*(x)n(x) \, ds - \sum_{j=1}^{N} \int_{\partial D(j)} u(x) \cdot \Lambda^*(x)n^{(j)}(x) \, ds - \int_{\Omega_F} u(x) \cdot \text{div}\Lambda^*(x) \, dx.$$ \hspace{1cm} (A.11)
Note that, at $\partial \Omega^+ \cup \partial \Omega^-$, as well as at $\partial D^{(j)}$, the velocity u is given by Dirichlet boundary conditions (2.9) and (2.11), respectively. Note also that, to get a finite maximum in (A.4), we must have

$$\text{div}\Lambda^*(x) = 0, \text{ for } x \in \Omega_F. \quad (A.12)$$

Moreover, Λ^* must satisfy boundary conditions

$$\Lambda^*(x)n(x) = 0, \text{ for } x \in \partial \Omega \setminus \{\partial \Omega^+ \cup \partial \Omega^-\} \quad (A.13)$$

$$\int_{\partial D^{(j)}} \Lambda^* \mathbf{n}^{(j)} ds = 0 \quad \text{and} \quad \int_{\partial D^{(j)}} \mathbf{n}^{(j)} \times \Lambda^* \mathbf{n}^{(j)} ds = 0, \text{ for } j = 1, 2 \ldots N. \quad (A.14)$$

In other words, Λ^* is the stress tensor $\mathcal{S} \in \mathcal{F}$ and $Q = \mathcal{E}(u)$, the rate of strain tensor for velocity u which solves Stokes’ flow problem (2.5) and (2.7), with boundary conditions (2.9), (2.10) and (2.11). Then, the dual problem (A.4) becomes $\mathcal{P}^* = \max_{S \in \mathcal{F}} W^*(S)$ where

$$W^*(S) = \frac{1}{2\mu} \int_{\partial \Omega^+ \cup \partial \Omega^-} \mathbf{e}_n \cdot \mathcal{S}(x) \mathbf{e}_n ds - \frac{1}{4\mu} \int_{\Omega_F} \left[(\mathcal{S}(x), \mathcal{S}(x)) - \frac{(\text{trace} \mathcal{S}(x))^2}{n} \right] dx. \quad (A.15)$$

It is now a matter of simple algebra to show that $\mathcal{P}^* = \mathcal{P}$ and therefore complete the proof of the dual variational principle (2.22).

Appendix B. Proof of the properties of Γ. Proof of Property 3.1: The Voronoi cells form a non-overlapping cover of Ω so, for each pair $x^{(i)}, x^{(j)}$ of interior vertices, there exists a simply connected union of Voronoi cells containing V_i and V_j.

Proof of Property 3.2: For brevity, we give just the two-dimensional proof. The extension to three dimensions is straightforward. Let us remove the cell W contained inside Ω, and consider the set $V = \{V_1, V_2, \ldots, V_l\}$ of cells that share a vertex with the removed cell (note that $l \geq k$). Also, consider the set of the corresponding vertices $X = \{x_k, 1 \leq k \leq l\}$ of Γ. The desired closed path is a set of interior edges of Γ, which connect vertices $x_j, 1 \leq j \leq l$, corresponding to the cells in V.

Proof of Property 3.3: Take an arbitrary interior vertex $x^{(i)}$ and note that the Voronoi cell V_i has at least three sides in two dimensions and four sides in three dimensions, where at most one side belongs to the lateral part of the boundary $\partial \Omega \setminus \{\partial \Omega^+ \cup \partial \Omega^-\}$. Exclude this side and observe that exactly one edge of the graph Γ must intersect each of the remaining sides (there are at least two of them in two dimensions and three in three dimensions).

Appendix C. Proof of proposition 6.10.

Let C be a generic connected component in U_F. Fix $\epsilon > 0$, and define $C_{\epsilon}^c = \{x: x \notin C, \text{dist}(x, C) < \epsilon\}$. First, we prove the proposition assuming that ∂C is smooth and S is a smooth tensor defined in C^c_{ϵ}. To obtain an extension of S, it is sufficient to construct divergence free extensions of rows of S. Let σ denote a fixed row of S. Since $\sigma(x, y)$ is smooth and defined in C_{ϵ}^c, there exists a smooth function $H(x, y)$ defined in C_{ϵ}^c such that

$$\sigma = \nabla^\perp H = \left(\frac{-\partial_y H}{\partial_x H} \right),$$

for $(x, y) \in \partial C$. We construct an extension \hat{H} of the function H. Then $\hat{\sigma} = \nabla^\perp \hat{H}$ will be a desired divergence free extension of σ. Consider the inner boundary strip

$$C_{\epsilon} = \{x \in C: \text{dist} (x, \partial C) > \epsilon\}.$$
below independent of δ. Therefore we can choose a cover $U^j, j = 1, 2, \ldots, J$ of ∂C and a subordinated partition of unity ψ^j such that J is independent of δ,

$$(\text{supp } \psi^j \cap C) \subset C_x.$$ Denote supp ψ^j by $\hat{U}^j, U^j \subset \hat{U}^j$. The construction of an extension is the same for all \hat{U}^j, so we drop a superscript and consider a fixed set U. We can define local coordinates $z = \Psi(x)$ so that the equation of $C \cap \hat{U}$ in local coordinates is $z_2 > 0, \partial C \cap \hat{U}$ is given by $z_2 = 0$, and \hat{U} is mapped into the product of intervals $V(z_1) \times I(z_2)$. On the boundary we have $\hat{H}(z_1, 0) = \hat{H}(x), \partial_2 \hat{H}(z_1, 0) = \nabla H \cdot \nu(x)$ where $x \in \partial C$ satisfies $(z_1, 0) = \Psi(x)$, and ν denotes the unit normal to ∂C. The estimates on components of σ on ∂C imply that the normal derivative $(\nabla H \cdot \nu)\nu$ and the tangential derivative $\nabla H - (\nabla H \cdot \nu)\nu$ (and thus the integral of the tangential derivative over $\partial C \cap U$) are bounded pointwise by $C\delta^{-1/2}$. Since the coordinate transformation Ψ is independent of δ, we get

$$|\hat{H}(z_1, 0)| \leq c\delta^{-1/2}, \quad |\frac{d}{dz_2} \hat{H}(z_1, 0)| \leq c\delta^{-1/2}, \quad (C.1)$$

with c independent of δ.

Next, fix a smooth function $g(z_2)$ such that supp $g \subset I(z_2)$ and $g = 1$ in a neighborhood of $z_2 = 0$. Then define the extension of \hat{H} from $\partial C \cap U$ as follows.

$$\hat{H}(z_1, z_2) = g(z_2)\left[\hat{H}(z_1, 0) + z_2 \partial_2 \hat{H}(z_1, 0)\right]. \quad (C.2)$$

It is clear that \hat{H} is smooth, $\hat{H} = \hat{H}$ on ∂C, and first partial derivatives of \hat{H} and \hat{H} are equal on the portion of ∂C where $(z_1, 0) \in \{z : \psi^{-1}(\Psi) = 1\}$. Then (C.1) and (C.2) yield

$$\|\hat{H}(z)\|_{H^1(V \times I)} \leq c|V|^{1/2}\delta^{-1/2} \quad (C.3)$$

where c is independent of δ, and the length $|V|$ of V may depend on δ. Repeating the procedure for each U^j we obtain a smooth function $\hat{H}(x)$ such that the function $\hat{H}(x) = \hat{H}(x)$ has the following properties.

i) $\text{supp } \hat{H}(x) \subset C_x,$

ii) $\hat{H} \in H^1(C),$

iii) $\partial_x \hat{H} = \partial_x H, \partial_y \hat{H} = \partial_y H$ on ∂C.

Furthermore, (C.3) yields

$$\|\hat{H}(x)\|_{H^1(C)} \leq c\delta^{-1/2}\sum_{j=1}^{J}|V_j|^{1/2} \quad (C.4)$$

with c independent of δ. The sum on the right is controlled by the total length of ∂C. Hence the right hand side is bounded by $c\delta^{-1/2}$ for all $\delta \in [0, 1]$, where C is independent of δ. Thus we obtain an extension of H onto C with H^1-norm bounded by $c\delta^{-1/2}$. This implies that

$$\hat{\sigma} = \nabla \hat{H}$$

is a divergence free extension of σ onto C such that

$$\|\hat{\sigma}\|_{L^2(C)} \leq c\delta^{-1/2}$$

with c independent of δ. Equivalently,

$$\int_C \hat{\sigma} \cdot \hat{\sigma} d\mathbf{x} \leq c\delta^{-1}$$

where c is independent of δ.

Repeating the process for each row of S we obtain a divergence free extension \hat{S} onto C satisfying

$$\int_C \hat{S} \cdot \hat{S} \leq c\delta^{-1}$$
with c independent of δ. Next we note that the actual trial tensor is not smooth, but piecewise smooth. It is defined inside the gaps, and it can be continued inside the disks as a piecewise constant tensor function. Then we obtain a piecewise smooth potential H defined in C^r.

Assuming that ∂C is smooth, we approximate H in $H^1(C^r)$ by a sequence of smooth functions H_n so that the pointwise estimates for $\sigma_n = \nabla H_n$ hold in C^r uniformly in n, and $\int_{\partial C} \sigma_n \cdot ds = 0$, we apply the proposition to each σ_n, and then pass to the limit in the sequence of extensions.

The actual ∂C are not smooth. To show existence of an extension, we observe that if C is contained inside Ω_F, then its boundary consists of complementary arcs and lateral segments of gaps. Thus we can always smooth out the corners between the arcs and segments so that the resulting domain C_s is smooth, the complementary arcs are not increased, $C \subset C_s$, and length of ∂C_s is controlled independent of δ as $\delta \to 0$. The tensor S is defined on ∂C_s, since we can choose C_s so that all boundary of C_s, except complementary arcs, lies inside the gaps.

Finally, if C contains a corner of $\partial \Omega$ we can find smooth H_n supported on $\partial \Omega^+ \cup \partial \Omega^-$ away from the corners, and such that the corresponding σ_n satisfy the pointwise estimates and the necessary extension condition. □

Appendix D. Proof of estimate (6.80). Here we prove that (6.80) holds for spring network corresponding to the graph in Fig. 11.

![Fig. 11. A four-disk network.](image)

Proposition D.1. Let \hat{Q} be the rescaled dissipation rate (6.75) corresponding to the network in Fig. 11. Then $\min \hat{Q} > 0$.

Proof. The functional \hat{Q} is of the form

$$
\hat{Q} = A_1^2((T^{(1)} - T^{(2)}) \cdot q^{12})^2 + A_2^3((T^{(1)} - T^{(3)}) \cdot q^{13})^2 + A_3^3((T^{(2)} - T^{(3)}) \cdot q^{23})^2 + A_4^4((T^{(2)} - T^{(4)}) \cdot q^{24})^2 + A_5^4((T^{(1)} - \frac{1}{2}e_2) \cdot e_2)^2 + A_6^2((T^{(2)} - \frac{1}{2}e_2) \cdot e_2)^2 + A_7^4((T^{(3)} + \frac{1}{2}e_2) \cdot e_2)^2 + A_8^4((T^{(4)} + \frac{1}{2}e_2) \cdot e_2)^2,
$$

(D.1)

where $A^i, A^j, i, j = 1, 2, 4$ are given by (6.76). We show that $\min_{T^{(i)}, i=1,2,4} \hat{Q} > 0$. Arguing by contradiction, assume that $\min \hat{Q} = 0$. This is possible only if the minimizing set of vectors $T^{(i)}$ satisfies the system of equations

$$
(T^{(1)} - T^{(2)}) \cdot q^{12} = 0, \quad (T^{(1)} - T^{(3)}) \cdot q^{13} = 0, \quad (T^{(2)} - T^{(3)}) \cdot q^{23} = 0,
$$

(D.2)

$$
(T^{(2)} - T^{(4)}) \cdot q^{24} = 0, \quad (T^{(3)} - T^{(4)}) \cdot q^{34} = 0,
$$

(D.3)

$$
T^{(1)} \cdot e_2 = \frac{1}{2}, \quad T^{(2)} \cdot e_2 = \frac{1}{2}, \quad T^{(3)} \cdot e_2 = -\frac{1}{2}, \quad T^{(4)} \cdot e_2 = -\frac{1}{2}.
$$

(D.4)

To write this system of 9 equations in a more compact form $Az = b$, introduce a 1×8-vector of unknowns

$$
z = (T^{(1)}, T^{(2)}, T^{(3)}, T^{(4)})^T,
$$

44
The right hand side of (D.2)-(D.4) is a 1×9-vector b that has the entries $b_i = 0, i = 1, 2...5$, $b_6 = b_7 = \frac{1}{2}$, $b_8 = b_9 = -\frac{1}{2}$. The 8×9-matrix A is given by

$$A = \begin{pmatrix}
q_{12} & -q_{12} & o & o \\
q_{13} & o & -q_{13} & o \\
o & q_{23} & -q_{23} & o \\
o & q_{24} & -q_{24} & o \\
o & o & q_{34} & -q_{34} \\
e_2 & o & o & o \\
o & e_2 & o & o \\
o & o & e_2 & 0 \\
o & o & o & e_2 \\
\end{pmatrix}, \quad (D.5)$$

where q_{ij} is a short hand notation for the pair of numbers (q_{ij}^1, q_{ij}^2) written in a row, and similarly o denotes $(0,0)$ written in a row. To prove that the system (D.2)-(D.4) has no solutions, consider the transpose of the augmented matrix $(A \mid b)^T =$

$$\begin{pmatrix}
\hat{q}_{12} & \hat{q}_{13} & o & o & o & \hat{e}_2 & o & o & o \\
-q_{12} & o & q_{23} & q_{24} & o & o & e_2 & o & o \\
o & -q_{13} & -q_{23} & q_{24} & o & o & \hat{e}_2 & o & o \\
o & o & -q_{24} & -q_{34} & o & o & \hat{e}_2 & o & o \\
o & 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\
\end{pmatrix}, \quad (D.6)$$

We are going to perform (partial) Gaussian elimination using columns of $(A \mid b)$, so using the transpose matrix is convenient. In (D.6), $\hat{q}_{ij} = (q_{ij}^1, q_{ij}^2)^T$, $\hat{o} = (0,0)^T$ and $\hat{e}_2 = (0,1)^T$. After partial elimination, we find that $(A \mid b)^T$ is similar to the matrix

$$C = \begin{pmatrix}
\hat{q}_{12} & \hat{q}_{13} & o & o & o & \hat{e}_2 & o & o & o \\
o & \hat{q}_{13} & q_{23} & q_{24} & o & \hat{e}_2 & \hat{e}_2 & o & o \\
o & o & \hat{q}_{23} & q_{24} & \hat{q}_{34} & \hat{e}_2 & \hat{e}_2 & \hat{e}_2 & \hat{e}_2 \\
o & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
o & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 \\
\end{pmatrix}, \quad (D.7)$$

Next, note that

$$\begin{pmatrix}
\hat{q}_{12} & \hat{q}_{13} & o & o & o & \hat{e}_2 & o & o & o \\
\end{pmatrix}$$

is a short hand notation for two rows:

$$c_1 = \begin{pmatrix}
q_{12}^{12} & q_{13}^{13} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix},$$

$$c_2 = \begin{pmatrix}
q_{22}^{12} & q_{23}^{13} & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
\end{pmatrix},$$

and similarly, the other two boldfaced rows in (D.7) are the short hand notation for the four rows c_3, \ldots, c_6. The last two rows of C in (D.7) are denoted by c_7, c_8.

To show that c_j, $j = 1, 2, 8$ are linearly independent, we argue by contradiction. When c_j are linearly dependent, there exist $\lambda_j, j = 1, 2, 8$ not all zero, such that

$$\sum_{j=1}^{8} \lambda_j c_j = 0. \quad (D.8)$$

Let us take the 6-th and 7-th columns in the vector equation (D.8). Then (D.8) yields the equations

$$\lambda_2 + \lambda_4 + \lambda_6 + \lambda_7 = 0 \quad \text{and} \quad \lambda_4 + \lambda_6 + \lambda_7 = 0. \quad (D.9)$$
Thus $\lambda_2 = 0$. Next, consider the first column in (D.8) to obtain $\lambda_1 q_1^{12} + \lambda_2 q_2^{12} = 0$. Note that q_1^{12} cannot be zero since the edge e^{12} connects the boundary vertices 1, 2, and thus cannot be vertical. Hence $\lambda_1 = 0$.

Next, consider the columns two and three in (D.8). Since $\lambda_1 = \lambda_2 = 0$, from (D.8) we obtain two equations for λ_3, λ_4:

$$
\begin{align*}
\lambda_3 q_1^{13} + \lambda_4 q_2^{13} &= 0 \\
\lambda_3 q_1^{23} + \lambda_4 q_2^{23} &= 0
\end{align*}
$$

(D.10)

Since q_1^{13}, q_2^{23} are linearly independent, $\lambda_3 = \lambda_4 = 0$.

Consider the columns four and five in (D.8). Since λ_3, λ_4 are zero, we obtain two equations for λ_5, λ_6:

$$
\begin{align*}
\lambda_5 q_1^{24} + \lambda_4 q_2^{24} &= 0 \\
\lambda_3 q_1^{34} + \lambda_4 q_2^{34} &= 0
\end{align*}
$$

(D.11)

Linear independence of q_1^{24}, q_3^{34} implies $\lambda_5 = \lambda_6 = 0$. Returning to (D.9) we see that $\lambda_7 = 0$. Finally, considering column 9 we obtain the equation for λ_8

$$
\lambda_7 - \lambda_8 = 0
$$

(D.12)

which yields $\lambda_8 = 0$. Thus all λ_j must be zero, and we arrive at contradiction, which yields $\text{rank}(A | b) = 8$. Applying the same Gaussian elimination to A^T, we see that $\text{rank}(A) = 7$, and thus $\text{rank}(A | b) > \text{rank}(A)$. This means that the system (D.2)-(D.4) has no solutions, and minimum of \hat{Q} must be positive. \square

Remark D.1. A quasi-triangular structure of the graph is sufficient for positivity of \hat{Q}. The proof of the Proposition D.1 show that if a graph contains a "triangulated path" (see Fig. 11), then $\hat{Q} > 0$ for the external boundary conditions (2.9), (2.10). We now explain heuristically why triangulation ensures positivity of \hat{Q}. Start from vertices 1, 2 in Fig 11. They are connected by the non-vertical edge e^{12}, which implies $\lambda_1 = 0$. We next add vertex 3 and observe that it is connected to vertices 1, 2 by non-collinear edges e^{13}, e^{23} which are adjacent sides of a triangle 123. The non-collinearity of these edges implies $\lambda_3 = \lambda_4 = 0$. Next, add vertex 4 to obtain triangle 234 and, as before, non-collinearity of the edges e^{24}, e^{23} implies $\lambda_5 = \lambda_6 = 0$. Finally, since e^{34} is non-vertical, $\lambda_7 = \lambda_8 = 0$. This argument also admits a straightforward generalization to a triangulated path of n vertices.

References

