For our Engineering Design Class, we were divided into groups and given two design projects. The first project was to design a Coffee Mug for people with disabilities; specifically people with one or no fingers. The first thing we had to do was the Customer Needs Ranking and our Missions Statement; deciding as a group what was most important for our customers and who our target customers were. Using an AHP table.

Coffee Mug Design Project

Hierarchy Homework

Leigh Ramstack, Tim McEnerny, Scott Soseman, and Bill Smith

1. User Friendly
 1.1 Safe
 1.2 Reliable
 1.3 Durable, doesn’t break easily
 1.4 Different sizes
 1.5 Customisable, different colors

2. Care
 2.1 Easy to clean
 2.2 Microwave-safe
 2.3 Stain resistant

3. Cost Efficient
 3.1 Minimal parts
 3.2 Retail under $5
 3.3 Retail friendly, sold in stores
 3.4 Sold in bulk, coffee shops to sell individually

4. Small Footprint
 4.1 Non-toxic, eco-friendly material
 4.2 Recycled material

5. Portable
 5.1 Lightweight
 5.2 Flexible
 5.3 Cup-holder friendly
 5.4 Spill-proof

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O</th>
<th>P</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>User Friendly</td>
<td>Cost Effective</td>
<td>Small Footprint</td>
<td>Total</td>
<td>Weight</td>
<td>User Friendly</td>
<td>Lightweight</td>
<td>Safe</td>
<td>Easy to use</td>
<td>Reliab</td>
<td>Multiple sizes/microwave total</td>
<td>Weight</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Cost Effective</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Small Footprint</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Total</td>
<td>4.0</td>
<td></td>
</tr>
</tbody>
</table>
Next, we needed to come up with a few concepts for the different parts required.
And then select which concept was the best and create a Solid Works Prototype.