Design for Order-of-Addition Experiments

Dennis Lin
University Distinguished Professor
Department of Statistics
The Pennsylvania State University

at
Department of Statistics, Temple University
4 October, 2017

Design of Experiment

How to collect Useful Information?

Design of Experiment

*Analyzing historical data is like listening to a lecture
Running a designed experiment is like conducting an interview*

Randomization in Theory vs. Randomization in Reality

R.A. Fisher (1920)
How Should the Data be collected?

Randomly
or
Systematically

Some Lin recent design projects
- Computer Experiment—LHC & UD
- Order of Addition Experiment
- Run Order Consideration
- t-covering array
- Design for On-Line Experiment
- New Type of Composite Design
- Fake Factors for estimate \(\sigma^2 \)
- Meta-Analysis

Lady and Tea Tasting (Fisher)

Lady and Tea Tasting (Fisher)

Three-Cup Chicken

Three Cups:
- Soy Sauce
- Wine
- Sesame Oil

Which first? Which last? Does it matter?

Three-Cup Chicken

Three Cups:
- Soy Sauce
- Wine
- Sesame Oil

Which first? Which last? Does it matter?
There are $m!$ possible combinations, how could we run fraction of them?

For three components, there are $3! = 6$ possible “treatments” to be tested.

In general, there are $m!$ treatments to be tested.

for example, $10! = 3,638,800$. This may not be feasible.

Order of addition (OofA) experiment:

the requirement for Ran, Crm1 and NXT1, etc

Journal of Cell Biology (2001)

—m is about 10.

OofA in Genetics Areas

The construction of phylogenetic trees depends on the order of taxa

Many taxa (more than 10) are involved...

Often, a set of random orders are tested (Olsen et al. 1994, Stewart et al. 2001)

How to choose a subset of the orders? Randomly or systematically???
OofA in Different Areas

- Food science: Fuleki and Francis (1968)
- Food science: Jourdain et al. (2009)
- Nutritional science: Karim et al. (2000)
- Pharmaceutical science: Rajaonarivony et al. (1993)

Experiments are needed to find the optimal addition order!

Research Issues

How to run (small) \(n \), among those \(m! \) experiments, to find out the “optimal” sequence/order-of-addition (OofA)?

Note: \(10! = 3,628,800 \)

Order-of-Addition Experiment

Linking to conventional design...

- What are the experimental variables (X,’s)?
- What is the experimental unit?

Outline

- Introduction (baby optimal design)
- Model Formulation (PWO)
- Optimality of the Full PWO Design
- Orthogonality of a PWO Design
- Minimal-point PWO Design
- Optimal Fractional PWO Design
- Conclusion and Future Work
Brief on Optimal Design

Matrix Form

\[y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \cdots + \beta_k x_{ik} + \varepsilon_i \quad i = 1, 2, \ldots, n \]

\[
\begin{bmatrix}
 y_1 \\
 y_2 \\
 \vdots \\
 y_n \\
\end{bmatrix} =
\begin{bmatrix}
 1 & x_{11} & x_{21} & \cdots & x_{k1} \\
 1 & x_{12} & x_{22} & \cdots & x_{k2} \\
 \vdots & \vdots & \vdots & \cdots & \vdots \\
 1 & x_{1n} & x_{2n} & \cdots & x_{kn} \\
\end{bmatrix}
\begin{bmatrix}
 \beta_0 \\
 \beta_1 \\
 \beta_2 \\
 \vdots \\
 \beta_k \\
\end{bmatrix}
+
\begin{bmatrix}
 \varepsilon_1 \\
 \varepsilon_2 \\
 \vdots \\
 \varepsilon_n \\
\end{bmatrix}
\]

or \(Y = X\beta + \varepsilon \)

Estimation

\[\hat{\beta} = (X'X)^{-1}X'Y \]

LSE / MLE under i.i.d. Normal

\[\text{Var}(\hat{\beta}) = (X'X)^{-1} \cdot \sigma^2 \]

Assuming (say) \(\varepsilon_i \sim N(0, \sigma^2) \) i.i.d.

Design Issue:

Now, suppose you have full control on the X matrix…

Choose \(X \) such that \((X'X)^{-1}\) is minimized—or \(X'X \) is maximized (in some senses).

Optimal Design—General Setting

- Given the model \(y = f(x) + \varepsilon \),
- find its information matrix \(\mathbf{I} \),
 - The Optimal Design \(X \) is the design which “maximizes” the information matrix \(\mathbf{I} \).
- For Linear Model \(y = X\beta + \varepsilon \),
 - the information matrix is \(\mathbf{I} = X'X \).
Optimality Theorem

the full PWO design is optimal under:

- **D-criterion** = \(\arg \max \det(M)^{1/p} \), \(p = \left(\frac{m}{2} \right) + 1 \)
- **A-criterion** = \(\arg \min \text{tr} \left(M^{-1} \right) \)
- **E-criterion** = \(\arg \max \lambda_{\min}(M) \)
- **M.S.-criterion** = \(\arg \min \text{tr} \left(M^2 \right) \)

where, \(M = \text{Information Matrix} \)

Continuous Version

General estimator:

\[\hat{\theta}_c = \int y(x)\zeta(dx), \]

where \(\zeta(dx) \) is a signed vector-measure.

\[\hat{\theta}_{OLSE} = \int y(x)M^{-1}(\xi) f(x)\xi(dx), \]

where

\[M(\xi) = \int f(x) r^T(x) \xi(dx), \]

and \(\xi(dx) \) is a design (probability measure for OLSE; a signed measure for SLSE). The covariance matrix of \(\hat{\theta}_{OLSE} \) is

\[\text{Var} \left(\hat{\theta}_{OLSE} \right) = M(\xi)^{-1} \left[\int \int K(x,z) f(x) r^T(z) \xi(dx) \xi'(dz) \right] M(\xi)^{-1} \]

Pairwise-order (PWO) model

Van Nostrand (1995)

- Suppose there are \(m \) components to be added, denoted by 1, 2, ..., \(m \)
- For any order \(\alpha \) and \(1 \leq j < k \leq m \), define the PWO factor

\[z_{jk}(\alpha) = \begin{cases}
1 & \text{if } j \text{ precedes } k \text{ in } \alpha, \\
-1 & \text{if } k \text{ precedes } j \text{ in } \alpha.
\end{cases} \]

For example, \(\alpha = 312 \) implies

\[z_{12} = +1, \ z_{13} = -1, \ \text{and} \ z_{23} = -1 \]
Problem Formulation *(m=3 example)*

<table>
<thead>
<tr>
<th>Sequence</th>
<th>I_{1-2}</th>
<th>I_{1-3}</th>
<th>I_{2-3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>1 3 2</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>2 1 3</td>
<td>−</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2 3 1</td>
<td>−</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>3 1 2</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>3 2 1</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>

Model

\[y = M + \beta_{1,2}I_{1,2} + \beta_{1,3}I_{1,3} + \beta_{2,3}I_{2,3} + \epsilon \]

Test

\[H_0: \beta_{i,j} = 0 \]

PWO model

For any order \(\alpha \) *affects the response via the Pairwise-order (PWO) effect*

\[\tau(\alpha) = \beta_0 + \sum_{1 \leq j < k \leq m} z_{jk}(\alpha)\beta_{jk}, \]

\(\tau(\alpha) \): expected response arising from \(\alpha \)

\(\beta_{jk} \)'s: linear coefficients to estimate

With \(m \) *components, there are* \(\binom{m}{2} \) *PWO factors.*

Research Issues

How to run (small) \(n \) among \(m! \) many experiments to test all \(\binom{m}{2} \) pairwise order?

\[H_0: \beta_{i,j} = 0 \]

Full PWO Design

PWO design: \([z_{jk}(\alpha_i)]_{jk} \)

Full PWO design \((Z_F) \): representing all the permutations

<table>
<thead>
<tr>
<th>Sequence</th>
<th>I_{1-2}</th>
<th>I_{1-3}</th>
<th>I_{2-3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>1 3 2</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>2 1 3</td>
<td>−</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2 3 1</td>
<td>−</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>3 1 2</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>3 2 1</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>

As compared with \(2^3 \) Full Factorial design, the treatment \((+−+)\) and \((−+−)\) are not feasible.
The moment matrix (information matrix) of full PWO design:

$$M_f = X_f^T X_f / N, \text{ with } X_f = [1, Z_f] \text{ and } N = m!$$

for $m = 4$, $M_f = \text{diag}(1, \tilde{M}_f)$ and

$$\tilde{M}_f = \begin{bmatrix}
1 & 1/3 & 1/3 & -1/3 & -1/3 & 0 \\
1/3 & 1 & 1/3 & 1/3 & 0 & -1/3 \\
1/3 & 1/3 & 1 & 0 & 1/3 & -1/3 \\
-1/3 & 1/3 & 0 & 1 & 1/3 & 1/3 \\
-1/3 & 0 & 1/3 & 1/3 & 1 & 1/3 \\
0 & -1/3 & 1/3 & -1/3 & 1/3 & 1
\end{bmatrix}.$$
Optimality Theorem

The full PWO design is optimal under:

- **D-criterion** = $\arg \max \det(M)^{1/p}$, $p = \binom{m}{2} + 1$
- **A-criterion** = $\arg \min \tr(M^{-1})$
- **E-criterion** = $\arg \max \lambda_{\text{min}}(M)$
- **M.S.-criterion** = $\arg \min \tr(M^2)$

Explicit Values for the Optimality Criteria

Explicit values of the $D-/A-/E-/M.S.$-criteria are needed for comparative purpose.

- Benchmarks to assess the efficiency of any smaller design
- To derive such criteria, the eigen-structure of M_f is investigated

Theorem 2

M_f has eigenvalues 1, $(m+1)/3$ and $1/3$, with multiplicities 1, $m-1$ and $\binom{m-1}{2}$, respectively. Then for the full design:

- **D-criterion** = $\left[\det(M_f)\right]^{1/p} = \left(\frac{(m+1)^{m-1}}{3^m}\right)^{\frac{1}{p}}$
- **A-criterion** = $\tr(M_f^{-1}) = 1 + \frac{3m(m-1)^2}{2(m+1)}$
- **E-criterion** = $\lambda_{\text{min}}(M_f) = \frac{1}{3}$ and
- **M.S.-criterion** = $\tr(M_f^2) = 1 + \frac{(m-1)m(2m+5)}{18}$

$p = (m+1)/2 + 1$

Optimality Theorem: A Catch!

A (fractional) PWO design is $D-/A-/M.S.$-optimal

If and only if

it has the same moment matrix as the full PWO design.
Constraint on the Correlation

Lemma 1

For any (not full) PWO design with m components, and any $1 \leq j < k < l \leq m$, it always holds that

$$\bar{M}(jk, jl) - \bar{M}(jk, kl) + \bar{M}(jl, kl) = 1,$$

Note: $\bar{M}(jk, jl)$ indicates the correlation between PWO factors Z_{jk} and Z_{jl}.

Optimality Criteria: Another Catch!!

- PWO design can **NOT** be perfectly orthogonal —
 - no regular fractional factorial design can be used as a PWO design.

- The maximum correlation (r_{max}) is at least $1/3$.

A Bridge too far...

Primitive Idea—

- **If** there exist an appropriate 2^{k-p} design for OofA experiment...

- Applying Cheng and Li (1993, *Technometrics*), choose the fraction to avoid those infeasible runs (due to transitive property).
 "Constructing Orthogonal Fractional Factorial Designs When Some Factor-Level Combinations Are Debarred"
Minimal-point PWO Designs

There are $m!$ possible runs, the minimal point PWO design requires $(\frac{m}{2}) + 1$ runs.

$m=3 \rightarrow m!=6 & (\frac{m}{2})+1=4$; which (best) 4 among those 6 runs?

$m=4 \rightarrow m!=24 & (\frac{m}{2})+1=7$; which (best) 7 among those 24 runs?
\[m=3 \rightarrow m!=6 \text{ } \& \text{ } \binom{m}{2}+1=4; \]
which (best) 4 among those 6 runs?

There are \(\binom{6}{4} = 15 \) possibilities.

\[m=4 \rightarrow m!=24 \text{ } \& \text{ } \binom{m}{2}+1=7; \]
which (best) 7 among those 24 runs?

There are \(\binom{24}{7} = 346,104 \) possibilities.

Minimal-Point Design (m=3)

Maximun D-efficiency: 0.71
Sample design: 123, 213, 132, 231

\[\begin{array}{ccc}
123 & + & + & + \\
213 & - & + & + \\
132 & + & + & - \\
231 & - & - & + \\
\end{array} \]

D-efficiency of full design: 0.88
Relative Efficiency: 0.71/0.88 = 0.81

Minimal-Point Design (m=4)

Maximun D-efficiency: 0.70
Sample design: 1234, 2134, 1324, 3214, 1243, 2341, 3142

\[\begin{array}{ccc}
1234 & + & + & + & + \\
2134 & - & + & + & + \\
1324 & + & + & - & + \\
3214 & - & - & + & + \\
1243 & + & + & + & + \\
2341 & - & - & + & - \\
3142 & + & - & - & - \\
\end{array} \]

D-efficiency of full design(4!=24): 0.78
Relative Efficiency: 0.70/0.78 = 0.90
For \(m \geq 5 \),

\[
\binom{m}{2} + 1 = \binom{120}{11} \text{ is too large!}
\]

need a systematic construction method!

Construction of minimal-point OofA designs \((m \geq 6)\)

- Take \(H_1 = (Q:1) \)
 - then \(H \) is a minimal-point OofA design.

\[
H = \begin{pmatrix}
H_1 & H_2 \\
H_3 & H_4
\end{pmatrix}
\]

\(H_2 \) is a matrix with all elements = \(-1\);
\(H_3 \) is a matrix with all elements = \(+1\);
\(H_4 = (h_{ij}) \) is a matrix with elements = \(+1\), if \(i \leq j \); and \(-1\) otherwise.

- its \(d \)-efficiency is

\[
D_d(H) = \left(\binom{\binom{n}{2} - n}{m} H[H_1] \right)^{1/(\binom{m}{2} + 1)}
\]
D-efficiencies of the full PWO designs and the minimal-point designs

<table>
<thead>
<tr>
<th>(m)</th>
<th>(m!)</th>
<th>(\binom{m}{2} + 1)</th>
<th>(D_e(H))</th>
<th>(D_e(F_{mn}))</th>
<th>(D_e(H))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6</td>
<td>4</td>
<td>0.707</td>
<td>0.577</td>
<td>0.810</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>7</td>
<td>0.697</td>
<td>0.777</td>
<td>0.897</td>
</tr>
<tr>
<td>5</td>
<td>120</td>
<td>11</td>
<td>0.591</td>
<td>0.706</td>
<td>0.837</td>
</tr>
<tr>
<td>6</td>
<td>720</td>
<td>16</td>
<td>0.349</td>
<td>0.656</td>
<td>0.532</td>
</tr>
<tr>
<td>7</td>
<td>5040</td>
<td>22</td>
<td>0.232</td>
<td>0.618</td>
<td>0.375</td>
</tr>
</tbody>
</table>

Note: \(R\) represents the minimal-point order of addition design; \(F_{mn}\) represents the pair-wise ordering design; \(D_e(H)\), \(D_e(F_{mn})\) and \(D_e(H)\) are the \(D\)-efficiencies of \(H\) and \(F_{mn}\), and the relative \(D\)-efficiency of \(H\), respectively.

A Class of Optimal Fractional PWO Design

Information matrix of PWO Design

The **moment matrix** (information matrix) of full PWO design:

\[
M_f = X_f^T X_f / N, \quad \text{with } X_f = [1, Z_f] \quad \text{and } N = m!
\]

For \(m = 4\), \(M_f = \text{diag}(1, \bar{M}_f)\) and

\[
\bar{M}_f = \begin{bmatrix}
1 & 1/3 & 1/3 & -1/3 & -1/3 & 0 \\
1/3 & 1 & 1/3 & 1/3 & 0 & -1/3 \\
1/3 & 1/3 & 1 & 0 & 1/3 & 1/3 \\
-1/3 & 1/3 & 0 & 1 & 1/3 & -1/3 \\
-1/3 & 0 & 1/3 & 1/3 & 1 & 1/3 \\
0 & -1/3 & 1/3 & -1/3 & 1/3 & 1
\end{bmatrix}
\]
An example of Optimal PWO Design

For \(m=4 \) \((m!)=24\), the following (half) fractional PWO design is “optimal.”

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3 \\
4 & 3 & 1 & 2 \\
3 & 4 & 2 & 1 \\
1 & 3 & 2 & 4 \\
3 & 1 & 4 & 2 \\
4 & 2 & 1 & 3 \\
2 & 4 & 3 & 1 \\
1 & 4 & 2 & 3 \\
4 & 1 & 3 & 2 \\
3 & 2 & 1 & 4 \\
2 & 3 & 4 & 1 \\
\end{array}
\]

\(\overline{M}_f = \begin{bmatrix} 1 & \frac{1}{3} & \frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} & 0 \\ \frac{1}{3} & 1 & \frac{1}{3} & \frac{1}{3} & 0 & -\frac{1}{3} \\ -\frac{1}{3} & \frac{1}{3} & 1 & 0 & \frac{1}{3} & \frac{1}{3} \\ -\frac{1}{3} & 0 & 1 & \frac{1}{3} & 1 & \frac{1}{3} \\ 0 & -\frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 1 & 1 \end{bmatrix} \)

It share the same moment matrix with the full PWO design.

An Example of Optimal Design

This design entails a partitioned structure:

\[
\begin{bmatrix}
B_1 & \bar{B}_1 \\
\bar{B}_1 & B_1 \\
B_2 & \bar{B}_2 \\
\bar{B}_2 & B_2 \\
B_3 & \bar{B}_3 \\
\bar{B}_3 & B_3 \\
\end{bmatrix}, \quad \text{with } B_1 = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}, \quad \bar{B}_1 = \begin{bmatrix} 3 & 4 \\ 4 & 3 \end{bmatrix}.
\]

\[
B_2 = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}, \quad \bar{B}_2 = \begin{bmatrix} 4 & 2 \\ 2 & 4 \end{bmatrix},
\]

\[
B_3 = \begin{bmatrix} 1 & 4 \\ 4 & 1 \end{bmatrix}, \quad \bar{B}_3 = \begin{bmatrix} 2 & 3 \\ 3 & 2 \end{bmatrix}.
\]

Extension to larger \(m \)

Such a construction method can be extended to any larger, even \(m \).

\textbf{Theorem 3.}

For any \(m \geq 4 \) and any \(2 \leq r \leq m/2 \), there exist optimal PWO designs with \(m \) components and \(m!/r! \) runs.

Under Construction...

\textbf{A Class of Optimal Fractional PWO Design}

—an optimal PWD design with \(2 \cdot \binom{m}{2} \) runs.
Conclusion
- The optimality theory for PWO designs
- The explicit values of optimality criteria
- Description on the orthogonality of any PWO design
- Systematic construction of efficient minimal-point PWO designs
- Systematic construction of optimal fractional PWO designs

Order-of-Addition Experiments
- Data Analysis Strategies
- Beyond PWO system
 - Triple-wise order (TWO) system?
 - Travel Salesman Problem (TSP)
 - etc
- Run order consideration

Some (Very Selective) References

Send $1000 to
- Dennis Lin
 - University Distinguished Professor
 - 317 Thomas Building
 - Department of Statistics
 - Penn State University
- +1 814 865-0377 (phone)
- +1 814 863-7114 (fax)
- DennisLin@psu.edu

(Customer Satisfaction or your money back!)