On the construction of multi-level supersaturated designs

Kai-Tai Fanga, Dennis K.J. Linb,*, Chang-Xing Mac

aDepartment of Mathematics, Hong Kong Baptist University and Chinese Academy of Sciences, Beijing, People's Republic of China
bDepartment of Management Science, Penn State University, University Park, PA 16803, USA
cDepartment of Statistics, Nankai University, People's Republic of China

Received 8 January 1999; received in revised form 15 July 1999; accepted 18 August 1999

Abstract

New criteria of comparing multi-level supersaturated designs are proposed and their properties are studied. A new class of multi-level supersaturated designs are obtained by collapsing a U-type uniform design to an orthogonal array. A global optimization algorithm, the threshold accepting algorithm, is then applied to search for the best supersaturated designs under any prespecified criterion. Examples show that these newly constructed supersaturated designs have good modeling properties.

MSC: 62K15; 62K10

Keywords: Collapsing method; Effect sparsity; Near orthogonal design; Orthogonal array; Supersaturated designs; Threshold accepting; U-type designs; Uniform designs

1. Introduction

Many preliminary studies in industrial and scientific experimentation contain a large number of potentially relevant factors, but often only a few are believed to have significant effects. The goal is to identify these few active factors with a relatively small number of runs. One approach is to use a supersaturated design where the number of runs is smaller than the number of unknown parameters. Developing such screening designs has received a great deal of attention: Satterthwaite (1959) proposed the idea of supersaturated design in random balanced designs, Booth and Cox (1962) examined these designs systematically. Lin (1993) provided a new class of supersaturated designs based on half-fractions of Hadamard matrices. Nguyen (1996) described a method of constructing supersaturated designs from balanced incomplete block (BIB) designs that
is a generalization of Lin (1993). Wu (1993) augmented Hadamard matrices by adding interaction columns. Some algorithms for constructing supersaturated designs have been studied by many authors, for example, Lin (1991, 1995), Li and Wu (1997), Yamada and Lin (1997) and Nguyen (1996). However, all these authors considered only 2-level designs. Designs with multi-levels are often requested in industrial and scientific experimentation for exploring nonlinear effects of the factors. Especially, designs with 3 levels have been widely used. Recently, Liu and Zhang (1997) proposed a method of constructing 3-level supersaturated designs. But their method is far too complicated to implement when the number of runs is large.

In this paper we study the problem of constructing multi-level supersaturated designs. Several criteria related to orthogonality are defined for comparing supersaturated designs. The definition of these criteria and their properties are studied in Section 2. In Section 3 we propose a unified way to construct multi-level supersaturated designs. This method collapses a \(U \)-type design to an orthogonal array. A number of supersaturated designs are obtained by this method and compared with other existing designs. Throughout the paper, we will use the popular notations; \(-1\) and 1 for the elements of a two-level factor and \(0, \ldots, s - 1\) for the elements of an \(s\)-level \((s \geq 3)\) factor.

2. Some new criteria for comparing supersaturated designs

A design matrix \(X\) is called \textit{column-orthogonal} if \(X'X\) is a diagonal matrix. In a column-orthogonal design, the parameters corresponding to each column of the design can be estimated independently of other columns. The column orthogonality has been used in constructing 2-level supersaturated designs. Suppose \(X\) is an \(n \times m\) design matrix of a design with \(n\) runs and \(m\) 2-level factors each with \(n/2\) of \(+1\) and \(-1\) (for even \(n\)). Let \(s_{ij}\) be the \((i, j)\)-element of \(X'X\). Column-orthogonality is equivalent to all \(s_{ij} = 0\) for all \(i \neq j\). Many criteria for generating saturated and supersaturated designs based on \(s_{ij}\) have been proposed. Booth and Cox (1962) suggested a criterion to minimize

\[
\text{Ave}(s^2) = \frac{\sum_{i<j} s_{ij}^2}{\binom{m}{2}}.
\]

The criteria

\[
\text{Ave}|s| = \frac{\sum_{i<j} |s_{ij}|}{\binom{m}{2}},
\]

\(s_{\text{max}} = \max_{i<j}|s_{ij}|\) and the frequency of \(\{s_{ij} = \pm s_{\text{max}}\}\) are also widely used (e.g., Lin, 1993, 1995; Wu, 1993; Deng et al., 1999).

Two design columns \(x_u\) and \(x_v\) are called \textit{fully aliased} if one column can be obtained from another by permuting levels. We cannot use two fully aliased columns to accommodate two different factors. For comparing multi-level designs, column-orthogonality is not sufficient. For example, two fully aliased 3-level columns \(x_1 = (0, 1, 2, 2, 0, \ldots)\)
1, 1, 2, 0)', and $x_2 = (1, 2, 0, 0, 1, 2, 2, 0, 1)'$, where x_2 is obtained from x_1 by permuting levels $(0, 1, 2) \rightarrow (1, 2, 0)$, have correlation coefficient -0.5, not ± 1. An $n \times m$ design matrix with n runs and m s-level factors is called a U-type design, denoted by $U(n, s^m)$, if for each column all of its entries appear equally often. When level $s = n$, we denote the U-type design by $U(n, n^m)$. A U-type design is called an orthogonal design, denoted by $L_{nA}(s^m)$, if every pair of design columns has all of their level combinations appear equally often. In this case n is a multiple of s^2. We shall call such orthogonality combination-orthogonality to distinguish it from column-orthogonality. Clearly, combination-orthogonality implies column-orthogonality (column-orthogonality means that correlation coefficients of linear effects of factors are 0), but the inverse is not necessarily true. For example, two 3-level factors after relabeling, $x_1 = (-1, -1, -1, 0, 0, 1, 1, 1)'$ and $x_2 = (-1, -1, 1, 0, 1, 1, -1, 0, 0)'$, have column-orthogonality (i.e., $x'_1x_2 = 0$) but not combination-orthogonality. Note that the orthogonal design defined here can be regarded as a special case of orthogonal arrays. An orthogonal array of strength r and size n with m constraints is given by an $n \times m$ matrix with entries from a set of $s \geq 2$ symbols, where each $n \times r$ submatrix contains all possible $1 \times r$ row vectors equally often. Orthogonal arrays of strength two are the orthogonal designs we have defined here. We next define some new criteria based on combination-orthogonality for comparing supersaturated designs.

Definition 2.1. Let x_u and x_v be two columns of an $n \times m$ design matrix with s_u and s_v levels, respectively. Define

$$f(x_u, x_v) = \sum_{i=0}^{s_u-1} \sum_{j=0}^{s_v-1} \frac{N_{u,v}(i,j) - \frac{n}{s_u s_v}}{\frac{n}{s_u s_v}},$$

where $N_{u,v}(i,j)$ is the number of (i,j)-pairs in (x_u, x_v).

The value of $f(x_u, x_v)$ gives a nonbalance measure among all pairs in (x_u, x_v). Columns x_u and x_v are combination-orthogonal if and only if $f(x_u, x_v) = 0$. In this case n is a multiple of s^2 when $s_u = s_v = s$.

Definition 2.2. Let $X = (x_1, x_2, \ldots, x_m)$ be an $n \times m$ U-design matrix with $n = ks^2$ runs (rows) and m factors (columns) each having s levels: 0, \ldots, $s - 1$. The following criteria are defined for measuring combination-nonorthogonality of the design X.

1. $Ave[|f|] = \sum_{1 \leq u < v \leq m} f(x_u, x_v) / \binom{m}{2}$;
2. $Ave(f^2) = \sum_{1 \leq u < v \leq m} f(x_u, x_v)^2 / \binom{m}{2}$;
3. $f_{\text{max}} = \max_{1 \leq u < v \leq m} f(x_u, x_v)$;
4. $N_{f_{\text{max}}} = \text{the frequency of } \{f(x_u, x_v) = f_{\text{max}}\}$ if $f_{\text{max}} > 0$; otherwise $N_{f_{\text{max}}} = 0$;
5. $N_{\text{non-od}} = \text{the number of } \{f(x_u, x_v) \neq 0\}$.

The criteria $Ave[|f|]$ and $Ave(f^2)$ give the combination-nonorthogonality of all column pairs of X in the average sense. The criterion f_{max} shows the worst
nonorthogonality in all pairs of columns of X. When $f_{\text{max}} > 0$, N_{max} shows the number of the worst pairs in X. The $N_{\text{non-od}}$ criterion gives the number of nonorthogonal column-pairs of the design. The design X is combination-orthogonal if and only if one of the above criteria is zero (in fact, this also implies that all of these five criteria are zero). Some properties of these criteria are given in the following theorem.

Theorem 2.1. For any design matrix X defined in Definition 2.2, we have the following assertions:

(i) For a two-level design ($s = 2$), $f(x_i, x_j) = |s_{ij}|$, $\text{Ave} |f| = \text{Ave} |s|$, and $\text{Ave}(f^2) = E(s^2)$, where s_{ij} is the (i, j)-element of $X'X$.

(ii) $f(x_i, x_j) \leq 2ks(s - 1)$ for $0 \leq i, j \leq s - 1$, and the equality holds if and only if x_i and x_j are fully aliased.

(iii) If x_i and x_j are not combination-orthogonal, then $f(x_i, x_j) \geq 4$.

(iv) All five criteria $\text{Ave} |f|, \text{Ave}(f^2), f_{\text{max}}, N_{\text{max}}$, and $N_{\text{non-od}}$ are invariant under exchanging rows and columns of X and permuting levels of each column of X.

(v) For any given orthogonal design $L_n(s^m)$ and positive integer r, there exists a U-type design $U(n, s^m)$ satisfying

$$\text{Ave} |f| = ks(2s - 2)m \left(\begin{array}{c} r \\ 2 \end{array} \right) \left(\begin{array}{c} rm \\ 2 \end{array} \right)^{-1}$$

and

$$\text{Ave}(f^2) = (ks(2s - 2))^2 m \left(\begin{array}{c} r \\ 2 \end{array} \right) \left(\begin{array}{c} rm \\ 2 \end{array} \right)^{-1},$$

where $n = ks^2$. In particular, when $s = 2$ and $m = n - 1$, (2.2) gives the lower bound of $E(s^2)$ as given in Nguyen (1996) and Tang and Wu (1997).

Proof. (i) Let $N(s, t)$ be the number of pairs (s, t) in (x_i, x_j), for $s, t = -1$ or 1. Then

$$s_{ij} = N(-1, -1) - N(-1, 1) - N(1, -1) + N(1, 1)$$

$$= (N(-1, -1) - k) + (k - N(-1, 1)) + (k - N(1, -1)) + (N(1, 1) - k).$$

Since x_i and x_j have the same number of levels of $+1$ or -1,

$$N(-1, -1) + N(-1, 1) = N(1, -1) + N(1, 1) = N(-1, 1) + N(1, 1) = 2k,$$

$$N(-1, -1) - k = k - N(-1, 1) = k - N(1, -1) = N(1, 1) - k.$$

Therefore,

$$|s_{ij}| = |(N(-1, -1) - k) + (k - N(-1, 1)) + (k - N(1, -1)) + (N(1, 1) - k)|$$

$$= 4| N(-1, -1) - k | = f(x_i, x_j).$$

Assertion (i) thus follows.
(ii) Because \(x_i \) and \(x_j \) have the same number of levels \(0, \ldots, s - 1 \), we have

\[
\sum_{t=0}^{s-1} N(r,t) = sk, \quad t = 0, \ldots, s - 1,
\]

\[
\sum_{r=0}^{s-1} N(r,t) = sk, \quad r = 0, \ldots, s - 1.
\]

In order to maximize \(f(x_i, x_j) \), we only need to maximize each \(\sum_{t=0}^{s-1} |N(r,t) - k| \) under condition \(\sum_{r=0}^{s-1} N(r,t) = sk \), for \(t = 0, \ldots, s - 1 \). Obviously, \(f(x_i, x_j) \) arrives at its maximum when \(x_i \) and \(x_j \) are fully aliased. In this case, for any fixed \(t \), there exists \(r_1 \) such that \(N(r_1,t) = ks \) and \(N(r,t) = 0, r \neq r_1 \). Therefore, \(\sum_{t=0}^{s-1} |N(r,t) - k| = 2(s - 1)k \) and \(\sum_{r=0}^{s-1} \sum_{t=0}^{s-1} f(x_i, x_j) = 2ks(s - 1) \).

(iii) If \(x_i \) and \(x_j \) are not orthogonal, there exists at least one pair, \((i_1, j_1)\), such that the number of its appearances is not \(k \). Since \(\sum_{i=0}^{s-1} N(i,j_1) = ks \), there exists another pair \((i_2, j_1)\), \(i_2 \neq i_1 \) such that the number of its appearances is not \(k \). Similarly, there exist at least four different pairs \((i_1, j_1), (i_2, j_1), (i_2, j_2), (i_3, j_2)\) such that the number of their appearances is not \(k \). Obviously, \(f(x_i, x_j) \geq 4 \), the equality holds when \(i_1 = i_2, j_1 = j_2, k \) the number of appearances of these four pairs is \(k \pm 1 \), and the frequency of other pairs are all equal to \(k \).

(iv) Obvious.

(v) Denote this \(L_n(s^m) \) by \(L \), then the design \(S = (L, L, \ldots, L) \) satisfies (2.1), (2.2). In fact, any two different columns \(x_i \) and \(x_j \) of \(S \) are orthogonal to each other and so \(f(x_i, x_j) = 0 \) while any two same columns \(x_i \) and \(x_j \) of \(S \) are fully aliased and so \(f(x_i, x_j) = s|ks - k| + (s^2 - s)|0 - k| = ks(2s - 2) \). When \(s = 2, m = n - 1 \), Tang and Wu (1997) proved the lower bound. \(\square \)

Assertion (i) shows that the criteria defined in Definition 2.2 are extensions of \(\text{Ave}|s| \), \(\text{Ave}(s^2) \), \(s_{\text{max}} \) and the frequency of \(s_{ij} = s_{\text{max}} \) in the case \(s = 2 \). In the case \(s = 2 \), the absolute value of correlation coefficient between \(x_i \) and \(x_j \) is \(|s_{ij}|/n = f(x_i, x_j)/n \). For the multi-level case, we define \(f(x_i, x_j)/2ks(s - 1) \) as a generalized correlation coefficient from property (ii). Assertion (ii) gives the upper bound of \(f(x_i, x_j) \) while assertion (iii) gives the lower bound of \(f(x_i, x_j) \) if \(x_i \) and \(x_j \) are not orthogonal. Property (iv) ensures that all proposed criteria are invariant under exchanging rows or columns of the design, or under permuting level values.

3. Constructing multi-level supersaturated designs

In the last decade, a number of methods and algorithms for generating 2-level supersaturated designs has been proposed. Unfortunately, it is not straightforward to extend these methods to multi-level supersaturated designs. The only exception may be the columnwise-pairwise algorithm. Li and Wu (1997) have stated the possibility of application of the columnwise-pairwise algorithm for constructing any level of supersaturated designs, although no specific multi-level designs were given. In this section
we adopt the collapsing method from Addelman (1962). The basic idea of the construction method is to collapse a multi-level factor into several low-level factors. Here we collapse the popular U-type uniform design (see, for example, Fang and Wang, 1994; Fang and Hickernell, 1995) to an orthogonal design.

Denote an orthogonal design \((L_n(s^{rd}))\), U-type design \((U(n,n'))\) and the resulting \(n \times rd\) design by \(L = (l_{ij})\), \(U = (u_{ij})\), and \(X\), respectively. Without loss of generality, let the entries of \(U\) be \(1, 2, \ldots, n\) and the first column of \(U\) be \((1, 2, \ldots, n)\). Denote \(L\) in terms of its rows by \(L = (\ell_1, \ldots, \ell_n)^T\), where each \(\ell_k\) is a column vector. Define a mapping: \(k \rightarrow \ell_k^T\), for \(k = 1, \ldots, n\). Applying this mapping to the first column of \(U\) produces the first block, \(X_1\), of \(X\). Clearly, \(X_1 = L\). Applying the mapping to the second column of \(U\) produces to the second block \(X_2\) of \(X\), and so on. As a result, a supersaturated design \(X = (X_1, \ldots, X_r)\) of size \(n \times rd\) is obtained. Specifically, we have

\[
X = \begin{pmatrix}
\ell_{11}^T, \cdots, \ell_{1r}^T \\
\ell_{21}^T, \cdots, \ell_{2r}^T \\
\vdots & \ddots & \vdots \\
\ell_{n1}^T, \cdots, \ell_{nr}^T
\end{pmatrix}
\]

To be more specific, denote \(X\) as \(S_n(s^{rd})\), called the \(S\)-design, and denote the above operation by \(S_n(s^{rd}) = U \oplus L\). The \(U\) and \(L\) matrices are called the generating designs.

Example 1. Suppose that we extend the orthogonal design \(L = L_9(3^4)\) and a generating U-type design \(U = U(9,9^2)\) to an \(S\)-design \(S_9(3^8)\) by the collapsing method. By the collapsing method, we have

\[
U \oplus L = \begin{bmatrix}
1 & 1 \\
2 & 7 \\
3 & 3 \\
4 & 9 \\
5 & 5 \\
6 & 6 \\
7 & 2 \\
8 & 8 \\
9 & 4
\end{bmatrix} \oplus \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 2 & 2 & 2 \\
1 & 0 & 1 & 2 \\
1 & 1 & 2 & 0 \\
1 & 2 & 0 & 1 \\
2 & 0 & 2 & 1 \\
2 & 1 & 0 & 2 \\
2 & 2 & 1 & 0
\end{bmatrix} = X = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 2 & 0 & 2 & 1 \\
0 & 2 & 2 & 2 & 0 & 2 & 2 & 2 \\
1 & 0 & 1 & 2 & 2 & 2 & 0 & 1 & 1 \\
1 & 1 & 2 & 0 & 1 & 1 & 2 & 0 \\
1 & 2 & 0 & 1 & 1 & 2 & 0 & 1 & 1 \\
2 & 0 & 2 & 1 & 2 & 0 & 2 & 1 & 0 & 1 \\
2 & 1 & 0 & 2 & 2 & 2 & 0 & 1 & 2 & 0 \\
2 & 2 & 1 & 0 & 1 & 0 & 1 & 2 & 0 & 1
\end{bmatrix}.
\]

The first block (the first four columns) of \(X\) is the original \(L\) and the second block (the last four columns) are formed by rearranging row vectors of \(L\) according to the order defined by the second column of \(U\). The values of \(\text{Ave}[f]\) and \(\text{Ave}(f^2)\) are 2.428 and 12.857, respectively. The crucial step of this collapsing method is how to choose the best U-type design \(U(n,n')\) in the sense of minimizing any specific criterion (see Definition 2.2). Denote \(\mathcal{U}(m,s^d)\) as the set of all U-type \(U(n,s^d)\). We search for a supersaturated design \(X = S_n(s^{rd}) = U \oplus L\) by minimizing any specific criterion with respect to \(U \in \mathcal{U}(n,n')\).
Taking $L_0(3^4)$ as an example, 2000 U-type designs in $\mathcal{U}(n, n^t)$ were randomly generated to obtain the corresponding S-designs. We then evaluated all their values for the following criteria: $\text{Ave}[f]$, $\text{Ave}(f^2)$, f_{max}, $N_{f_{\text{max}}}$, the discrepancy and $E(t^2)$, where

$$E(t^2) = \sum_{1\leq i<j\leq m} r_{ij}^2 \left(\frac{m}{2} \right).$$

m is the number of columns of X, r_{ij} is the correlation coefficient between x_i and x_j. As pointed out by one referee, the correlation coefficient r_{ij} is a useful measure for quasi-Monte Carlo methods but not useful for multi-level supersaturated designs. The reason is that a correlation coefficient is meaningful only for quantitative factors. The two columns in Table 1 list $E(|r|)$ and $E(t^2)$ for reference purpose only. The discrepancy is a popular measure of uniformity in quasi-Monte Carlo methods (Niederreiter, 1992). Some empirical observations are:

- An S-design with a low $\text{Ave}(f^2)$ value has a low $E(t^2)$ value, but the inverse is not necessarily true. We find that in the 2000 S-designs, most of designs with low $E(t^2)$ value have many fully aliased column pairs. For example, if we choose U-type design

$$\begin{pmatrix} 123456789 \\ 294537861 \end{pmatrix}$$

as the generating design, the corresponding S-design has the smallest $E(t^2) = 0.0357$, but it includes four fully aliased column pairs. This is the reason why we did not use $E(t^2)$ as a criterion for comparing multi-level designs.

- An S-design with a large $\text{Ave}(f^2)$ value, in general, has a large $\text{Ave}[f]$ value, and vice versa. An S-design with small $\text{Ave}(f^2)$ value has a small f_{max} value, but it
does not necessarily have a small $\text{Ave}|f| \text{ value. In many cases, it has a large $\text{Ave}|f|$ value. We also find that many S-designs with small $\text{Ave}|f|$ value may have a larger f_max. Thus, the criterion $\text{Ave}|f|$ is not recommended, and we recommend using $\text{Ave}(f^2)$ or using the two criteria $\text{Ave}|f|$ and f_max together.

- If an S-design has a low $\text{Ave}(f^2)$ value, its generating design U generally has a low discrepancy. However, the inverse is not necessarily true. Since computing $\text{Ave}(f^2)$ is much easier than computing the discrepancy, this suggests a way to find a nearly uniform design by minimizing $\text{Ave}(f^2)$ with respect to $U \in \mathcal{U}(n,s')$. The minimum design U^* is a nearly uniform design (cf. Fang and Hickernell, 1995).

Our simulation recommends the use of $\text{Ave}(f^2)$ among the five criteria defined in Definition 2.2. When two S-designs have the same $\text{Ave}(f^2)$ value, we choose one with smaller f_max value. On the other hand, if we choose f_max as the first criterion, the procedure will tend to be conservative, namely, many good designs with small $\text{Ave}(f^2)$ values will be screened out. It is unrealistic to evaluate all possible S-designs generated by $U \oplus L$. Therefore, we need an optimization algorithm that can work on NP or NP hard problems. One such optimization algorithm is the threshold accepting (TA) algorithm proposed by Dueck and Scheuer (1990). TA has been successfully applied to many NP hard problems. By the use of TA, Winker and Fang (1996) found many U-type designs with lower discrepancy than that generated by other methods.

The following gives the detailed algorithm to search for S-designs with low $\text{Ave}(f^2)$:

Step 1: Randomly choose $U^c = (u^c_1, \ldots, u^c_r) \in \mathcal{U}(n, n')$, where “c” means “current”. Set control parameters T, t, m, JJ and II and compute $D_c = \text{Ave}(f^2)$ of $U^c \oplus L$, where L is the pre-decided orthogonal design.

Step 2: Randomly choose the t columns of U^c and randomly exchange m pairs of elements in each of these t columns. This results in a new U-type design, denoted by $U^u = (u^u_1, \ldots, u^u_r)$, where “u” stands for “update”. Compute $D_u = \text{Ave}(f^2)$ of $U^u \oplus L$. Let $J := J + 1$.

Step 3: If $D_u - D_c < T$, let $U^c := U^u$ and go to Step 2; otherwise go to Step 4.

Step 4: If $J < JJ$, go to Step 2; otherwise go to Step 5.

Step 5: Reduce the T-value according to a pre-assigned rule as follows. Let $I := I + 1$.

If $I < II$, go to Step 2, otherwise terminate the process. The current matrix U^c can be considered a local minimum solution and $U^c \oplus L$ is the desired S-design.

There are several control parameters T, t, m, JJ and II in this procedure. The threshold $T > 0$ can help avoid converging to a local minimum. If T is too large, the procedure closes to a purely random search and the convergence rate is very slow. If T is too small, it is difficult to “jump out” from a local minimum. The integers t and m control the number of exchanging pairs. If t and m are too large, the procedure closes to a purely random search. Otherwise we may converge to a local minimum. The integer II controls the number of iterations and JJ furthermore controls the number of searches in the neighborhood of U^c and also controls how often to reduce the T-value. Generally, the larger II and JJ are, the better the output S-design is. However, larger II and JJ require more CPU time.
In this work, we have chosen \(L_9(3^4) \), \(L_{18}(3^7) \), \(L_{27}(3^{13}) \), \(L_{16}(4^5) \) and \(L_{25}(5^6) \) as the generating designs. These popular orthogonal arrays are available in many design books, see, for example, Dey (1985). The corresponding generating \(U \)-type designs chosen have \(r = 2-4 \). Table 1 presents the control parameters \(t, m \), and \(T \) values in the use of TA and values of some criteria for the output \(S \)-designs. These output designs were tabulated in the appendix. Note that the \(S_9(3^8) \) design obtained in Example 1 can be further improved by using the TA.

There are some advantages of the collapsing method proposed in this paper. First, this method is simple and can be easily implemented. Second, the output \(S \)-design is block-orthogonal. Let \(X = U \oplus L \) be the \(S \)-design, where \(U \in \mathbb{U}(n, s^r) \) and \(L = L_{n}(s^d) \). Then \(X = (X_1; X_2; \cdots; X_r) \), where each \(X_j \) has size \(n \times d \) and the \(X_j \) are orthogonal. This block-orthogonal structure of the design has been considered by many authors, for example, Yamada and Lin (1997). If we put more important factors in the same orthogonal block, their main effects can be easily estimated.

4. Subdesigns

The number of columns of the output \(S \)-design by the collapsing method is a multiple of \(d \). When the number of factors is not a multiple of \(d \), a subdesign can be obtained as follows. Let \(X \) be the output \(S \)-design of size \(n \times d r \) by the collapsing method and let the number of factors \(m \in [d(r-1)+1, dr] \). We then delete \(m - rd \) columns from \(X \) based on the criterion given below.

Definition 4.1. Let \(X = (x_1, \ldots, x_m) \) be an \(S \)-design. Define

\[
c(i) = \sum_{j \neq i, j=1}^{m} f(x_i, x_j)^2
\]

as a measure for nonorthogonality of the \(i \)th column \(x_i \) against the remaining \(m - 1 \) columns.

For a given \(S \)-design \(S_n(s^{rd}) \), we delete the column that has the largest \(c \)-value. Then we calculate the \(c \)-value for the remaining \(rd - 1 \) columns and delete the column that has the largest \(c \)-value, and so on, until there are \(m \) columns left. Table 2 gives the order of columns being deleted from the corresponding \(S \)-design. The corresponding values of \(\text{Ave}(f^2) \), \(\text{Ave}|f| \) for each subdesign were evaluated. They are satisfactory for practical use (see Fang et al., 1998, Table 3 for the lengthy display).

There are very few multi-level supersaturated designs in the literature. A thorough computation on the \(\text{Ave}(f^2) \) values, for example, indicates the superiority of the newly constructed designs. As compared to the supersaturated designs obtained by Liu and Zhang (1998), for example. The \(\text{Ave}(f^2) \) value for the cases \(S_9(3^8), S_{16}(4^{10}), S_{18}(3^{14}) \),
Table 2

Columns to be deleted

<table>
<thead>
<tr>
<th>n, r</th>
<th>The Order of Columns to be deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>9, 2</td>
<td>8 7 6</td>
</tr>
<tr>
<td>9, 3</td>
<td>12 11 10 9 8 7 6</td>
</tr>
<tr>
<td>9, 4</td>
<td>16 15 14 13 12 11 10 9 8 7 6</td>
</tr>
<tr>
<td>18, 2</td>
<td>13 11 9 8 12 10</td>
</tr>
<tr>
<td>18, 3</td>
<td>10 8 11 16 13 9 14 12 6 18 20 21 17</td>
</tr>
<tr>
<td>18, 4</td>
<td>1 7 4 6 3 2 5 23 22 28 27 24 26 25 8 12 18 10 9 11</td>
</tr>
<tr>
<td>27, 2</td>
<td>2 9 5 3 12 8 1 4 13 10 6 7</td>
</tr>
<tr>
<td>27, 3</td>
<td>25 22 15 17 19 26 16 21 24 18 23 20 14 11 10 3 7 9 12 5 4 6 2 1 11 8</td>
</tr>
<tr>
<td>27, 4</td>
<td>22 40 52 45 44 41 49 43 46 50 42 48 51 47 23 24 16 21 20</td>
</tr>
<tr>
<td>16, 2</td>
<td>10 8 7 9</td>
</tr>
<tr>
<td>16, 3</td>
<td>14 15 12 13 11 8 6 10 9</td>
</tr>
<tr>
<td>16, 4</td>
<td>15 13 12 14 11 16 18 19 20 17 6 10 8 7</td>
</tr>
<tr>
<td>25, 2</td>
<td>7 12 8 11 10</td>
</tr>
<tr>
<td>25, 3</td>
<td>15 14 18 17 16 13 12 9 11 8 7</td>
</tr>
<tr>
<td>25, 4</td>
<td>12 8 7 10 9 11 15 14 16 13 17 18 22 23 24 21 20</td>
</tr>
</tbody>
</table>

Table 3

For \(n = 9, s = 3 \), U-type design and orthogonal array

<table>
<thead>
<tr>
<th>U-type design</th>
<th>Orthogonal array</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(r = 2)</td>
</tr>
<tr>
<td>1</td>
<td>5 1 7 6 1 6 3 9 0 0 0 0</td>
</tr>
<tr>
<td>2</td>
<td>4 2 2 8 2 3 7 7 0 1 1 1</td>
</tr>
<tr>
<td>3</td>
<td>9 3 5 2 3 2 2 3 0 2 2 2</td>
</tr>
<tr>
<td>4</td>
<td>3 4 4 7 4 5 8 1 1 0 1 2</td>
</tr>
<tr>
<td>5</td>
<td>1 5 6 9 5 7 5 5 1 1 2 0</td>
</tr>
<tr>
<td>6</td>
<td>6 6 3 5 6 1 4 8 1 2 0 1</td>
</tr>
<tr>
<td>7</td>
<td>8 7 9 3 7 8 6 4 2 0 2 1</td>
</tr>
<tr>
<td>8</td>
<td>2 8 8 1 8 4 9 6 2 1 0 2</td>
</tr>
<tr>
<td>9</td>
<td>7 9 1 4 9 9 1 2 2 2 1 0</td>
</tr>
</tbody>
</table>

\(S_{27(3^{36})} \) are (12.00, 40.00, 23.34, 37.13) for the new designs. The corresponding values for the designs in Liu and Zhang are (19.29, NA, 28.30, NA), where NA stands for “Not Available”.

Concluding Remarks. One referee points out that in two-level supersaturated designs, some works have considered construction methods based on permutation of rows. These include Taguchi (1987), Tang and Wu (1997) and Deng et al. (1994). Apart from the fact that they are all for two-level designs, the main difference from our work is
Table 4
For \(n = 18, s = 3 \), U-type design and orthogonal array

\[
\begin{array}{cccccccc}
U\text{-type design} & & & & & \text{Orthogonal array} \\
\hline
r = 2 & r = 3 & r = 4 & & & & & \\
\hline
1 & 16 & 1 & 12 & 14 & 1 & 15 & 17 & 17 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & 1 & 2 & 6 & 6 & 2 & 3 & 8 & 8 & 0 & 1 & 1 & 1 & 1 & 1 \\
3 & 8 & 3 & 1 & 8 & 3 & 1 & 12 & 12 & 10 & 0 & 2 & 2 & 2 & 2 \\
4 & 15 & 4 & 17 & 5 & 4 & 16 & 7 & 1 & 1 & 0 & 1 & 1 & 2 & 2 \\
5 & 6 & 5 & 8 & 18 & 5 & 18 & 11 & 4 & 1 & 1 & 1 & 2 & 2 & 0 \\
6 & 10 & 6 & 5 & 15 & 6 & 5 & 1 & 18 & 1 & 2 & 2 & 0 & 0 & 1 \\
7 & 4 & 7 & 18 & 16 & 7 & 16 & 14 & 6 & 1 & 2 & 0 & 1 & 2 & 2 \\
8 & 18 & 8 & 15 & 1 & 8 & 8 & 3 & 9 & 2 & 1 & 2 & 1 & 0 & 2 \\
9 & 12 & 9 & 2 & 10 & 9 & 14 & 14 & 14 & 2 & 2 & 0 & 2 & 1 & 0 \\
10 & 9 & 10 & 16 & 7 & 10 & 13 & 7 & 16 & 0 & 0 & 2 & 2 & 1 & 1 \\
11 & 13 & 11 & 14 & 11 & 11 & 10 & 10 & 15 & 0 & 1 & 0 & 0 & 2 & 1 \\
12 & 2 & 12 & 11 & 9 & 12 & 1 & 18 & 13 & 0 & 2 & 1 & 1 & 0 & 0 \\
13 & 14 & 13 & 7 & 3 & 13 & 9 & 6 & 11 & 1 & 0 & 1 & 2 & 0 & 1 \\
14 & 17 & 14 & 9 & 12 & 14 & 6 & 6 & 3 & 3 & 1 & 2 & 0 & 1 & 0 \\
15 & 7 & 15 & 4 & 17 & 15 & 11 & 13 & 2 & 1 & 2 & 0 & 1 & 2 & 1 \\
16 & 11 & 16 & 10 & 2 & 16 & 7 & 12 & 6 & 2 & 0 & 2 & 1 & 2 & 0 \\
17 & 3 & 17 & 13 & 4 & 17 & 2 & 5 & 1 & 2 & 1 & 0 & 2 & 0 & 1 \\
18 & 5 & 18 & 3 & 13 & 18 & 17 & 15 & 12 & 2 & 2 & 1 & 0 & 1 & 2 \\
\hline
\end{array}
\]

Table 5
For \(n = 27, s = 3 \), U-type design and orthogonal array

\[
\begin{array}{cccccccc}
U\text{-type design} & & & & & \text{Orthogonal array} \\
\hline
r = 2 & r = 3 & r = 4 & & & & & \\
\hline
1 & 22 & 1 & 2 & 7 & 1 & 19 & 13 & 9 & 0 & 1 & 0 & 1 & 2 & 1 & 1 \\
2 & 14 & 2 & 14 & 22 & 2 & 2 & 15 & 13 & 7 & 0 & 1 & 0 & 1 & 2 & 1 & 0 \\
3 & 21 & 3 & 19 & 14 & 3 & 5 & 3 & 21 & 1 & 0 & 1 & 2 & 1 & 0 & 1 & 0 \\
4 & 20 & 4 & 21 & 17 & 4 & 12 & 10 & 27 & 1 & 0 & 1 & 2 & 1 & 0 & 1 & 1 \\
5 & 23 & 5 & 5 & 26 & 5 & 25 & 22 & 22 & 1 & 2 & 1 & 2 & 0 & 1 & 1 & 0 \\
6 & 15 & 6 & 20 & 8 & 6 & 13 & 26 & 25 & 1 & 2 & 1 & 0 & 1 & 1 & 0 & 0 \\
7 & 6 & 7 & 18 & 25 & 7 & 3 & 8 & 17 & 1 & 2 & 0 & 1 & 1 & 0 & 0 & 2 \\
8 & 12 & 8 & 15 & 1 & 8 & 14 & 23 & 23 & 1 & 2 & 0 & 1 & 1 & 0 & 0 & 2 \\
9 & 18 & 9 & 4 & 3 & 9 & 16 & 7 & 4 & 2 & 0 & 1 & 1 & 0 & 0 & 2 \\
10 & 13 & 10 & 27 & 11 & 10 & 1 & 9 & 8 & 0 & 1 & 1 & 0 & 0 & 2 & 0 & 1 \\
11 & 4 & 11 & 10 & 16 & 11 & 22 & 21 & 2 & 1 & 1 & 0 & 0 & 2 & 0 & 1 & 2 \\
12 & 1 & 12 & 26 & 21 & 12 & 27 & 20 & 13 & 1 & 1 & 0 & 0 & 2 & 1 & 2 & 1 \\
13 & 24 & 13 & 24 & 2 & 13 & 17 & 17 & 12 & 1 & 0 & 0 & 2 & 1 & 2 & 1 & 0 \\
14 & 9 & 14 & 1 & 6 & 14 & 9 & 6 & 19 & 0 & 0 & 2 & 0 & 2 & 1 & 2 & 1 \\
15 & 25 & 15 & 8 & 15 & 15 & 4 & 12 & 5 & 0 & 2 & 0 & 1 & 2 & 0 & 2 & 2 \\
16 & 16 & 16 & 12 & 16 & 26 & 1 & 11 & 2 & 0 & 2 & 1 & 2 & 1 & 2 & 2 & 0 \\
17 & 8 & 17 & 16 & 19 & 17 & 10 & 18 & 16 & 0 & 2 & 1 & 2 & 1 & 0 & 2 & 2 \\
18 & 7 & 18 & 7 & 4 & 18 & 6 & 19 & 18 & 2 & 1 & 2 & 1 & 0 & 2 & 2 & 0 \\
19 & 10 & 19 & 11 & 20 & 19 & 15 & 16 & 20 & 1 & 2 & 1 & 0 & 2 & 2 & 0 & 1 \\
20 & 17 & 20 & 23 & 13 & 20 & 24 & 25 & 24 & 2 & 1 & 0 & 2 & 2 & 0 & 1 & 0 \\
21 & 26 & 21 & 9 & 23 & 21 & 18 & 14 & 14 & 1 & 2 & 0 & 2 & 2 & 0 & 0 & 1 \\
22 & 19 & 22 & 3 & 10 & 22 & 20 & 5 & 3 & 1 & 0 & 2 & 2 & 0 & 0 & 1 & 2 \\
23 & 3 & 23 & 6 & 5 & 23 & 21 & 4 & 6 & 0 & 2 & 2 & 0 & 0 & 1 & 0 & 1 \\
24 & 27 & 24 & 13 & 24 & 24 & 8 & 24 & 26 & 2 & 2 & 0 & 0 & 1 & 0 & 1 & 2 \\
25 & 11 & 25 & 17 & 9 & 25 & 23 & 27 & 15 & 2 & 0 & 0 & 1 & 0 & 1 & 2 & 1 \\
26 & 5 & 26 & 22 & 27 & 26 & 7 & 2 & 10 & 2 & 0 & 0 & 1 & 2 & 1 & 1 & 2 \\
27 & 2 & 27 & 25 & 18 & 27 & 11 & 11 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
\]
Table 6
For \(n = 16, s = 4\), U-type design and orthogonal array

<table>
<thead>
<tr>
<th>U-type Design Orthogonal array</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r = 2)</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>16</td>
</tr>
</tbody>
</table>

Table 7
For \(n = 25, s = 5\), U-type design and orthogonal array

<table>
<thead>
<tr>
<th>U-type design Orthogonal array</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r = 2)</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>21</td>
</tr>
<tr>
<td>22</td>
</tr>
<tr>
<td>23</td>
</tr>
<tr>
<td>24</td>
</tr>
<tr>
<td>25</td>
</tr>
</tbody>
</table>
that Taguchi’s randomly combined design is permuted in a random fashion; the other two are permuted to minimize the specific criterion $E(s^2)$. Our construction method is systematic and deterministic.

Acknowledgements

We thank the reviewers for useful comments that helped improve the paper. This work was partially supported by a Hong Kong UGC-grant and Hong Kong Baptist University. The authors thank Professor R. C. Zhang for sending us related materials and Dr. Fred J. Hickernell for his support and help. Dennis Lin is partially supported by National Science Foundation via Grant DMS-9704711 and National Science Council of ROC via Contract NSC 87-2119-M-001-007.

Appendix

The output designs were tabulated in Tables 3–7.

References