Plan for next two lectures

- Integration along “contour” in \(\mathbb{C} \); Cauchy's theorem.

- Examples of use of Cauchy's theorem (plus other tools) to calculate/analyze certain kinds of integral.

- Some important general theorems about analytic functions.
Complex integration

- Integral along a contour $\Gamma, z = z(s)$, is defined by
 \[\int_\Gamma dz \, f(z) = \int ds \frac{dz}{ds} f(z(s)) \]
 It is independent of the parameterization of Γ.

- Cauchy’s theorem: Integral around closed contour C is zero, if $f(z)$ analytic in the region Ω bounded by C: $\int_C f(z) \, dz = 0$

- Equivalently: If Γ_0 and Γ_1 are two paths between the same endpoints a and b, and $f(z)$ is analytic in the region bounded by Γ_0 and Γ_1, then
 \[\int_{\Gamma_0} dz \, f(z) = \int_{\Gamma_1} dz \, f(z) \]

- Proofs:
 - By Stoke’s theorem + Cauchy-Riemann equations.
 - By deforming the contour by a parameter a: $\Gamma_a(s)$, and then showing
 \[\frac{d}{da} \int_{\Gamma_a} f(z) \, dz = 0. \]