Plan for next two lectures

- Integration along "contour" in \(\mathbb{C} \); Cauchy's theorem.
- Examples of use of Cauchy's theorem (plus other tools) to calculate/analyze certain kinds of integral.
- Some important general theorems about analytic functions.

Complex integration

- Integral along a contour \(\Gamma \), \(z = z(s) \), is defined by
 \[
 \int_{\Gamma} dz \, f(z) = \int ds \frac{dz}{ds} f(z(s))
 \]
 It is independent of the parameterization of \(\Gamma \).
- Cauchy's theorem: Integral around closed contour \(C \) is zero, if \(f(z) \) analytic in the region \(\Omega \) bounded by \(C \):
 \[
 \int_{C} f(z) \, dz = 0
 \]
- Equivalently: If \(\Gamma_0 \) and \(\Gamma_1 \) are two paths between the same endpoints \(a \) and \(b \), and \(f(z) \) is analytic in the region bounded by \(\Gamma_0 \) and \(\Gamma_1 \), then
 \[
 \int_{\Gamma_0} dz \, f(z) = \int_{\Gamma_1} dz \, f(z)
 \]
- Proofs:
 - By Stoke's theorem + Cauchy-Riemann equations.
 - By deforming the contour by a parameter \(a \): \(\Gamma_a(s) \), and then showing
 \[
 \frac{d}{da} \int_{\Gamma_a} f(z) \, dz = 0.
 \]