Concepts to know

• Hermitian conjugate A^\dagger of linear operator or square matrix.
• Hermitian operator/matrix
• Unitary operator/matrix
• Symmetric, orthogonal matrices
• Eigenvector, eigenvalue
• Determinant
Standard theorems to remember (finite-dimensional case)

- Eigenvalues of hermitian matrix/operator are real
- Eigenvectors for different eigenvalues of hermitian matrix/operator are orthogonal
- Hermitian matrices can be diagonalized by unitary operator
- There’s an orthonormal basis of eigenvectors of hermitian operator
- 2 hermitian matrices A and B can be simultaneously diagonalized if and only if (iff) they commute
- $\det(AB) = \det(A) \det(B)$. A invertible iff $\det(A) \neq 0$
- Eigenvalues obey $\det(A - \lambda I) = 0$
- nth order polynomial has n roots, counting multiplicity:
 \[P(z) \propto \prod_{j=1}^{n} (z - z_j) \]
Diagonalization: Multiple different situations

• Linear operator, like H in quantum mechanics.

 [Diagonalization properties of hermitian operators dominate thoughts about diagonalization for many physicists.]

• Quadratic form(s), as in small oscillation problem in mechanics:

 $$L = \sum_{i,j} \left(\frac{1}{2} q^i K_{ij} \dot{q}^j - \frac{1}{2} q^i V_{ij} \dot{q}^j \right)$$

 (Here we use simultaneous diagonalization of non-commuting real symmetric matrices!)

• Singular-value decomposition (SVD):

 Let M be any matrix, size $n \times m$. Then there exist unitary U ($n \times n$) and V ($m \times m$), and diagonal Σ ($n \times m$, $\Sigma_{ii} \geq 0$) such that

 $$M = U \Sigma V^\dagger$$
Issues to be discussed

- Examples of applications
- Commonalities
- Differences: Change of matrix “coordinates” under change of vector coordinates/basis.
- Unitary diagonalization of hermitian matrices as basis for other theorems
- Summaries of improved proofs
- Jordan normal form for general linear operator/diagonal matrix