\(M \) is linear op.: \(V \to V \).

\(H = M^*M \) is a linear op. from \(V \) to \(V \).

\(H^* = (M^*M)^* = M^*M = H \).

\(H \) is Hermitian.

\(H \) can be diagonalized. Eigenvectors \(|i\rangle \) can be chosen to form an orthonormal basis of \(V \); the eigenvalues \(\lambda_i \) with \(H |i\rangle = \lambda_i |i\rangle \) are real. This all comes from standard theorems.

\[\langle i | j \rangle = \delta_{ij} \] is the orthonormality condition.

\[\langle i | H | i \rangle = \langle i | \lambda_i | i \rangle = \lambda_i \langle i | i \rangle = \lambda_i. \]

But

\[\langle i | H | i \rangle = \langle i | M^*M | i \rangle = (M|i\rangle)^* M |i\rangle \]

\[= |H |i\rangle |i\rangle \]

\[\geq 0. \]

\[\therefore \lambda_i \geq 0. \]

Define \(|\epsilon_i \rangle = M |i\rangle \).
\[\langle e_i | e_j \rangle = (m_i^j)^+ m_i^j \]
\[= \langle i | m_i^j m_i^j | i \rangle \]
\[= \langle i | m_i^j | i \rangle \]
\[= \delta_j^i \langle i | i \rangle \]
\[= \delta_j^i \delta_{ij} \quad \text{(no summation convention!)} \]

If \(i \neq j \) then \(\langle e_i | e_j \rangle \), i.e., \(|e_i\rangle \) and \(|e_j\rangle \) are orthogonal.

If \(i = j \)
\[\| e_i \| = \sqrt{\langle e_i | e_i \rangle} = \sqrt{\lambda_i} \]