Week 1, Lecture 1

István Albert

Bioinformatics Consulting Center
Penn State, 2014
Introductions

Lecturer: **Istvan Albert**
(iua1@psu.edu)

TA: Yong Jung
(yong.jung@gmail.com)

Office hours: Mon-Wed from 1-2:30pm
130 Millennium Science Center
(Crick Room)

Email: iua1@psu.edu

Course materials: http://www.personal.psu.edu/iua1/

StudyRoom webpage: look for **Applied Bioinformatics at Penn State**
Rationale for this course

• Life sciences are becoming a data driven science

• Data is represented as text files in various formats that are transformed one step at a time

• Most bioinformatics classes are focused on computer science or algorithms.

• We will focus on information processing and applications
For Big-Data Scientists, ‘Janitor Work’ Is Key Hurdle to Insights

Technology revolutions come in measured, sometimes foot-dragging steps. The lab science and marketing enthusiasm tend to underestimate the bottlenecks to progress that must be overcome with hard work and practical engineering.

The field known as “big data” offers a contemporary case study. The catchphrase stands for the modern abundance of digital data from many sources — the web, sensors, smartphones and corporate databases — that can be mined with clever software for discoveries and insights. Its promise is smarter, data-driven decision-making in every field. That is why data scientist is the economy’s hot new job.

Yet far too much handcrafted work — what data scientists call “data wrangling,” “data munging” and “data janitor work” — is still

Course Requirements

• Recommended: newest Mac OSX Maverick 10.9.4

• Or any other Unix based operating system

• If you have a Windows computer please install Linux
 – Ubuntu on a USB stick, Ubuntu Live CD
 – Use VirtualBox and install Linux into it
 – Or set up dual boot Linux and Windows
Lecture topics

15 weeks – two lectures per week = 30 lectures

• core informatics competency
• computational foundations
• biological data formats
• statistical methods and visualization
• software tools and their applications
Lecture Formats

• Background information
• Practical examples that tie in with the topic
• Finishing with in class exercises + homework
• We’ll try to make it simple and easy to follow
Homework

• Home work will be given out during **each lecture** and correspond to the lecture. Will be labeled as 1, 2 ... 30

• Home work is due on the **Tuesday** of the following week of when it was given out.

• For example: homework 1 and 2 will be due next Tuesday.

• Note: there are two office hours between each homework’ due date (Wed and Mon)

• Homework usually fits on one sheet of paper. Show the commands and their output. You can print screens if you want to but:

 please don’t print a console output of white text on on black background
Grading

• Grades will be the weighted average of all homework + final project

• The final project will (weight of 20%) will similar to but more complex than a typical homework will make use of concepts learned thought the year

• Final project given out last week Thursday, and will be by the Monday on the final’s week.

• For homework and final project you may work in teams – but watch out for “group think”.
Computational approaches reflect and affect the thought process.

When we learn informatics, we learn how to think in a way that is easy to translate into computation.

There is no magic – it is just like any other subject matter – it needs a lot of practice (the brain is a muscle).

Similar to learning a foreign language – there is a vocabulary, a grammar ➔ idiomatic expressions.
Realistic News

Bioinformatics will never be easy or trivial!

It is like high altitude mountain hiking. Even if you have done it before does not mean next time is trivially easy.

There are only so many mountains you can climb in a week/month/year.

It always requires attention and patience and attention. Many things do go unexpectedly all the time.

WHY?
It is about information

• “Life is complicated” there are few rules (if any)

• People/scientists have a “blind spots”, they focus on what they want to achieve and hope that everything else is not relevant

• Living organisms want to survive at all costs – it is none of their concern is to make it “humanly understandable”
Expectations

You can **only learn** by doing it

Spend 3-6 hours outside class each week:

- Explore behaviors
- Expand the scope of the study
- Try new solutions

Time flies when you know what you are doing.
Complexity versus decision making

• Most bioinformatics analyses consists of a very large number of very simple decisions

• Most of which need to be correct!

• This is what makes it difficult

• There are no strict rules, only guidelines → you must be able to improvise and adapt
Bioinformatics today

Large datasets generated by complex equipment

1. **Data management** → storage, transfer, data transformation → domain of **Information Technology**

2. **Data analysis** → mapping, assembly → algorithm scaling → domain of **Computer Science**

3. **Statistical challenges** → traditional statistics is not well suited for modeling systematic errors over large number of observations → domain of **Statistics**

4. **Biological hypothesis testing** → data interpretation domain of **Life Science**
How is bioinformatics done?

<table>
<thead>
<tr>
<th>Command Line Tools</th>
<th>R Programming Environment</th>
<th>Graphical User Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Action words” are chained together to form a pipeline. Data “flows” from one command to the other.</td>
<td>A high level programming statistical environment. Attempts to provide with “simple” constructs that perform complex tasks. Excellent visualization capabilities</td>
<td>A Discoverable Environment. A cure to the “tyranny of the genius”.</td>
</tr>
<tr>
<td>Resembles natural language. Provides generic building blocks. Very adaptive and expressive.</td>
<td>Driving principle: encapsulate complex, multistep tasks into a single command. One magic incantation: full analysis done.</td>
<td>Often lag far behind other options. Difficult to understand data provenance – what has been done to a given dataset.</td>
</tr>
<tr>
<td>Driving principle: simplicity and specialization, do one thing but do it right.</td>
<td>You will frequently experience the “Tyranny of the Genius”</td>
<td>Quite difficult to repeat the same process multiple times.</td>
</tr>
<tr>
<td>Requires a deeper understanding of how computers work behind the science.</td>
<td></td>
<td>“White lies” and exaggerations are common</td>
</tr>
</tbody>
</table>
Bioinformatics data characteristics

- Random errors and systematic errors accumulate and compound during each step: sample extraction, library preparation, sequencing protocols and data analysis.

- Large number of measurements make unlikely events common. Systematic errors interfere with statistical assumptions.
Data produced by equipment

Example: 74 new SNVs (single nucleotide variations) per individual per generation

novel information
Challenges: shifting terminology

What is the difference between a **SNP** (single nucleotide polymorphism) and a **SNV** (single nucleotide variation)?

A SNV is a private mutation while a SNP is a mutation that is shared amongst a population.

At what point does a SNP turn into SNV?
BioStar : http://www.biostars.org

• I started the site in 2009 **during the first year** that BMMB 597D was offered!

• It was meant to support questions for this course

• Today it has grown to attract over **100K** unique visitors per month and over **4.5 million** page views per year
BioStar : http://www.biostars.org
How to turn your computer (and yourself) into a computational beast

On a Mac you will need to:

1. Update your **Mac OS** to the latest version 10.9.4 (Mavericks)

2. Using the App Store download and install **XCode**

3. Download and install the **command line tools**
XCode preferences ➔ Downloads

- Check for and install updates automatically
- Command Line Tools
- iOS 5.0 Simulator (554.1 MB)
- iOS 4.0 – 4.1 Device Debugging Support (505.1 MB)
- iOS 3.0 – 3.2.2 Device Debugging Support (686.3 MB)

Before installing, note that from within Terminal you can use the XCRUN tool to launch compilers and other tools embedded within the Xcode application. Use the XCODE-SELECT tool to define which version of Xcode is active. Type "man xcrun" from within Terminal to find out more.
On Linux

• Install a well supported linux version: Ubuntu, Debian, Fedora etc.

• Use a package manager to install dependencies. Leads to incantations such as. See the course webpage for the full command line

 apt-get install zlib1g-dev
Success looks like this

```
ialbert@porthos ~
$ make
make: *** No targets specified and no makefile found. Stop.
ialbert@porthos ~
$ gcc
i686-apple-darwin11-llvm-gcc-4.2: no input files
ialbert@porthos ~
$ 
```

Open a terminal: the **make** tool and **gcc** both work
You must develop a firm understanding of how files are organized on a computer.

Command line concepts:
- A “tree” like structure where branches are separated by the / symbol
- Going “back” (up) is the ../ symbol
- The location where you are is the ./ symbol.

/a/b/c
/a/b/..../e/f
../../g/h/l
../../b/..../e/f
Organizing your projects

http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1000424
The UNIX command line

Action words

Chain words together to form statements

Open Terminal on Mac.
Getting to know the terminal:
man (manual)

Discover-ability: learn how to find out more details on a tool process
Learn more about these commands

- **ls** (list directory contents)
- **rm** (remove files/directories)
- **cp** (copy files)
- **cd** (change directory)
- **mkdir** (make directory)
- **rmdir** (remove directory)
- **pwd** (print current work directory)

Note that each one of these commands has options (flags)
Customizing commands

- A flag is a small decoration used to change or customize what a tool does.
1. Install all the required software for your computer.
2. Show that you can navigate and list the contents of directories.
3. Create and delete directories, create and delete files.
4. Find help on commands.
5. Understand what flags to commands do.
6. What flags will make the `ls` command write out the files sizes in "human friendly" mode?
7. What flag will make the `rm` command ask for permission when removing a file?
8. What flag will make the `cp` command ask for permission if the copy would overwrite an existing file (this is called clobbering)?
9. Make the directories `src` and `bin` and `refs` from your home directory. These will store programs and analysis results.