Week 7, Lecture 13

István Albert

Biochemistry and Molecular Biology
and Bioinformatics Consulting Center

Penn State
Paired end sequencing

• More information: connect reads that belong to the original fragment

• Nomenclature: \textit{paired-end} and \textit{mated-pairs} are different technologies

• The technology is vendor specific with quirks and tacit assumptions
Paired end (PE) sequencing (most common)

Sequences both end of the same DNA fragment

We end up with two reads that are known to have come from the different strands of the same DNA fragment – insert sizes 200-600bp
Paired end (PE) sequencing short fragments, long reads

Sequences both end of the same DNA fragment

We end up with two reads that are known to have come from the different strands of the same DNA fragment – insert sizes 200-600bp

Read merging/stitching
Mated-pair (MP) sequencing

SOLiD Mate-Pair protocol

Same strand

F3 → R3

mated pair insert sizes → 2000 – 5000bp long

(may change as new protocols are developed)
Dealing with paired data

• Make sure to understand which parts of the DNA fragments have been sequenced.

• Consult your sequencing operator for details on the library preparation.

• When in doubt you can operate in single end mode, then visualize the results (covered in later lectures)

• Verify how the pairs are located relative to one another. (sanity check)

• Consult vendor materials → comprehensive but will also contain a lot of details that are not relevant
More strategies

• Just about all aligners can deal with standard paired end (PE) sequencing data

• A few can deal with mate-pair (MP) and their variations → see Novoalign, check vendor recommended tools

• Finally you may turn the pairs into standard PE by reverse complementing the proper reads.
Competing representations

SE – single end reads, PE – paired end reads

Paired end reads come in either

- two files with the exact same number of lines and IDs, where a pair is present on the same line”

- a single file where pairs are consecutive records (interleaved)
The read order is now also essential

Regardless of representation one now needs to ensure that the order of reads will keep matching

Read removal needs to take place on both files or both lines if the file is interleaved.
Quick PE checklist

• How are my pairs oriented?

• How is the data formatted?
 – are the reads in the same file (interleaved?)
 – are the reads in separate files?
 – what is the naming convention?
 – what is the expected insert (fragment) size and its distribution (minimum, maximum insert sizes)
Summary: paired end vs mated pairs

- Paired ends is supported by some technologies where it is possible to sequence from both ends of a clone.

- Mate pairs involves making circular fragments using a linker sequence, and fragmenting them around the linker, and then sequencing the result.

- The distance between mate pairs are much longer (2-5kb), while paired-end fragments are rarely more than 500bp apart.

- The technologies keep evolving within a year → make sure to ask questions from the facility managers!
Install Trimmomatic

- It is a great tool to deal with **paired end reads**

- Lacks some options that **cutadapt** has

- But it has options **cutadapt** does not directly support
Install Flash

• Flash (Fast Length Adjustment of SHort reads)

• Stiches reads together

• Use stitching if:
 1. short library size cause most reads to overlap significantly and
 2. genomic rearrangements are not a focus of the study
Shell scripts

Collect multiple commands into a single program

• Run the same commands again or on other data

• Document the steps and describe the thought process
Add commands to a file

```
# collect commands into a single file
~/bin/fastqc data_R1.fq
~/bin/fastqc data_R2.fq
```

```
ialbert@porthos ~/work/lec12/flash
$ sh pipeline.sh
```
Parameterize with variables

```bash
# add variables to make the script more readable
FIRST_PAIR=data_R1.fq
SECOND_PAIR=data_R2.fq

# collect commands into a single file
~/bin/fastqc $FIRST_PAIR
~/bin/fastqc $SECOND_PAIR
```

```
ialbert@portos ~$ /work/lec12/flash
$ sh pipeline.sh
```
Take parameters from command line

```bash
# take input from command line
FIRSTPAIR=$1
SECONDPAIR=$2

# collect commands into a single file
~/.bin/fastqc $FIRSTPAIR
~/.bin/fastqc $SECONDPAIR

ialbert@porthos ~/.work/lec12/flash
$ sh pipeline.sh data_R1.fq data_R2.fq
```
"Dead programs tell no lies"
Bash has lots of features

We will slowly introduce some features along the way
Homework 13

• Use dataset **lect12.tar.gz**, it contains a paired end read dataset

• Present a shell script that takes the paired read files from the command line and produces output that

 1. Have the polyA tail and adapters removed while keeping the reads in paired order
 2. Are stitched together into a single file
 3. Produces a two fastqc reports for the original files and a fastqc report for the stitched and unstitched files

Have one line explanations in the shell script that describe what each step does.