A bioinformatician’s job requires them to evaluate and install a large number of tools. The ease of installation usually correlates with the quality of tool. Documentation is essential; otherwise, it is no more than a black box.

Package manager for the MAC: Homebrew

It allows you to install some libraries and tools that will be required later. Linux already has package managers apt-get, yum, etc.

Steps to installing tools

Determine the distribution type

1. **Executable (binary) code.**
 Download the code and you are done. Easy to install → may not be optimized to your system

2. **Source (text) code.**
 Download the code and **compile it** (see next slides)
Determine the type of the source code

1. Source is of a **compiled language** that will be turned into a binary program (typically C but could be others).

2. Source is of an **interpreted language** that will run the code: java, perl, python, ruby

Check list for source code that needs compilation

1. Does it have a configure script? If yes then run it

 ./configure

2. Now run make

 make

 Ideally you should be done. This will create the binary.

 (The program may need library dependencies. Then those need to be installed as above)

Checklist for interpreted languages

1. You need to have the language installed. Most modern computers have perl, python, java installed by default.

2. The source code may have “dependencies” – a much dreaded word could lead to a lengthy procedure of downloading other code that in turn may depend on other and other etc...

Automated installation

- Language specific – will require installing a language specific package manager
- Python has easy_install and pip, Perl has MCPAN, ruby has gem

   ```
   easy_install install package-name
   or
   pip install package-name
   ```

 Installing good tools is very easy – not so good ones are mini puzzles – badly designed tools are incredibly frustrating.
Quality Control and Filtering

- Removing or altering the data based on objective measures
- Isn’t that data massaging?
- Good question – one needs to be very careful not to bias data

Understanding sequencing

- Library prep has many steps
- Sequencing may introduce artifacts
- Always try to understand what the instrument does and may happen when things are not optimal
- See Short Guide to Illumina sequencing on the webpage

Random DNA fragment sequencing with Illumina

- Fragmentation
- Adapter Ligation
- Sequencer
- One read

FastQC report shows biases

- Per base sequence quality
- Base Content

Our job is to fix this and we need to install tools for that
Quality control operations

- Modify the FASTQ records to remove data that was labeled as being inaccurate

Typical operations are to

- remove (discard) reads - **careful with this**!
- shorten reads (trimming) by quality or by removing patterns

Tool List

- **Seqtk** – fastest tool
- **Cutadapt** – adaptor cutting
- **NGS Toolkit** – perl, has good manual
- **Trimmomatic** – java, somewhat obscure usage
- **Prinseq** – beatiful manual and website, appears to be slow
- **Biopieces** – its is not a tool it is more of a lifestyle. Lots of installation steps.

Fastq Quality Shootout

Tool List

- **Seqtk** – fastest tool
- **Cutadapt** – adaptor cutting
- **NGS Toolkit** – perl, has good manual
- **Trimmomatic** – java, somewhat obscure usage
- **Prinseq** – beatiful manual and website, appears to be slow
- **Biopieces** – its is not a tool it is more of a lifestyle. Lots of installation steps.

Installation

One time tasks (see code repository):

- Mac: install **Homebrew**
- Using **Homebrew** install **git**
- Using **easy_install** install **pip**

Use **git** and **pip** to install tools in the future

- clone the **seqtk** repository with **git** and **make** it, link to ~/bin
- **pip** install cutadapt, does not need to be linked
Other tools

- See the **Shootout** – serves as supplementary information

- Quality control often goes way beyond read manipulation and can be thought as a pre-analysis – at that point it should not be called QC though.

- Some tools may have particular features that directly apply to your research

Homework 11

- Install **cutadapt** and **seqtk**

- Use data **sample1.fq** and **sample2.fq** distributed with **Lecture 10**

- Remove adapters with **cutadapt** and/or trim your sequences with **seqtk** (you may use other tools as well)

- Run **FASTQC** on the cut/trimmed data. Select a plot from each report and explain the differences that you see.