A note on different Predictors of Lifetimes of Censored Items in Progressively Censored Samples from Normal Distribution

Indrani Basak and N. Balakrishnan
Penn State Altoona and McMaster University

December 2, 2008
Outline

- Progressive Censoring

- Prediction Problem

- Different Predictors
Outline

- Progressive Censoring
- Prediction Problem
- Different Predictors
Outline

- Progressive Censoring
- Prediction Problem
- Different Predictors
Different Predictors

- Best Linear Unbiased Predictor (BLUP)
- Maximum Likelihood Predictor (MLP)
 - One-Stage Maximum Likelihood Predictor (OSMLP)
 - Two-Stage Maximum Likelihood Predictor (TSMMLP)
- Modified Maximum Likelihood Predictor (MMLP)
 - One-Stage Modified Maximum Likelihood Predictor (OSMMLP)
 - Two-Stage Modified Maximum Likelihood Predictor (TSMMLP)
- Approximate Maximum Likelihood Predictor (AMLP)
 - One-Stage Approximate Maximum Likelihood Predictor (OSAMLP)
 - Two-Stage Approximate Maximum Likelihood Predictor (TSAMLP)
- Conditional Median Predictor (CMP)
Different Predictors

- **Best Linear Unbiased Predictor (BLUP)**
- **Maximum Likelihood Predictor (MLP)**
 - One-Stage Maximum Likelihood Predictor (OSMLP)
 - Two-Stage Maximum Likelihood Predictor (TSMMLP)
- **Modified Maximum Likelihood Predictor (MMLP)**
 - One-Stage Modified Maximum Likelihood Predictor (OSMMLP)
 - Two-Stage Modified Maximum Likelihood Predictor (TSMMLP)
- **Approximate Maximum Likelihood Predictor (AMLP)**
 - One-Stage Approximate Maximum Likelihood Predictor (OSAMLP)
 - Two-Stage Approximate Maximum Likelihood Predictor (TSAMLP)
- **Conditional Median Predictor (CMP)**
Different Predictors

- **Best Linear Unbiased Predictor (BLUP)**
- **Maximum Likelihood Predictor (MLP)**
 - One-Stage Maximum Likelihood Predictor (OSMLP)
 - Two-Stage Maximum Likelihood Predictor (TSMMLP)
- **Modified Maximum Likelihood Predictor (MMLP)**
 - One-Stage Modified Maximum Likelihood Predictor (OSMMLP)
 - Two-Stage Modified Maximum Likelihood Predictor (TSMMLP)
- **Approximate Maximum Likelihood Predictor (AMLP)**
 - One-Stage Approximate Maximum Likelihood Predictor (OSAMLP)
 - Two-Stage Approximate Maximum Likelihood Predictor (TSAMLP)
- **Conditional Median Predictor (CMP)**
Different Predictors

- **Best Linear Unbiased Predictor (BLUP)**
- **Maximum Likelihood Predictor (MLP)**
 - One-Stage Maximum Likelihood Predictor (OSMLP)
 - Two-Stage Maximum Likelihood Predictor (TSMMLP)
- **Modified Maximum Likelihood Predictor (MMLP)**
 - One-Stage Modified Maximum Likelihood Predictor (OSMMLP)
 - Two-Stage Modified Maximum Likelihood Predictor (TSMMLP)
- **Approximate Maximum Likelihood Predictor (AMLP)**
 - One-Stage Approximate Maximum Likelihood Predictor (OSAMLP)
 - Two-Stage Approximate Maximum Likelihood Predictor (TSAMLP)
- **Conditional Median Predictor (CMP)**
Different Predictors

- Best Linear Unbiased Predictor (BLUP)
- Maximum Likelihood Predictor (MLP)
 - One-Stage Maximum Likelihood Predictor (OSMLP)
 - Two-Stage Maximum Likelihood Predictor (TSMMLP)
- Modified Maximum Likelihood Predictor (MMLP)
 - One-Stage Modified Maximum Likelihood Predictor (OSMMLP)
 - Two-Stage Modified Maximum Likelihood Predictor (TSMMLP)
- Approximate Maximum Likelihood Predictor (AMLP)
 - One-Stage Approximate Maximum Likelihood Predictor (OSAMLP)
 - Two-Stage Approximate Maximum Likelihood Predictor (TSAMLP)
- Conditional Median Predictor (CMP)
Different Predictors

- Best Linear Unbiased Predictor (BLUP)
- Maximum Likelihood Predictor (MLP)
 - One-Stage Maximum Likelihood Predictor (OSMLP)
 - Two-Stage Maximum Likelihood Predictor (TSMMLP)
- Modified Maximum Likelihood Predictor (MMLP)
 - One-Stage Modified Maximum Likelihood Predictor (OSMMLP)
 - Two-Stage Modified Maximum Likelihood Predictor (TSMMLP)
- Approximate Maximum Likelihood Predictor (AMLP)
 - One-Stage Approximate Maximum Likelihood Predictor (OSAMLP)
 - Two-Stage Approximate Maximum Likelihood Predictor (TSAMLP)
- Conditional Median Predictor (CMP)
Different Predictors

- Best Linear Unbiased Predictor (BLUP)
- Maximum Likelihood Predictor (MLP)
 - One-Stage Maximum Likelihood Predictor (OSMLP)
 - Two-Stage Maximum Likelihood Predictor (TSMMLP)
- Modified Maximum Likelihood Predictor (MMLP)
 - One-Stage Modified Maximum Likelihood Predictor (OSMMLP)
 - Two-Stage Modified Maximum Likelihood Predictor (TSMMLP)
- Approximate Maximum Likelihood Predictor (AMLP)
 - One-Stage Approximate Maximum Likelihood Predictor (OSAMLP)
 - Two-Stage Approximate Maximum Likelihood Predictor (TSAMLP)
- Conditional Median Predictor (CMP)
Different Predictors

- Best Linear Unbiased Predictor (BLUP)
- Maximum Likelihood Predictor (MLP)
 - One-Stage Maximum Likelihood Predictor (OSMLP)
 - Two-Stage Maximum Likelihood Predictor (TSMMLP)
- Modified Maximum Likelihood Predictor (MMLP)
 - One-Stage Modified Maximum Likelihood Predictor (OSMMLP)
 - Two-Stage Modified Maximum Likelihood Predictor (TSMMLP)
- Approximate Maximum Likelihood Predictor (AMLP)
 - One-Stage Approximate Maximum Likelihood Predictor (OSAMLP)
 - Two-Stage Approximate Maximum Likelihood Predictor (TSAMLP)
- Conditional Median Predictor (CMP)
Different Predictors

- Best Linear Unbiased Predictor (BLUP)
- Maximum Likelihood Predictor (MLP)
 - One-Stage Maximum Likelihood Predictor (OSMLP)
 - Two-Stage Maximum Likelihood Predictor (TSMMLP)
- Modified Maximum Likelihood Predictor (MMLP)
 - One-Stage Modified Maximum Likelihood Predictor (OSMMLP)
 - Two-Stage Modified Maximum Likelihood Predictor (TSMMLP)
- Approximate Maximum Likelihood Predictor (AMLP)
 - One-Stage Approximate Maximum Likelihood Predictor (OSAMLP)
 - Two-Stage Approximate Maximum Likelihood Predictor (TSAMLP)
- Conditional Median Predictor (CMP)
Different Predictors

- Best Linear Unbiased Predictor (BLUP)
- Maximum Likelihood Predictor (MLP)
 - One-Stage Maximum Likelihood Predictor (OSMLP)
 - Two-Stage Maximum Likelihood Predictor (TSMMLP)
- Modified Maximum Likelihood Predictor (MMLP)
 - One-Stage Modified Maximum Likelihood Predictor (OSMMLP)
 - Two-Stage Modified Maximum Likelihood Predictor (TSMMLP)
- Approximate Maximum Likelihood Predictor (AMLP)
 - One-Stage Approximate Maximum Likelihood Predictor (OSAMLP)
 - Two-Stage Approximate Maximum Likelihood Predictor (TSAMLP)
- Conditional Median Predictor (CMP)
Different Predictors

- Best Linear Unbiased Predictor (BLUP)
- Maximum Likelihood Predictor (MLP)
 - One-Stage Maximum Likelihood Predictor (OSMLP)
 - Two-Stage Maximum Likelihood Predictor (TSMMLP)
- Modified Maximum Likelihood Predictor (MMLP)
 - One-Stage Modified Maximum Likelihood Predictor (OSMMLP)
 - Two-Stage Modified Maximum Likelihood Predictor (TSMMLP)
- Approximate Maximum Likelihood Predictor (AMLP)
 - One-Stage Approximate Maximum Likelihood Predictor (OSAMLP)
 - Two-Stage Approximate Maximum Likelihood Predictor (TSAMLP)
- Conditional Median Predictor (CMP)
Different Predictors

- Best Linear Unbiased Predictor (BLUP)
- Maximum Likelihood Predictor (MLP)
 - One-Stage Maximum Likelihood Predictor (OSMLP)
 - Two-Stage Maximum Likelihood Predictor (TSMMLP)
- Modified Maximum Likelihood Predictor (MMLP)
 - One-Stage Modified Maximum Likelihood Predictor (OSMMLP)
 - Two-Stage Modified Maximum Likelihood Predictor (TSMMLP)
- Approximate Maximum Likelihood Predictor (AMLP)
 - One-Stage Approximate Maximum Likelihood Predictor (OSAMLP)
 - Two-Stage Approximate Maximum Likelihood Predictor (TSAMLP)
- Conditional Median Predictor (CMP)
Outline

1. Progressive Censoring
2. Prediction Problem
3. Different Predictors
 - BLUP
 - MLP
 - OSMLP
 - TSMLP
 - MMLP
 - OSMMLP
 - TSMMMLP
 - AMLP
 - OSAMLMP
 - TSAMLMP
 - CMP
Progressive Type II Right Censoring

- n units placed on an experiment
- m completely observed until failure
- Censoring occurs progressively in m stages
 - First failure (the first stage): r_1 of the $n - 1$ surviving units randomly withdrawn,
 - Second failure (the second stage): r_2 of the $n - 2 - r_1$ surviving units are withdrawn,
 - and so on.
 - Finally, the m-th failure (the m-th stage): remaining $r_m = n - m - r_1 - \cdots - r_{m-1}$ are withdrawn.

Type-II right censoring: $r_1 = r_2 = \cdots = r_{m-1} = 0$ and $r_m = n - m$.
Complete sampling scheme: $n = m$ and $r_1 = r_2 = \cdots = r_m = 0$.
Progressive Type II Right Censoring

- \(n \) units placed on an experiment
- \(m \) completely observed until failure
- Censoring occurs progressively in \(m \) stages
 - First failure (the first stage): \(r_1 \) of the \(n - 1 \) surviving units randomly withdrawn,
 - Second failure (the second stage): \(r_2 \) of the \(n - 2 - r_1 \) surviving units are withdrawn,
 - and so on.
 - Finally, the \(m \)-th failure (the \(m \)-th stage): remaining \(r_m = n - m - r_1 - \cdots - r_{m-1} \) are withdrawn.

Type-II right censoring: \(r_1 = r_2 = \cdots = r_{m-1} = 0 \) and \(r_m = n - m \).
Complete sampling scheme: \(n = m \) and \(r_1 = r_2 = \cdots = r_m = 0 \).
Progressive Type II Right Censoring

- *n* units placed on an experiment
- *m* completely observed until failure
- Censoring occurs progressively in *m* stages
 - First failure (the first stage): *r*₁ of the *n* − 1 surviving units randomly withdrawn,
 - Second failure (the second stage): *r*₂ of the *n* − 2 − *r*₁ surviving units are withdrawn,
 - and so on.
 - Finally, the *m*-th failure (the *m*-th stage): remaining *r*ₘ = *n* − *m* − *r*₁ − · · · − *r*ₘ−₁ are withdrawn.

Type-II right censoring: *r*₁ = *r*₂ = · · · = *r*ₘ−₁ = 0 and *r*ₘ = *n* − *m*.

Complete sampling scheme: *n* = *m* and *r*₁ = *r*₂ = · · · = *r*ₘ = 0.
Progressive Type II Right Censoring

- \(n \) units placed on an experiment
- \(m \) completely observed until failure
- Censoring occurs progressively in \(m \) stages
 - First failure (the first stage): \(r_1 \) of the \(n - 1 \) surviving units randomly withdrawn,
 - Second failure (the second stage): \(r_2 \) of the \(n - 2 - r_1 \) surviving units are withdrawn,
 - and so on.
 - Finally, the \(m \)-th failure (the \(m \)-th stage): remaining \(r_m = n - m - r_1 - \cdots - r_{m-1} \) are withdrawn.

Type-II right censoring: \(r_1 = r_2 = \cdots = r_{m-1} = 0 \) and \(r_m = n - m \).

Complete sampling scheme: \(n = m \) and \(r_1 = r_2 = \cdots = r_m = 0 \).
Progressive Type II Right Censoring

- \(n \) units placed on an experiment
- \(m \) completely observed until failure
- Censoring occurs progressively in \(m \) stages
 - First failure (the first stage): \(r_1 \) of the \(n - 1 \) surviving units randomly withdrawn,
 - Second failure (the second stage): \(r_2 \) of the \(n - 2 - r_1 \) surviving units are withdrawn,
 - and so on.
 - Finally, the \(m \)-th failure (the \(m \)-th stage): remaining \(r_m = n - m - r_1 - \cdots - r_{m-1} \) are withdrawn.

Type-II right censoring: \(r_1 = r_2 = \cdots = r_{m-1} = 0 \) and \(r_m = n - m \).

Complete sampling scheme: \(n = m \) and \(r_1 = r_2 = \cdots = r_m = 0 \).
Progressive Type II Right Censoring

- n units placed on an experiment
- m completely observed until failure
- Censoring occurs progressively in m stages
 - First failure (the first stage): r_1 of the $n - 1$ surviving units randomly withdrawn,
 - Second failure (the second stage): r_2 of the $n - 2 - r_1$ surviving units are withdrawn,
 - and so on.
 - Finally, the m-th failure (the m-th stage): remaining $r_m = n - m - r_1 - \cdots - r_{m-1}$ are withdrawn.

Type-II right censoring: $r_1 = r_2 = \cdots = r_{m-1} = 0$ and $r_m = n - m$.
Complete sampling scheme: $n = m$ and $r_1 = r_2 = \cdots = r_m = 0$.
Progressive Type II Right Censoring

- n units placed on an experiment
- m completely observed until failure
- Censoring occurs progressively in m stages
 - First failure (the first stage): r_1 of the $n-1$ surviving units randomly withdrawn,
 - Second failure (the second stage): r_2 of the $n-2-r_1$ surviving units are withdrawn,
 - and so on.
 - Finally, the m-th failure (the m-th stage): remaining $r_m = n - m - r_1 - \cdots - r_{m-1}$ are withdrawn.

Type-II right censoring: $r_1 = r_2 = \cdots = r_{m-1} = 0$ and $r_m = n - m$.
Complete sampling scheme: $n = m$ and $r_1 = r_2 = \cdots = r_m = 0$.
Progressive Type II Right Censoring

- \(n\) units placed on an experiment
- \(m\) completely observed until failure
- Censoring occurs progressively in \(m\) stages
 - First failure (the first stage): \(r_1\) of the \(n - 1\) surviving units randomly withdrawn,
 - Second failure (the second stage): \(r_2\) of the \(n - 2 - r_1\) surviving units are withdrawn,
 - and so on.
 - Finally, the \(m\)-th failure (the \(m\)-th stage): remaining \(r_m = n - m - r_1 - \cdots - r_{m-1}\) are withdrawn.

Type-II right censoring: \(r_1 = r_2 = \cdots = r_{m-1} = 0\) and \(r_m = n - m\).

Complete sampling scheme: \(n = m\) and \(r_1 = r_2 = \cdots = r_m = 0\).
Progressive Type II Right Censoring

- n units placed on an experiment
- m completely observed until failure
- Censoring occurs progressively in m stages
 - First failure (the first stage): r_1 of the $n-1$ surviving units randomly withdrawn,
 - Second failure (the second stage): r_2 of the $n-2-r_1$ surviving units are withdrawn,
 - and so on.
 - Finally, the m-th failure (the m-th stage): remaining $r_m = n-m-r_1-\cdots-r_{m-1}$ are withdrawn.

Type-II right censoring: $r_1 = r_2 = \cdots = r_{m-1} = 0$ and $r_m = n-m$.

Complete sampling scheme: $n = m$ and $r_1 = r_2 = \cdots = r_m = 0$.
Progressive Type II Right Censoring

- \(n \) units placed on an experiment
- \(m \) completely observed until failure
- Censoring occurs progressively in \(m \) stages
 - First failure (the first stage): \(r_1 \) of the \(n - 1 \) surviving units randomly withdrawn,
 - Second failure (the second stage): \(r_2 \) of the \(n - 2 - r_1 \) surviving units are withdrawn,
 - and so on.
 - Finally, the \(m \)-th failure (the \(m \)-th stage): remaining \(r_m = n - m - r_1 - \cdots - r_{m-1} \) are withdrawn.

Type-II right censoring: \(r_1 = r_2 = \cdots = r_{m-1} = 0 \) and \(r_m = n - m \).

Complete sampling scheme: \(n = m \) and \(r_1 = r_2 = \cdots = r_m = 0 \).
Progressive Type II Right Censoring

- n units placed on an experiment
- m completely observed until failure
- Censoring occurs progressively in m stages
 - First failure (the first stage): r_1 of the $n - 1$ surviving units randomly withdrawn,
 - Second failure (the second stage): r_2 of the $n - 2 - r_1$ surviving units are withdrawn,
 - and so on.
 - Finally, the m-th failure (the m-th stage): remaining $r_m = n - m - r_1 - \cdots - r_{m-1}$ are withdrawn.

Type-II right censoring: $r_1 = r_2 = \cdots = r_{m-1} = 0$ and $r_m = n - m$.
Complete sampling scheme: $n = m$ and $r_1 = r_2 = \cdots = r_m = 0$.
Outline

1. Progressive Censoring
2. Prediction Problem
3. Different Predictors
 - BLUP
 - MLP
 - OSMLP
 - TSMLP
 - MMLP
 - OSMMLP
 - TSMMLP
 - AMLP
 - OSAMLPI
 - TSAMLPI
 - CMP
Prediction

- X_1, \ldots, X_n: failure times of n independent units from cdf $F(x, \theta)$ and pdf $f(x, \theta)$ with parameter θ.
- We observe only $Y = (Y_1, \ldots, Y_m)$ where $Y_1 \leq \cdots \leq Y_m$: m progressively censored order statistics.
- Purpose of this article: to predict life-lengths $Y_{j:r_i}; j = 1, 2, \ldots, r_i; i = 1, 2, \ldots, m$ of all censored units in all m stages of censoring.
- Prediction of times to failure of only the last r_m units still surviving at the observation Y_m has been considered by Balakrishnan and Rao (1997) for Exponential Distribution.
- BLUP, MLP, MMLP, AMLP and CMP are derived for normal distribution for all $Y_{j:r_i}; j = 1, 2, \ldots, r_i; i = 1, 2, \ldots, m$.
Prediction

- X_1, \cdots, X_n: failure times of n independent units from cdf $F(x, \theta)$ and pdf $f(x, \theta)$ with parameter θ.
- We observe only $Y = (Y_1, \cdots, Y_m)$ where $Y_1 \leq \cdots \leq Y_m$: m progressively censored order statistics.
- Purpose of this article: to predict life-lengths $Y_{j:r_i}; j = 1, 2, \cdots, r_i; i = 1, 2, \cdots, m$ of all censored units in all m stages of censoring.
- Prediction of times to failure of only the last r_m units still surviving at the observation Y_m has been considered by Balakrishnan and Rao (1997) for Exponential Distribution.
- BLUP, MLP, MMLP, AMLP and CMP are derived for normal distribution for all $Y_{j:r_i}; j = 1, 2, \cdots, r_i; i = 1, 2, \cdots, m$.
Prediction

- \(X_1, \cdots, X_n\): failure times of \(n\) independent units from cdf \(F(x, \theta)\) and pdf \(f(x, \theta)\) with parameter \(\theta\).
- We observe only \(Y = (Y_1, \cdots, Y_m)\) where \(Y_1 \leq \cdots \leq Y_m\): \(m\) progressively censored order statistics.
- Purpose of this article: to predict life-lengths \(Y_{j:r_i}; j = 1, 2, \cdots, r_i; i = 1, 2, \cdots, m\) of all censored units in all \(m\) stages of censoring.
- Prediction of times to failure of only the last \(r_m\) units still surviving at the observation \(Y_m\) has been considered by Balakrishnan and Rao (1997) for Exponential Distribution.
- BLUP, MLP, MMLP, AMLP and CMP are derived for normal distribution for all \(Y_{j:r_i}; j = 1, 2, \cdots, r_i; i = 1, 2, \cdots, m\).
Prediction

- X_1, \cdots, X_n: failure times of n independent units from cdf $F(x, \theta)$ and pdf $f(x, \theta)$ with parameter θ.
- We observe only $Y = (Y_1, \cdots, Y_m)$ where $Y_1 \leq \cdots \leq Y_m$: m progressively censored order statistics.
- Purpose of this article: to predict life-lengths $Y_{j:r_i}; j = 1, 2, \cdots, r_i; i = 1, 2, \cdots, m$ of all censored units in all m stages of censoring.
- Prediction of times to failure of only the last r_m units still surviving at the observation Y_m has been considered by Balakrishnan and Rao (1997) for Exponential Distribution.
- BLUP, MLP, MMLP, AMLP and CMP are derived for normal distribution for all $Y_{j:r_i}; j = 1, 2, \cdots, r_i; i = 1, 2, \cdots, m$.
Progressive Censoring

Prediction

- \(X_1, \ldots, X_n\): failure times of \(n\) independent units from cdf \(F(x, \theta)\) and pdf \(f(x, \theta)\) with parameter \(\theta\).
- We observe only \(Y = (Y_1, \ldots, Y_m)\) where \(Y_1 \leq \cdots \leq Y_m\): \(m\) progressively censored order statistics.
- Purpose of this article: to predict life-lengths \(Y_{j:r_i}; j = 1, 2, \ldots, r_i; i = 1, 2, \ldots, m\) of all censored units in all \(m\) stages of censoring.
- Prediction of times to failure of only the last \(r_m\) units still surviving at the observation \(Y_m\) has been considered by Balakrishnan and Rao (1997) for Exponential Distribution.
- BLUP, MLP, MMLP, AMLP and CMP are derived for normal distribution for all \(Y_{j:r_i}; j = 1, 2, \ldots, r_i; i = 1, 2, \ldots, m\).
Prediction

- X_1, \cdots, X_n: failure times of n independent units from cdf $F(x, \theta)$ and pdf $f(x, \theta)$ with parameter θ.
- We observe only $Y = (Y_1, \cdots, Y_m)$ where $Y_1 \leq \cdots \leq Y_m$: m progressively censored order statistics.
- Purpose of this article: to predict life-lengths $Y_{j:r_i}; j = 1, 2, \cdots, r_i; i = 1, 2, \cdots, m$ of all censored units in all m stages of censoring.
- Prediction of times to failure of only the last r_m units still surviving at the observation Y_m has been considered by Balakrishnan and Rao (1997) for Exponential Distribution.
- BLUP, MLP, MMLP, AMLP and CMP are derived for normal distribution for all $Y_{j:r_i}; j = 1, 2, \cdots, r_i; i = 1, 2, \cdots, m$.
Notations

\[Y_{j:r_i} : \text{jth order statistic out of } r_i \text{ units of } Y \]

\[Y_{j:r_i}^B : \text{BLUP of } Y_{j:r_i} \]

\[Y_{j:r_i}^{OSM} : \text{OSMLP of } Y_{j:r_i} \]

\[Y_{j:r_i}^{TSM} : \text{TSMLP of } Y_{j:r_i} \]
Notations – Continued

\[Y_{j:r_i}^{OSMM} : \text{OSMMLP of } Y_{j:r_i} \]

\[Y_{j:r_i}^{TSMM} : \text{TSMMLP of } Y_{j:r_i} \]

\[Y_{j:r_i}^{OSAM} : \text{OSAMLP of } Y_{j:r_i} \]

\[Y_{j:r_i}^{TSAM} : \text{TSAMLP of } Y_{j:r_i} \]

\[Y_{j:r_i}^{C} : \text{CMP of } Y_{j:r_i} \]
The Normal distribution

- \(f(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2\sigma^2} (x-\mu)^2}, -\infty < \mu < \infty, \sigma > 0. \)

- \(Y = (Y_1, \cdots, Y_m). \)

- For the sake of simplicity, assume \(\sigma = 1 \) and will cover only the case of unknown scale parameter \(\mu. \)

- The case when both parameters \(\mu \) and \(\sigma \) are unknown is handled with little additional difficulty.
The Normal distribution

- $f(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}}e^{-\frac{1}{2\sigma^2}(x-\mu)^2}, \ -\infty < \mu < \infty, \ \sigma > 0.$
- $Y = (Y_1, \cdots, Y_m)$.
- For the sake of simplicity, assume $\sigma = 1$ and will cover only the case of unknown scale parameter μ.
- The case when both parameters μ and σ are unknown is handled with little additional difficulty.
The Normal distribution

\[f(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}, \ -\infty < \mu < \infty, \ \sigma > 0. \]

\[Y = (Y_1, \cdots, Y_m). \]

For the sake of simplicity, assume \(\sigma = 1 \) and will cover only the case of unknown scale parameter \(\mu \).

The case when both parameters \(\mu \) and \(\sigma \) are unknown is handled with little additional difficulty.
The Normal distribution

\[f(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}, -\infty < \mu < \infty, \sigma > 0. \]

\[Y = (Y_1, \cdots, Y_m). \]

For the sake of simplicity, assume \(\sigma = 1 \) and and will cover only the case of unknown scale parameter \(\mu \).

The case when both parameters \(\mu \) and \(\sigma \) are unknown is handled with little additional difficulty.
The Normal distribution

\[f(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}, \quad -\infty < \mu < \infty, \sigma > 0. \]

\[Y = (Y_1, \cdots, Y_m). \]

For the sake of simplicity, assume \(\sigma = 1 \) and will cover only the case of unknown scale parameter \(\mu \).

The case when both parameters \(\mu \) and \(\sigma \) are unknown is handled with little additional difficulty.
The Normal distribution

\[f(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{1}{2 \sigma^2} (x - \mu)^2}, \quad -\infty < \mu < \infty, \sigma > 0. \]

\[Y = (Y_1, \cdots, Y_m). \]

For the sake of simplicity, assume \(\sigma = 1 \) and will cover only the case of unknown scale parameter \(\mu \).

The case when both parameters \(\mu \) and \(\sigma \) are unknown is handled with little additional difficulty.
Outline

1. Progressive Censoring
2. Prediction Problem
3. Different Predictors
 - BLUP
 - MLP
 - OSMLP
 - TSMLP
 - MMLP
 - OSMMLP
 - TSMMLP
 - AMLP
 - OSAMLPI
 - TSAMLPI
 - CMP
Outline

1. Progressive Censoring
2. Prediction Problem
3. Different Predictors
 - BLUP
 - MLP
 - OSMLP
 - TSMLP
 - MMLP
 - OSMMLP
 - TSMMMLP
 - AMLP
 - OSAMLMP
 - TSAMLMP
 - CMP
The BLUP $Y_{j:r_i}^B$ of $Y_{j:r_i}$ is given by

$$Y_{j:r_i}^B = \mu^* + \alpha_1 + w'\Sigma^{-1}(Y - \mu^*1 - \alpha).$$

where the BLUE μ^* of μ:

$$\mu^* = \frac{1'\Sigma^{-1}(Y - \alpha)}{1'\Sigma^{-1}1}.$$

α and Σ are the vector of means and dispersion matrix, respectively, of the m progressively Type-II right censored order statistics from the standard normal distribution.
The BLUP $Y_{j:r_i}^B$ of $Y_{j:r_i}$ is given by

$$Y_{j:r_i}^B = \mu^* + \alpha_1 + w'\Sigma^{-1}(Y - \mu^* 1 - \alpha).$$

where the BLUE μ^* of μ:

$$\mu^* = \frac{1'\Sigma^{-1}(Y - \alpha)}{1'\Sigma^{-1}1}.$$

α and Σ are the vector of means and dispersion matrix, respectively, of the m progressively Type-II right censored order statistics from the standard normal distribution.
The BLUP $Y^B_{j:r_i}$ of $Y_{j:r_i}$ is given by

$$Y^B_{j:r_i} = \mu^* + \alpha_1 + w'\Sigma^{-1}(Y - \mu^*1 - \alpha).$$

where the BLUE μ^* of μ:

$$\mu^* = \frac{1'\Sigma^{-1}(Y - \alpha)}{1'\Sigma^{-1}1}.$$

- α and Σ are the vector of means and dispersion matrix, respectively, of the m progressively Type-II right censored order statistics from the standard normal distribution.
BLUP

- \(\alpha_1 \) is the expected value of the \(j \)-th order statistic out of \(r_i \) units from the standard normal conditional distribution, with the condition that it is greater than \(Y_i \).

\[
\alpha_1 = c_{i-1} \sum_{k=1}^{i} a_{k,i} \sum_{l=0}^{\gamma_k-r_i-1} (-1)^l \binom{\gamma_k-r_i-1}{l} \times \frac{r_i! \ l!}{(r_i + l + 1)!} E(X_{j+l+1:r_i+l+1}).
\]
Progressive Censoring

Prediction Problem

Different Predictors

BLUP

- α_1 is the expected value of the j-th order statistic out of r_i units from the standard normal conditional distribution, with the condition that it is greater than Y_i.

\[
\alpha_1 = c_{i-1} \sum_{k=1}^{i} a_{k,i} \sum_{l=0}^{\gamma_k - r_i - 1} (-1)^l \binom{\gamma_k - r_i - 1}{l} \times \frac{r_i!}{(r_i + l + 1)!} E(X_{j+l+1:r_i+l+1}).
\]
BLUP

\[\mathbf{w}' = (0, 0, \cdots, \sigma_{ij}, \cdots, 0) \text{ with } \sigma_{ij} = \text{Cov}(Y_i, Y_{j:r_i}). \]

\[
\text{Cov}(Y_i, Y_{j:r_i}) = E(Y_i Y_{j:r_i}) - E(Y_i)E(Y_{j:r_i}) = E(Y_i Y_{j:r_i}) - \alpha_1 E(Y_i),
\]
BLUP

- \(w' = (0, 0, \cdots, \sigma_{ij}, \cdots, 0) \) with \(\sigma_{ij} = \text{Cov}(Y_i, Y_{j:r_i}) \).

\[
\text{Cov}(Y_i, Y_{j:r_i}) = E(Y_iY_{j:r_i}) - E(Y_i)E(Y_{j:r_i}) = E(Y_iY_{j:r_i}) - \alpha_1 E(Y_i),
\]
BLUP

\[
E(Y_i Y_{j:r_i}) = c_{i-1} \sum_{k=1}^{i} a_{k,i} \sum_{l=0}^{\gamma_k-r_i-1} (-1)^l \binom{\gamma_k-r_i-1}{l} \\
\times \frac{r_i! \cdot l!}{(r_i + l + 1)!} \times E(X_{l+1:r_i+l+1} \cdot X_{j+l+1:r_i+l+1}),
\]

\[
E(Y_i) = c_{i-1} \sum_{k=1}^{i} a_{k,i} \frac{1}{\gamma_k} E[X_{1:\gamma_k}],
\]
BLUP

where

\[
\begin{align*}
\gamma_1 &= n \\
\gamma_k &= n - r_1 - \cdots - r_{k-1} - k + 1; \quad k = 2, \ldots, m \\
c_{l-1} &= c_{l-1}(\gamma_1, \cdots, \gamma_l) = \prod_{k=1}^{l} \gamma_k; \quad l = 1, \cdots, m \\
a_{k,l} &= a_{k,l}(\gamma_1, \cdots, \gamma_l) = \prod_{u=1, u \neq k}^{l} \frac{1}{\gamma_u - \gamma_k}. \quad 1 \leq k \leq l \leq m
\end{align*}
\]
Outline

1. Progressive Censoring
2. Prediction Problem
3. Different Predictors
 - BLUP
 - MLP
 - OSMLP
 - TSMLP
 - MMLP
 - OSMMLP
 - TSMMLP
 - AMLP
 - OSAMLPI
 - TSAMLPI
 - CMP
Let $y = (y_1, y_2, \cdots, y_m)$ with $y_1 \leq y_2 \cdots \leq y_m$ and $y = y_{j:r_i}$ denote the observed value of Y and the unobserved value of $Y_{j:r_i}$, respectively.

The predictive likelihood function (PLF) of $Y_{j:r_i}$ and θ is given by

$$
L = L(y, \theta; y)
= cf(y) [F(y) - F(y_i)]^{j-1} [1 - F(y)]^{r_i-j} \\
\times \prod_{l=1}^{m} f(y_l) \prod_{l=1, l \neq i}^{m} [1 - F(y_l)]^{r_l}, \ y \geq y_i,
$$

where c denotes a constant factor.
Let $y = (y_1, y_2, \cdots, y_m)$ with $y_1 \leq y_2 \cdots \leq y_m$ and $y = y_{j:r_i}$ denote the observed value of Y and the unobserved value of $Y_{j:r_i}$, respectively.

The predictive likelihood function (PLF) of $Y_{j:r_i}$ and θ is given by

$$L = L(y, \theta; y)$$
$$= cf(y) [F(y) - F(y_i)]^{j-1} [1 - F(y)]^{r_i-j}$$
$$\times \prod_{l=1}^{m} f(y_l) \prod_{l=1, l \neq i}^{m} [1 - F(y_l)]^{r_l}, \ y \geq y_i,$$

where c denotes a constant factor.
Progressive Censoring

Prediction Problem

MLP

Let \(y = (y_1, y_2, \cdots, y_m) \) with \(y_1 \leq y_2 \cdots \leq y_m \) and \(y = y_{j:r_i} \) denote the observed value of \(Y \) and the unobserved value of \(Y_{j:r_i} \), respectively.

The predictive likelihood function (PLF) of \(Y_{j:r_i} \) and \(\theta \) is given by

\[
L = L(y, \theta; y) \\
= cf(y) [F(y) - F(y_i)]^{j-1} [1 - F(y)]^{r_i-j} \\
\times \prod_{l=1}^{m} f(y_l) \prod_{l=1, l \neq i}^{m} [1 - F(y_l)]^{r_l}, \quad y \geq y_i,
\]

where \(c \) denotes a constant factor.
MLP

If \(Y^L_{j:r_i} = t(Y) \) and \(\theta^{**} = u(Y) \) are statistics for which

\[
L(t(y), u(y); y) = \sup_{y, \theta} L(y, \theta; y),
\]

then \(t(Y) \) is said to be the MLP of \(Y_{j:r_i} \), and \(u(Y) \) the predictive maximum likelihood estimator (PMLE) of \(\theta \).
If $Y_{j:r_i}^L = t(Y)$ and $\theta^{**} = u(Y)$ are statistics for which

$$L(t(y), u(y); y) = \sup_{y, \theta} L(y, \theta; y),$$

then $t(Y)$ is said to be the MLP of $Y_{j:r_i}$, and $u(Y)$ the predictive maximum likelihood estimator (PMLE) of θ.
MLP

The PLF of $Y_{j:r_i} = Y$ and μ is given by

$$L(Z, \mu; Z) = c_1 c_2 f(Z) \prod_{l=1}^{m} f(Z_l) \prod_{l=1, l \neq i}^{m} [1 - F(Z_l)]^{r_l}$$

$$\times [F(Z) - F(Z_i)]^{j-1} [1 - F(Z)]^{r_i-j}, \ Z \geq Z_i,$$

where

$Z = Y - \mu, Z_l = Y_l - \mu \ (l = 1, \cdots, m), Z = (Z_1, Z_2, \cdots, Z_m),$

c_1 = c_1(j, r_i) = \frac{r_i!}{(j-1)! (r_i-j)!}$ and

c_2 = c_2(n, m, r_1, \cdots, r_m) =

$$n(n - r_1 - 1)(n - r_1 - r_2 - 2) \cdots (n - r_1 - \cdots - r_{m-1} - m + 1).$$
The PLF of \(Y_{j:r_i} = Y\) and \(\mu\) is given by

\[
L(Z, \mu; Z) = c_1 c_2 f(Z) \prod_{l=1}^{m} f(Z_l) \prod_{l=1, l \neq i}^{m} [1 - F(Z_l)]^{r_i} \\
\times [F(Z) - F(Z_i)]^{i-1} [1 - F(Z)]^{r_i-j}, \quad Z \geq Z_i,
\]

where

\[
Z = Y - \mu, \quad Z_l = Y_l - \mu \ (l = 1, \cdots, m), \quad Z = (Z_1, Z_2, \cdots, Z_m),
\]

\[
c_1 = c_1(j, r_i) = \frac{r_i!}{(j-1)!(r_i-j)!} \quad \text{and}
\]

\[
c_2 = c_2(n, m, r_1, \cdots, r_m) = \frac{n(n-r_1-1)(n-r_1-r_2-2) \cdots (n-r_1-\cdots-r_{m-1}-m+1)}{n!}.
\]
MLP

This PLF can be written as a product of two likelihood functions

\[L_1(\mu; Z) = c_2 \prod_{l=1}^{m} \{ f(Z_l) [1 - F(Z_l)]^{r_l} \} \quad \text{and} \]

\[L_2(Z; \mu, Z) = c_1 f(Z) \frac{[F(Z) - F(Z_i)]^{j-1}}{[1 - F(Z_i)]^{r_i}} [1 - F(Z)]^{r_i-j}, \quad Z \geq Z_i. \]
This PLF can be written as a product of two likelihood functions

\[
L_1(\mu; Z) = c_2 \prod_{l=1}^{m} \{f(Z_l) [1 - F(Z_l)]^{r_l}\} \quad \text{and}
\]

\[
L_2(Z; \mu, Z) = c_1 f(Z) \frac{[F(Z) - F(Z_i)]^{j-1}}{[1 - F(Z_i)]^{r_i}} \left[1 - F(Z)\right]^{r_i-j}, \quad Z \geq Z_i.
\]
MLP

We need:

\[
h(Z) = \frac{\phi(Z)}{1 - \Phi(Z)},
\]

\[
h(Z_l) = \frac{\phi(Z_l)}{1 - \Phi(Z_l)}; \quad l = 1, \ldots, m,
\]

\[
h_1(Z_i, Z) = \frac{\phi(Z_i)}{\Phi(Z) - \Phi(Z_i)}; \quad Z > Z_i,
\]

\[
h_2(Z_i, Z) = \frac{\phi(Z)}{\Phi(Z) - \Phi(Z_i)}; \quad Z > Z_i.
\]
OSMLP

- OSMLP $Y_{j:r_i}^{OSM}$ is given by

$$\frac{\partial \log L}{\partial \mu} = Z + \sum_{l=1}^{m} Z_l + \sum_{l=1, l \neq i}^{m} r_l h(Z_l) + (j - 1) [h_1(Z_i, Z) - h_2(Z_i, Z)] + (r_i - j) h(Z) = 0,$$

$$\frac{\partial \log L}{\partial Y} = -Z + (j - 1) h_2(Z_i, Z) - (r_i - j) h(Z) = 0,$$
OSMLP

OSMLP $Y_{j:r_i}^{OSM}$ is given by

$$\frac{\partial \log L}{\partial \mu} = Z + \sum_{l=1}^{m} Z_l + \sum_{l=1, l \neq i}^{m} r_l h(Z_l) + (j - 1) [h_1(Z_i, Z) - h_2(Z_i, Z)] + (r_i - j) h(Z) = 0,$$

$$\frac{\partial \log L}{\partial Y} = -Z + (j - 1) h_2(Z_i, Z) - (r_i - j) h(Z) = 0,$$
TSMLP

TSMLP $Y_{j:r_i}^{TSM}$ is given by

$$\frac{\partial \log L_1}{\partial \mu} = \sum_{l=1}^{m} Z_l + \sum_{l=1}^{m} r_l h(Z_l) = 0,$$

$$\frac{\partial \log L_2}{\partial Y} = -Z + (j - 1) h_2(Z_i, Z) - (r_i - j) h(Z) = 0.$$
TSMLP

- TSMLP $Y_{j:r_i}^{TSM}$ is given by

$$\frac{\partial \log L_1}{\partial \mu} = \sum_{l=1}^{m} Z_l + \sum_{l=1}^{m} r_l h(Z_l) = 0,$$

$$\frac{\partial \log L_2}{\partial Y} = -Z + (j - 1)h_2(Z_i, Z) - (r_i - j)h(Z) = 0.$$
Outline

1. Progressive Censoring
2. Prediction Problem
3. Different Predictors
 - BLUP
 - MLP
 - OSMLP
 - TSMLP
 - MMLP
 - OSMMLP
 - TSMMLP
 - AMLP
 - OSAMLPI
 - TSAMLPI
 - CMP
MMLP

Replacing $h(Z), h(Z_i), h_1(Z_i, Z), h_2(Z_i, Z)$ by their expected values. For MMLP, we need:

- Lemma 1

\[
E[h(Z_l)] = B_l = c_{l-1} \sum_{k=1}^{l} \frac{a_{k,l}}{(\gamma_k - 1)\gamma_k} E(Z_1:\gamma_k); l = 1, 2, \ldots, m.
\]
Replacing $h(Z)$, $h(Z_i)$, $h_1(Z_i, Z)$, $h_2(Z_i, Z)$ by their expected values. For MMLP, we need:

Lemma 1

$$E[h(Z_l)] = B_l = c_{l-1} \sum_{k=1}^{l} \frac{a_{k,l}}{(\gamma_k - 1)\gamma_k} E(Z_{1:\gamma_k}); \ l = 1, 2, \cdots, m.$$
MMLP

- **Lemma 2**
 \[E[h(Z)] = \frac{1}{r_i-j} E_i(j + 2) \]
 where,

 \[
 E_i(a) = c_{i-1} \sum_{k=1}^{i} a_{k,i} \sum_{l=0}^{\gamma_k-r_i-1} (-1)^l \binom{\gamma_k-r_i-1}{l} \times \frac{r_i!!}{(r_i+l+1)!} \sum_{m=l+a} E(Z_{m:r_i+l+1}).
 \]

- **Lemma 3**
 \[E[h_1(Z_i, Z)] = \frac{1}{j-1} E_i(2). \]

- **Lemma 4**
 \[E[h_2(Z_i, Z)] = \frac{1}{j-1} E_i(j + 1). \]
MMLP

- **Lemma 2**
 \[E[h(Z)] = \frac{1}{r_i-j}E_i(j + 2) \]

 \[
 E_i(a) = c_{i-1} \sum_{k=1}^{i} \sum_{l=0}^{\gamma_k-r_i-1} (-1)^l \binom{\gamma_k-r_i-1}{l} \frac{r_i!!}{(r_i+l+1)!} \sum_{m=l+a} E(Z_m:r_i+l+1).
 \]

- **Lemma 3**
 \[E[h_1(Z_i, Z)] = \frac{1}{j-1}E_i(2). \]

- **Lemma 4**
 \[E[h_2(Z_i, Z)] = \frac{1}{j-1}E_i(j + 1). \]
MMLP

Lemma 2

\[E[h(Z)] = \frac{1}{r_i-j} E_i(j + 2) \]

where,

\[E_i(a) = c_{i-1} \sum_{k=1}^{i} a_{k,i} \sum_{l=0}^{\gamma_k-r_i-1} (-1)^l \binom{\gamma_k-r_i-1}{l} \times \frac{r_i!!}{(r_i+l+1)!!} \sum_{m=l+a} E(Z_m:r_i+l+1). \]

Lemma 3

\[E[h_1(Z_i, Z)] = \frac{1}{j-1} E_i(2). \]

Lemma 4

\[E[h_2(Z_i, Z)] = \frac{1}{j-1} E_i(j + 1). \]
Lemma 2

\[E[h(Z)] = \frac{1}{r_i - j} E_i(j + 2) \]

where,

\[E_i(a) = c_{i-1} \sum_{k=1}^{i} a_{k,i} \sum_{l=0}^{\gamma_k - r_i - 1} (-1)^l \binom{\gamma_k - r_i - 1}{l} \times \frac{r_i!! l!!}{(r_i + l + 1)!} \sum_{m=l+a} E(Z_m: r_i + l + 1). \]

Lemma 3

\[E[h_1(Z_i, Z)] = \frac{1}{j-1} E_i(2). \]

Lemma 4

\[E[h_2(Z_i, Z)] = \frac{1}{j-1} E_i(j + 1). \]
OSMMLP

OSMMLP $Y_{j:r_i}^{OSMM}$ is given by

$$Y_{j:r_i}^{OSMM} = \begin{cases}
\hat{\mu}_{OSMM} + D_i(j + 1) & \text{if } 2 \leq j \leq r_i - 1 \\
\hat{\mu}_{OSMM} - E_i(3) & \text{if } j = 1 \\
\hat{\mu}_{OSMM} + E_i(r_i + 1) & \text{if } j = r_i
\end{cases}$$

where

$$\hat{\mu}_{OSMM} = \frac{1}{m} \left[\sum_{l=1}^{m} Y_l + \sum_{l=1, l \neq i}^{m} r_l B_l \right]$$

and

$$D_i(c) = c_{i-1} \sum_{k=1}^{i} a_{k,i} \sum_{l=0}^{\gamma_k-r_i-1} (-1)^l \binom{\gamma_k-r_i-1}{l} \times \frac{1}{(r_i+l+1)!} \frac{1}{r_i-j} E(Z_l + c : r_i + l + 1).$$
OSMMLP

OSMMLP $Y_{j:r_i}^{OSMM}$ is given by

$$Y_{j:r_i}^{OSMM} = \begin{cases}
\hat{\mu}_{OSMM} + D_i(j + 1) & \text{if } 2 \leq j \leq r_i - 1 \\
\hat{\mu}_{OSMM} - E_i(3) & \text{if } j = 1 \\
\hat{\mu}_{OSMM} + E_i(r_i + 1) & \text{if } j = r_i
\end{cases}$$

where

$$\hat{\mu}_{OSMM} = \frac{1}{m} \left[\sum_{l=1}^{m} Y_l + \sum_{l=1, l \neq i}^{m} r_l B_l \right]$$

and

$$D_i(c) = c_{i-1} \sum_{k=1}^{i} a_{k,i} \sum_{l=0}^{\gamma_k - r_i - 1} (-1)^l \binom{\gamma_k - r_i - 1}{l} \times \frac{1}{(r_i + l + 1)!} \frac{1}{r_i - j} E(Z_l + c; r_i + l + 1).$$
OSMMLP $Y_{j:r_i}^{OSMM}$ is given by

$$Y_{j:r_i}^{OSMM} = \begin{cases}
\hat{\mu}_{OSMM} + D_i(j + 1) & \text{if } 2 \leq j \leq r_i - 1 \\
\hat{\mu}_{OSMM} - E_i(3) & \text{if } j = 1 \\
\hat{\mu}_{OSMM} + E_i(r_i + 1) & \text{if } j = r_i
\end{cases}$$

where

$$\hat{\mu}_{OSMM} = \frac{1}{m} \left[\sum_{l=1}^{m} Y_l + \sum_{l=1, l \neq i}^{m} r_l B_l \right]$$

and

$$D_i(c) = c_{i-1} \sum_{k=1}^{i} a_{k,i} \sum_{l=0}^{\gamma_k - r_i - 1} (-1)^l \binom{\gamma_k - r_i - 1}{l} \times \frac{1}{(r_i + l + 1)!} \frac{1}{r_i - j} E(Z_{l+c:r_i+l+1}).$$
TSMMLP

TSMMLP $Y^{TSMM}_{j:r_i}$ is given by

$$
Y^{TSMM}_{j:r_i} = \begin{cases}
\hat{\mu}^{TSMM} + D_i(l + j + 1) & \text{if } 2 \leq j \leq r_i - 1 \\
\hat{\mu}^{TSMM} - E_i(3) & \text{if } j = 1 \\
\hat{\mu}^{TSMM} + E_i(r_i + 1) & \text{if } j = r_i
\end{cases}
$$

where

$$
\hat{\mu}^{TSMM} = \frac{1}{m} \sum_{l=1}^{m} [Y_l + r_lB_l] .
$$
Outline

1. Progressive Censoring
2. Prediction Problem
3. Different Predictors
 - BLUP
 - MLP
 - OSMLP
 - TSMLP
 - MMLP
 - OSMMLP
 - TSMMMLP
 - AMLP
 - OSAMLNP
 - TSAMLNP
 - CMP
Replacing $h(Z_l); l = 1, \cdots, m, h(Z), h_1(Z_l, Z), h_2(Z_l, Z)$ by their Taylor Series expansions around the point $F^{-1}(p_l); l = 1, \cdots, m$, $F^{-1}(\pi_{i,j}), (F^{-1}(p_i), F^{-1}(\pi_{i,j}))$ and $(F^{-1}(p_i), F^{-1}(\pi_{i,j}))$ respectively, where $\pi_{i,j} = \frac{j}{r_i+1}$ and p_i's can be obtained by

\[
\begin{align*}
p_1 &= p_1^*, \\
p_2 &= p_1 + p_2^* \cdot \frac{1-p_1}{1-q_1-p_1^*}, \\
p_3 &= p_2 + p_3^* \cdot \frac{1-p_2}{1-q_1-q_2-p_1^*-p_2^*}, \\
& \quad \vdots \\
p_m &= p_{m-1} + p_m^* \cdot \frac{1-p_{m-1}}{1-\sum_{i=1}^{m-1} q_i - \sum_{i=1}^{m-1} p_i^*}.
\end{align*}
\]
AMLPP

Replacing \(h(Z_l); l = 1, \cdots, m, h(Z), h_1(Z_l, Z), h_2(Z_l, Z) \) by their Taylor Series expansions around the point \(F^{-1}(p_l); l = 1, \cdots, m, F^{-1}(\pi_{i,j}), (F^{-1}(p_i), F^{-1}(\pi_{i,j})) \) and \((F^{-1}(p_i), F^{-1}(\pi_{i,j})) \) respectively, where \(\pi_{i,j} = \frac{j}{r_i + 1} \) and \(p_i \)’s can be obtained by

\[
\begin{align*}
 p_1 &= p_1^*, \\
 p_2 &= p_1 + p_2^* \cdot \frac{1-p_1}{1-q_1-p_1^*}, \\
 p_3 &= p_2 + p_3^* \cdot \frac{1-p_2}{1-q_1-q_2-p_1^*-p_2^*}, \\
 & \quad \cdots \\
 p_m &= p_{m-1} + p_m^* \cdot \frac{1-p_{m-1}}{1-\sum_{i=1}^{m-1} q_i - \sum_{i=1}^{m-1} p_i^*}.
\end{align*}
\]
Replacing $h(Z_l); l = 1, \cdots, m$, $h(Z), h_1(Z, Z), h_2(Z, Z)$ by their Taylor Series expansions around the point $F^{-1}(p_l); l = 1, \cdots, m$, $F^{-1}(\pi_{i,j}), (F^{-1}(p_i), F^{-1}(\pi_{i,j}))$ and $(F^{-1}(p_i), F^{-1}(\pi_{i,j}))$ respectively, where $\pi_{i,j} = \frac{j}{r_i+1}$ and p_i’s can be obtained by

\[
\begin{align*}
p_1 &= p_1^*, \\
p_2 &= p_1 + p_2^* \cdot \frac{1-p_1}{1-q_1-p_1^*}, \\
p_3 &= p_2 + p_3^* \cdot \frac{1-p_2}{1-q_1-q_2-p_1^*-p_2^*}, \\
& \quad \vdots \\
p_m &= p_{m-1} + p_m^* \cdot \frac{1-p_{m-1}}{1-\sum_{i=1}^{m-1} q_i - \sum_{i=1}^{m-1} p_i^*}.
\end{align*}
\]
\(q_i \) and \(p_i^*(i = 1, 2, \cdots, m) \) are defined as follows:

- Suppose in a progressive censoring, \(r_i \) items are randomly withdrawn after \(s_i \) (additional) failures for \(i = 1, 2, \cdots, m \).
- Now assume \(\frac{s_i}{n} \to p_i^* \) and \(\frac{r_i}{n} \to q_i \).

The Taylor series approximations are given by

\[
\begin{align*}
 h(Z_i) &\approx \alpha_l + \beta_l Z_i; l = 1, \cdots, m, \\
 h(Z) &\approx \alpha^* + \beta^* Z, \\
 h_1(Z_i, Z) &\approx \gamma^* - \rho^* Z_i - \nu^* Z, \\
 h_2(Z_i, Z) &\approx \gamma + \rho Z_i - \nu Z.
\end{align*}
\]
q_i and $p_i^*(i = 1, 2, \cdots, m)$ are defined as follows:

- Suppose in a progressive censoring, r_i items are randomly withdrawn after s_i (additional) failures for $i = 1, 2, \cdots, m$.
- Now assume $\frac{s_i}{n} \to p_i^*$ and $\frac{r_i}{n} \to q_i$.

The Taylor series approximations are given by

\[h(Z_l) \approx \alpha_l + \beta_l Z_l; l = 1, \cdots, m, \]
\[h(Z) \approx \alpha^* + \beta^* Z, \]
\[h_1(Z_i, Z) \approx \gamma^* - \rho^* Z_i - \nu^* Z, \]
\[h_2(Z_i, Z) \approx \gamma + \rho Z_i - \nu Z. \]
\(q_i \) and \(p_i^*(i = 1, 2, \cdots, m) \) are defined as follows:

- Suppose in a progressive censoring, \(r_i \) items are randomly withdrawn after \(s_i \) (additional) failures for \(i = 1, 2, \cdots, m \).
- Now assume \(\frac{s_i}{n} \to p_i^* \) and \(\frac{r_i}{n} \to q_i \).

The Taylor series approximations are given by

\[
\begin{align*}
 h(Z_i) & \approx \alpha_l + \beta_i Z_i; l = 1, \cdots, m, \\
 h(Z) & \approx \alpha^* + \beta^* Z, \\
 h_1(Z_i, Z) & \approx \gamma^* - \rho^* Z_i - \nu^* Z, \\
 h_2(Z_i, Z) & \approx \gamma + \rho Z_i - \nu Z.
\end{align*}
\]
Suppose in a progressive censoring, \(r_i \) items are randomly withdrawn after \(s_i \) (additional) failures for \(i = 1, 2, \cdots, m \).

Now assume \(\frac{s_i}{n} \rightarrow p_i^* \) and \(\frac{r_i}{n} \rightarrow q_i \).

The Taylor series approximations are given by

\[
\begin{align*}
 h(Z_l) & \simeq \alpha_l + \beta_l Z_l; \quad l = 1, \cdots, m, \\
 h(Z) & \simeq \alpha^* + \beta^* Z, \\
 h_1(Z_i, Z) & \simeq \gamma^* - \rho^* Z_i - \nu^* Z, \\
 h_2(Z_i, Z) & \simeq \gamma + \rho Z_i - \nu Z.
\end{align*}
\]
q_i and $p_i^*(i = 1, 2, \cdots, m)$ are defined as follows:

- Suppose in a progressive censoring, r_i items are randomly withdrawn after s_i (additional) failures for $i = 1, 2, \cdots, m$.
- Now assume $\frac{s_i}{n} \to p_i^*$ and $\frac{r_i}{n} \to q_i$.

The Taylor series approximations are given by

\[
\begin{align*}
h(Z_l) & \approx \alpha_l + \beta_l Z_l; l = 1, \cdots, m, \\
h(\bar{Z}) & \approx \alpha^* + \beta^* \bar{Z}, \\
h_1(Z_i, \bar{Z}) & \approx \gamma^* - \rho^* Z_i - \nu^* \bar{Z}, \\
h_2(Z_i, \bar{Z}) & \approx \gamma + \rho Z_i - \nu \bar{Z}.
\end{align*}
\]
The constants $\alpha_l, \beta_l, \alpha^*, \beta^*, \gamma^*, \rho^*, \nu^*, \gamma, \rho$ and ν are given by

\[
\alpha_l = f(\zeta_l) \left[(1 + \zeta_l^2)(1 - p_l) - \zeta_l f(\zeta_l) \right] / (1 - p_l)^2,
\]

\[
\beta_l = f(\zeta_l) \left[f(\zeta_l) - (1 - p_l)\zeta_l \right] / (1 - p_l)^2,
\]

\[
\alpha^* \equiv \alpha_{j:r_i}^* = f(\eta_j) \left[(1 + \eta_j^2)(1 - \pi_{i,j}) - \eta_j f(\eta_j) \right] / (1 - \pi_{i,j})^2,
\]

\[
\beta^* \equiv \beta_{j:r_i}^* = f(\eta_j) \left[f(\eta_j) - (1 - \pi_{i,j})\eta_j \right] / (1 - \pi_{i,j})^2,
\]

\[
\gamma^* \equiv \gamma_{j:r_i}^* = f(\zeta_i) \left[(1 + \zeta_i^2)(\pi_{i,j} - p_i) + \eta_j f(\eta_j) - \zeta_l f(\zeta_l) \right] / (\pi_{i,j} - p_i)^2,
\]
\[\rho^* \equiv \rho_{j:ri} = f(\zeta_i) \left[-f(\zeta_i) + \zeta_i(\pi_{i,j} - p_i) \right] / (\pi_{i,j} - p_i)^2, \]

\[\nu^* \equiv \nu_{j:ri} = f(\zeta_i)f(\eta_j) / (\pi_{i,j} - p_i)^2, \]

\[\gamma \equiv \gamma_{j:ri} = f(\eta_j) \left[(1 + \eta^2_j)(\pi_{i,j} - p_i) + \eta_j f(\eta_j) - \zeta_j f(\zeta_i) \right] / (\pi_{i,j} - p_i)^2, \]

\[\rho \equiv \rho_{j:ri} = f(\zeta_i)f(\eta_j) / (\pi_{i,j} - p_i)^2, \]

\[\nu \equiv \nu_{j:ri} = f(\eta_j) \left[\eta_j(\pi_{i,j} - p_i) + f(\eta_j) \right] / (\pi_{i,j} - p_i)^2, \]

where \(\zeta_i = F^{-1}(p_i) \), \(\zeta_l = F^{-1}(p_l) \), \(\eta_j = F^{-1}(\pi_{i,j}) \).
OSAMLP $Y_{j:r_i}^{OSAM}$ is given by

$$Y_{j:r_i}^{OSAM} = \begin{cases}
\hat{Y}_{j:r_i} & \text{if } \hat{Y}_{j:r_i} > Y_i \\
Y_i & \text{if } \hat{Y}_{j:r_i} \leq Y_i
\end{cases}$$

where $\hat{Y}_{j:r_i}$ is given by

$$\hat{\mu}^{OSAM} [(j - 1)(\nu - \rho) + (r_i - j)\beta^* + 1] + (j - 1) [\gamma + \rho Y_i] - (r_i - j)\alpha^*$$

$$(j - 1)\nu + (r_i - j)\beta^* + 1$$

and

$$\hat{\mu}^{OSAM} = \frac{m\bar{Y} + \sum_{l=1, l \neq i}^{m} r_l(\alpha_l + \beta_l Y_l) + (j - 1) [\gamma^* - \rho^* Y_i - \nu^* \hat{Y}_{j:r_i}]}{m + \sum_{l=1}^{m} r_l \beta_l - (j - 1)(\rho^* + \nu^*)}.$$
OSAMLPPROGRESSIVE CENSORING

Different Predictors

OSAMLPPREDICTION PROBLEM

OSAMLP

OSAMLP \(Y_{j:r_i}^{OSAM} \) is given by

\[
Y_{j:r_i}^{OSAM} = \begin{cases}
\hat{Y}_{j:r_i} & \text{if } \hat{Y}_{j:r_i} > Y_i \\
Y_i & \text{if } \hat{Y}_{j:r_i} \leq Y_i
\end{cases}
\]

where \(\hat{Y}_{j:r_i} \) is given by

\[
\hat{\mu}_{OSAM} \left[(j - 1)(\nu - \rho) + (r_i - j)\beta^* + 1 \right] + (j - 1) [\gamma + \rho Y_i] - (r_i - j)\alpha^* \frac{(j - 1)\nu + (r_i - j)\beta^* + 1}{(j - 1)\nu + (r_i - j)\beta^* + 1},
\]

and

\[
\hat{\mu}_{OSAM} = \frac{m\bar{Y} + \sum_{l=1, l \neq i}^m r_l(\alpha_l + \beta_l Y_l) + (j - 1) [\gamma^* - \rho^* Y_i - \nu^* \hat{Y}_{j:r_i}]}{m + \sum_{l=1, l \neq i}^m r_l\beta_l - (j - 1)(\rho^* + \nu^*)}.
\]
OSAMLp $Y_{j:r_i}^{OSAM}$ is given by

$$Y_{j:r_i}^{OSAM} = \begin{cases} \hat{Y}_{j:r_i} & \text{if } \hat{Y}_{j:r_i} > Y_i \\ Y_i & \text{if } \hat{Y}_{j:r_i} \leq Y_i \end{cases}$$

where $\hat{Y}_{j:r_i}$ is given by

$$\hat{\mu}_{OSAM} [(j-1)(\nu - \rho) + (r_i - j)\beta^* + 1] + (j-1) [\gamma + \rho Y_i] - (r_i - j)\alpha^*$$

$$= \frac{(j-1)\nu + (r_i - j)\beta^* + 1}{(j-1)\nu + (r_i - j)\beta^* + 1},$$

and

$$\hat{\mu}_{OSAM} = m\bar{Y} + \sum_{l=1, l \neq i}^m r_l(\alpha_l + \beta_l Y_l) + (j-1) [\gamma^* - \rho^* Y_i - \nu^* \hat{Y}_{j:r_i}]$$

$$= \frac{m + \sum_{l=1}^m r_l\beta_l - (j-1)(\rho^* + \nu^*)}{m + \sum_{l=1}^m r_l\beta_l - (j-1)(\rho^* + \nu^*)}.$$
TSAM LP

TSAMLP $Y^{TSAM}_{j:r_i}$ is given by

$$Y^{TSAM}_{j:r_i} = \begin{cases} \hat{Y}^{TSA}_{j:r_i} & \text{if } \hat{Y}^*_{j:r_i} > Y_i \\ Y_i & \text{if } \hat{Y}^*_{j:r_i} \leq Y_i. \end{cases}$$

where $\hat{Y}^*_{j:r_i}$ is given by

$$\hat{\mu}^{TSA}_{TSA} = \frac{(j - 1)(\nu - \rho) + (r_i - j)\beta^* + 1}{{(j - 1)\nu + (r_i - j)\beta^* + 1}$$

and

$$\hat{\mu}^{TSA} = \frac{m\bar{Y} + \sum_{l=1}^{m} r_l(\alpha_l + \beta_l Y_l)}{m + \sum_{l=1}^{m} r_l \beta_l}.$$
TSAMLP $Y_{j:r_i}^{TSAM}$ is given by

$$Y_{j:r_i}^{TSAM} = \begin{cases} \hat{Y}_{j:r_i} & \text{if } \hat{Y}_{j:r_i} > Y_i \\ Y_i & \text{if } \hat{Y}_{j:r_i} \leq Y_i. \end{cases}$$

where $\hat{Y}_{j:r_i}^*$ is given by

$$\hat{\mu}^{TSA} [(j - 1)(\nu - \rho) + (r_i - j)\beta^* + 1] + (j - 1)[\gamma + \rho Y_i] - (r_i - j)\alpha^*,$$

$$(j - 1)\nu + (r_i - j)\beta^* + 1$$

and

$$\hat{\mu}^{TSA} = \frac{m\bar{Y} + \sum_{l=1}^{m} r_l(\alpha_l + \beta_l Y_l)}{m + \sum_{l=1}^{m} r_l \beta_l}.$$
TSAMLMP $Y^{TSAM}_{j:r_i}$ is given by

$$Y^{TSAM}_{j:r_i} = \begin{cases}
\hat{Y}^{TSA}_{j:r_i} & \text{if } \hat{Y}^*_{j:r_i} > Y_i \\
Y_i & \text{if } \hat{Y}^*_{j:r_i} \leq Y_i.
\end{cases}$$

where $\hat{Y}^*_{j:r_i}$ is given by

$$\hat{\mu}^{TSA} \left[(j - 1)(\nu - \rho) + (r_i - j)\beta^* + 1 \right] + (j - 1) \left[\gamma + \rho Y_i \right] - (r_i - j)\alpha^*$$

$$\frac{(j - 1)\nu + (r_i - j)\beta^* + 1}{(j - 1)\nu + (r_i - j)\beta^* + 1},$$

and

$$\hat{\mu}^{TSA} = \frac{m\bar{Y} + \sum_{l=1}^{m} r_l(\alpha_l + \beta_l Y_l)}{m + \sum_{l=1}^{m} r_l\beta_l}.$$
Outline

1. Progressive Censoring
2. Prediction Problem
3. Different Predictors
 - BLUP
 - MLP
 - OSMLP
 - TSMLP
 - MMLP
 - OSMMLP
 - TSMMLP
 - AMLP
 - OSAMLMLP
 - TSMMLP
 - CMP
A statistic T is called the CMP of $Y_{j:r_i}$ if it is the median of the conditional distribution of $Y_{j:r_i}$ given Y_i.

The CMP $Y_{j:r_i}^C$ of $Y_{j:r_i}$ is such that

$$\int_{y_i}^{Y_{j:r_i}^C} f(y|y_i) dy = \frac{1}{2}$$

in which $f(y|y_i)$ is given by

$$\frac{r_i!}{(j-1)!(r_i-j)!} \left[\frac{\int_{y_i}^{y} e^{-\frac{(x-\mu^*)^2}{2}} dx}{\int_{y_i}^{\infty} e^{-\frac{(x-\mu^*)^2}{2}} dx} \right]^{j-1} e^{-\frac{(y-\mu^*)^2}{2}} \left[\frac{\int_{y_i}^{\infty} e^{-\frac{(x-\mu^*)^2}{2}} dx}{\int_{y_i}^{y} e^{-\frac{(x-\mu^*)^2}{2}} dx} \right]^{r_i-j}.$$

where μ^* is the BLUE of μ.

A statistic \(T \) is called the CMP of \(Y_{j:r_i} \) if it is the median of the conditional distribution of \(Y_{j:r_i} \) given \(Y_i \).

The CMP \(Y_{j:r_i}^C \) of \(Y_{j:r_i} \) is such that

\[
\int_{y_i}^{Y_{j:r_i}^C} f(y|y_i) \, dy = \frac{1}{2}
\]

in which \(f(y|y_i) \) is given by

\[
\frac{r_i!}{(j - 1)! (r_i - j)!} \left[\int_{y_i}^{y} e^{-\frac{(x-\mu^*)^2}{2}} \, dx \right]^{j-1} e^{-\frac{(y-\mu^*)^2}{2}} \left[\int_{y}^{\infty} e^{-\frac{(x-\mu^*)^2}{2}} \, dx \right]^{r_i-j}
\]

\[
\frac{\left[\int_{y_i}^{\infty} e^{-\frac{(x-\mu^*)^2}{2}} \, dx \right]^{r_i}}{\left[\int_{y_i}^{\infty} e^{-\frac{(x-\mu^*)^2}{2}} \, dx \right]^{r_i}}
\]

where \(\mu^* \) is the BLUE of \(\mu \).
A statistic T is called the CMP of $Y_{j:r_i}$ if it is the median of the conditional distribution of $Y_{j:r_i}$ given Y_i.

The CMP $Y_{j:r_i}^C$ of $Y_{j:r_i}$ is such that

$$\int_{y_i}^{Y_{j:r_i}} f(y|y_i) dy = \frac{1}{2}$$

in which $f(y|y_i)$ is given by

$$\frac{r_i!}{(j-1)!(r_i-j)!} \left[\int_{y_i}^{y} e^{-\frac{(x-\mu^*)^2}{2}} dx \right]^{j-1} e^{-\frac{(y-\mu^*)^2}{2}} \left[\int_{y_i}^{\infty} e^{-\frac{(x-\mu^*)^2}{2}} dx \right]^{r_i-j} \left[\int_{y_i}^{\infty} e^{-\frac{(x-\mu^*)^2}{2}} dx \right]^{r_i}.$$

where μ^* is the BLUE of μ.

CMP
A statistic T is called the CMP of $Y_{j:r_i}$ if it is the median of the conditional distribution of $Y_{j:r_i}$ given Y_i.

The CMP $Y^C_{j:r_i}$ of $Y_{j:r_i}$ is such that

$$
\int_{y_i}^{Y^C_{j:r_i}} f(y|y_i) dy = \frac{1}{2}
$$

in which $f(y|y_i)$ is given by

$$
\frac{r_i!}{(j-1)!(r_i-j)!} \left[\int_{y_i}^{y} e^{-\frac{(x-\mu^*)^2}{2}} dx \right]^{j-1} e^{-\frac{(y-\mu^*)^2}{2}} \left[\int_{y}^{\infty} e^{-\frac{(x-\mu^*)^2}{2}} dx \right]^{r_i-j} \left[\int_{y_i}^{\infty} e^{-\frac{(x-\mu^*)^2}{2}} dx \right]^{r_i-j}.
$$

where μ^* is the BLUE of μ.
THANK YOU