GE Transportation
Freight, Fuel, & Emissions

Introduction to Engineering Design
EDGSN 100 Section 001

Team Flying Wombat / Team #4
Cody Heaton, personal.psu.edu/csh5267, csh5267@psu.edu
Connor Hoover, personal.psu.edu/cjh5764, cjh5764@psu.edu
Denis Pasic, personal.psu.edu/djp5536, djp5536@psu.edu
Laura Cook, personal.psu.edu/lkc5121, lkc5121@psu.edu

Presented to: Prof. Bereziak
Date: 12/11/2015
Introduction

• General Electric (GE) Transportation tasked EDSGN 100 to strategize on efficient ways to upgrade a fleet of 50 locomotives
• Each of the locomotives is currently at Tier 2 standards
• Wide variety of options based on transportation method, fuels/fuel stations, after-treatment systems, and selling locomotives
• Main goal is to determine the best combination of solutions that maximizes economic and environmental efficiency
Transportation Infrastructure Condition and Capacity

- **Bridges:** D+
 - 22.6% PA bridges structurally deficient

- **Roads:** D-
 - 32% US roads in poor condition

- **Inland Waterways:** D+
 - delays and structural deficiencies
 - 12,000 miles of inland waterways, 51M truckloads’ worth of cargo/year

- **Freight Rail:** B
 - freight traffic may increase by 22% by 2035
 - 57 freight railroads over 5127 miles, 246 million tons of cargo/year
Standard Capacity for Alternate Transportation Modes

Compare...

Cargo Capacity

- **ONE BARGE**
 - 1,500 TON
 - 52,500 BUSHELS
 - 453,600 GALLONS

- **ONE 15 BARGE TOW**
 - 22,500 TON
 - 787,500 BUSHELS
 - 6,804,000 GALLONS

- **JUMBO HOPPER CAR**
 - 100 TON
 - 2,500 BUSHELS
 - 30,240 GALLONS

- **100 CAR TRAIN UNIT**
 - 10,500 TON
 - 350,000 BUSHELS
 - 3,024,000 GALLONS

- **LARGE SEMI**
 - 26 TON
 - 910 BUSHELS
 - 7,865 GALLONS

Equivalent Units

- **ONE BARGE**
- **15 JUMBO HOPPER CARS**
- **58 LARGE SEMIS**

- **ONE 15 BARGE TOW**
- **2.25 100 CAR UNIT TRAINS**
- **870 LARGE SEMIS**

Equivalent Lengths

- **ONE 15 BARGE TOW**
 - .25 MILES

- **2.25 100 CAR TRAIN UNIT**
 - 2.75 MILES

- **870 LARGE SEMIS**
 - 115 MILES (BUMPER TO BUMPER)
Transportation Costs and Concept of Operations (ConOps)
Transportation Costs and Concept of Operations (ConOps)

- **Barges:**
 - Most economical
 - High capacity for cargo
 - Fuel efficient
 - But...SLOW
 - And prone to delays (weather, locks, seasons)

SOURCE (mine, quarry, factory, etc.)

TRANSFER TO EXPORT PORT (often by train)

TRANSFER TO IMPORT PORT (using inland waterways)

EXPORT PORT (loaded onto barges)

IMPORT PORT (loaded onto train or truck)

TRANSFER TO FINAL DESTINATION (often by train)

FINAL DESTINATION (company, factory, client, etc.)
EPA Diesel Emission Standards
Diesel Engine Exhaust Emissions (DEEE)

Types of emissions
Pollutants include:
- NO\textsubscript{x}
- Particulate matter
- Hydrocarbons
- CO

Diesel retrofit device
Locomotive Fleet Upgrade

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Cost per locomotive</th>
<th>Total cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upgrade all</td>
<td>$750k x 50 trains</td>
<td>$37.5M</td>
</tr>
<tr>
<td>Sell/replace all</td>
<td>$1.5M x 50 trains</td>
<td>$75M</td>
</tr>
<tr>
<td>Alternate fuel upgrade all</td>
<td>$1M x 50 trains (+ two $1B fueling stations)</td>
<td>$2.05B</td>
</tr>
<tr>
<td>Our Solution</td>
<td>$750k x 20 trains + $100k x 20 trains + $1.5M x 10 trains</td>
<td>$32M</td>
</tr>
</tbody>
</table>

- Upgrade new trains (Groups A and B)
- Exhaust after-treatments on middle trains (Groups C and D)
- Sell and replace old trains (Group E)
Summary

• Of rail, road, and river, barges are the cheapest option, but they have the tradeoff of speed
• Alternate fuels like biofuel or compressed natural gas are also possibilities, but are expensive
• Replacing all of the locomotives or upgrading all of the locomotives are pricy solutions
• Ultimately, use a combination of upgrading, exhaust after-treatment, and replacing
• Maybe consider barges and alternate fuels in the future
Closing

questions?