1. Find the slope intercept equation of the line through the point \((-2,5)\) and

(a) parallel to the line \(2x - y + 4 = 0\)

(b) perpendicular to the line \(x = 3\).

2. The population of a small town in central Pennsylvania was 8000 in the year 2010, and had decreased to 7500 by the year 2015. Find a linear model giving the population \(P\) in terms of the year \(t\), where \(t = 0\) corresponds to the year 2010.
3. Determine if the equation represents a function of y in terms of x. If it is not a function, explain your reasoning.

a. $y^2 - x^2 = 16$

 yes or no, if no, explain.

b. $y = 4x^2 - 1$

 yes or no, if no, explain

4. Sketch a graph of the function. $f(x) = \begin{cases}
 x + 1, & x < 0 \\
 x^2 - 4, & x \geq 0
\end{cases}$
5. Determine if the statement is true T or false F. If false, explain why it is false or provide a counter-example.

a. The graph of an odd function is symmetrical to the x-axis. ____________
If false, explain.

b. The graph shown is that of the greatest integer function, \(f(x) = \lfloor x \rfloor \) ____________
If false, explain.

6. Use the graph of \(y = f(x) \) to find the following:

(a) domain of \(f \) ______________

(b) range of \(f \) ______________
7. For the function \(f(x) = x^2 - 3x + 5 \), find and simplify the difference quotient.

\[
\frac{f(x + h) - f(x)}{h} =
\]

8. Use the graph of \(f(x) = |x| \) to write the equation for the function \(g \) whose graph is shown.

Assume no vertical stretch or shrink.
9. **Describe** the shape and the rigid transformations that gives the graph of
 \[g(x) = -\frac{1}{4} (x - 3)^2 - 2 \] using the graph of \(f(x) = x^2 \). Not looking for a graph, but a written description.

10. Find each of the following for the given functions,
 \[
 f(x) = x^2 + 1 \\
 g(x) = 2x - 3
 \]

 a. \((f \cdot g)(x)\)
 b. \((f - g)(x)\)
11. For the composite function, \(f(g(x)) \) find two functions \(f \) and \(g \), if \(f(g(x)) = \sqrt{4x-5} \)

\[f(x) = \]

\[g(x) = \]

12. Find \(f^{-1}(x) \), if it exists, for \(f(x) = 27x^3 - 1 \). If it does not exist, explain the reason(s).

13. (4 points): 4 points: Any plans for Valentine’s Day?
Extra: Use the graph of \(f \) and \(g \) to find each of the following:

\[g(f(1)) = \]

\[(f + g^{-1})(3) = \]

\[(g \circ f^{-1})(3) = \]

\[g^{-1}(g(1)) = \]

Happy Valentine’s Day