1. **SET UP** the definite integral to find the area of the region bounded by the graphs of the equations \(y = 3 - x^2 \) and \(y = x + 1 \).

 Top: \(y = 3 - x^2 \), Bottom: \(y = x + 1 \)

 Limits:
 \[
 3 - x^2 = x + 1 \\
 x^2 + x - 2 = 0 \\
 (x + 2)(x - 1) = 0 \\
 x = -2, 1
 \]

 \[
 A = \int_{-2}^{1} \left((3 - x^2) - (x + 1) \right) \, dx
 \]

2. **SET UP** the definite integral to find the area of the region bounded by the graphs of the equations \(y = \ln x \), \(x = 0 \), \(y = 0 \) and \(y = 1 \).

 Limits: given \(y = 0 \) \(y = 1 \)
 \[
 \text{Right: } x = e \\
 \text{Left: } x = y - 1
 \]

 \[
 A = \int_{0}^{1} \left[e^y - (y - 1) \right] \, dy
 \]
1. **SET UP** the definite integral to find the area of the region bounded by the graphs of the equations $y = 4 - x^2$ and $y = x^2 - 4x + 4$.

 \[y = 4 - x^2 \]
 \[y = x^2 - 4x + 4 \]

 Top: \(x \in [0, 2] \)

 Bottom: \(x \in [0, 2] \)

 \[4 - x^2 = x^2 - 4x + 4 \]
 \[2x^2 - 4x = 0 \]
 \[2x(x - 2) = 0 \]
 \[x = 0, 2 \]

 \[A = \int_0^2 [(4-x^2) - (x^2 - 4x + 4)] \, dx \]

2. **SET UP** the definite integral to find the area of the region bounded by the graphs of the equations $y = \ln x$, $x = y + 1$, $y = 0$ and $y = 1$.

 Left: \(x = y - 1 \)

 Right: \(x = e^y \)

 \[A = \int_0^1 [e^y - (y - 1)] \, dy \]