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Abstract

Embeddings of random variables in reproducing kernel Hilbert spaces (RKHSs)
may be used to conduct statistical inference based on higher order moments. For
sufficiently rich (characteristic) RKHSs, each probability distribution has a unique
embedding, allowing all statistical properties of the distribution to be taken into
consideration. Necessary and sufficient conditions for an RKHS to be character-
istic exist for Rn. In the present work, conditions are established for an RKHS
to be characteristic on groups and semigroups. Illustrative examples are provided,
including characteristic kernels on periodic domains, rotation matrices, and Rn

+.

1 Introduction

Recent studies have shown that mapping random variables into a suitable reproducing kernel Hilbert
space (RKHS) gives a powerful and straightforward method of dealing with higher-order statistics
of the variables. For sufficiently rich RKHSs, it becomes possible to test whether two samples
are from the same distribution, using the difference in their RKHS mappings [8]; as well as testing
independence and conditional independence [6, 9]. It is also useful to optimize over kernel mappings
on distributions, for instance to find the most predictive subspace in regression [5], or for ICA [1].

Key to the above work is the notion of a characteristic kernel, as introduced in [5, 6]: it gives an
RKHS for which probabilities have unique images (i.e., the mapping is injective). Such RKHSs
are sufficiently rich in the sense required above. Universal kernels on compact metric spaces [16]
are characteristic [8], as are Gaussian and Laplace kernels on Rn [6]. Recently, it has been shown
[14] that a continuous shift-invariant R-valued positive definite kernel on Rn is characteristic if and
only if the support of its Fourier transform is the entire Rn. This completely determines the set of
characteristic ones in the convex cone of continuous shift-invariant positive definite kernels on Rn.

One of the chief advantages of kernel methods is that they allow us to deal straightforwardly with
complex domains, through use of a kernel function to determine the similarity between objects in
these domains [13]. A question that naturally arises is whether characteristic kernels can be defined
on spaces besides Rn. Several such domains constitute topological groups/semigroups, and our
focus is on kernels defined by their algebraic structure. Broadly speaking, our approach is based on
extensions of Fourier analysis to groups and semigroups, where we apply appropriate extensions of
Bochner’s theorem to obtain the required conditions on the kernel.

The most immediate generalization of the results in [14] is to locally compact Abelian groups, of
which (Rn, +) is one example. Thus, in Section 2 we provide review of characteristic kernels on
(Rn,+) from this viewpoint. In Section 3 we derive necessary and sufficient conditions for kernels
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on locally compact Abelian groups to be characteristic. Besides (Rn,+), such groups include [0, 1]n
with periodic boundary conditions [13, Section 4.4.4]. We next address non-Abelian compact groups
in Section 4, for which we obtain a sufficient condition for a characteristic kernel. We illustrate with
the example of SO(3), which describes rotations in R3, and is used in fields such as geophysics
[10] and robotics [15]. Finally, in Section 5, we consider the Abelian semigroup (Rn

+,+), where
R+ = [0,∞). This semigroup has many practical applications, including expressions of nonnegative
measures or frequency on n points [3]. Note that in all cases, we provide specific examples of
characteristic kernels to illustrate the properties required.

2 Preliminaries: Characteristic kernels and shift-invariant kernels

Let X be a random variable taking values on a measurable space (Ω,B), and H be a RKHS defined
by a measurable kernel k on Ω such that E[

√
k(X, X)] < ∞. The mean element mX of X is

defined by the element in H such that 〈mX , f〉H = E[f(X)] (∀f ∈ H) (See [6, 7]). By plugging
f = k(·, y) in the definition, the explicit functional form of mX is given by mX(y) = E[k(y, X)].
A bounded measurable kernel k on Ω is called characteristic if

{P : probability on (Ω,B)} → H, P 7→ mP = EX∼P [k(·, X)] (1)
is injective ([5, 6]). Therefore, by definition, a characteristic kernel uniquely determines a probabil-
ity by its mean element. This property is important in making inference on properties of distribu-
tions. It guarantees, for example, that MMD = ‖mX −mY ‖H is a (strict) distance on the space
of probabilities on Ω [8]. The following result provides the necessary and sufficient condition for a
kernel to be characteristic and shows its associated RKHS to be a rich function class.
Lemma 1. Let (Ω,B) be a measurable space, k be a measurable positive definite kernel on Ω, and
H be the associated RKHS. Then, k is characteristic if and only if H + R (direct sum of the two
RKHS’s) is dense in L2(P ) for every probability P on (Ω,B).

Proof. The “if” part is shown in [6, Lemma 1]. Suppose H + R is not dense in L2(P ). Then, there
is f 6= 0 in L2(P ) such that

∫
fdP = 0 and

∫
fϕdP = 0 for all ϕ ∈ H. Let c = 1/‖f‖L1(P ) and

define Q1 = c|f |P and Q2 = c(|f | − f)P . They are probabilities and Q1 6= Q2 by f 6= 0. Since∫
k(y, x)dQ1(x)− ∫

k(y, x)dQ2(x) = c
∫

f(x)k(y, x)dP (x) = 0, k is not characteristic.

The above lemma and Theorem 3 of [6] imply that characteristic kernels give a criterion of (condi-
tional) independence through (conditional) covariance on RKHS, which enables statistical tests of
independence with kernels [6]. This explains also the practical importance of characteristic kernels.

The following result shows that the characteristic property is invariant under some conformal map-
pings introduced in [17] and provides a construction to generate new characteristic kernels.
Lemma 2. Let Ω be a topological space with Borel σ-field, k be a measurable positive definite
kernel on Ω such that

∫
Ω

k(·, y)dµ(y) = 0 means µ = 0 for a finite Borel measure µ, and f : Ω → C
be a bounded continuous function such that f(x) > 0 for all x ∈ Ω and k(x, x)|f(x)|2 is bounded.
Then, the kernel k̃(x, y) = f(x)k(x, y)f(y) is characteristic.

Proof. Let P and Q be Borel probabilities such that
∫

k̃(·, x)dP (x) =
∫

k̃(·, x)dQ(x). We have∫
k(·, x)f(x)d(P − Q)(x) = 0, which means fP = fQ. We have P = Q by the positivity and

continuity of f .

We will focus on spaces with algebraic structure for better description of characteristic kernels.
Let G be a group. A function φ : G → C is called positive definite if k(x, y) = φ(y−1x) is
a positive definite kernel. We call this type of positive definite kernels shift-invariant, because
k(zx, zy) = φ((zy)−1zx) = φ(y−1x) = k(x, y) for any z ∈ G.

There are many examples of shift-invariant positive definite kernels on the additive group Rn: Gaus-
sian RBF kernel k(x, y) = exp(−‖x−y‖2/σ2) and Laplacian kernel k(x, y) = exp(−β

∑n
i=1 |xi−

yi|) are famous ones. In the case of Rn, the following Bochner’s theorem is well-known;
Theorem 3 (Bochner). Let φ : Rn → C be a continuous function. φ is positive definite if and only
if there is a unique finite non-negative Borel measure Λ on Rn such that

φ(x) =
∫

Rn

e
√−1xT ωdΛ(ω). (2)
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Bochner’s theorem completely characterizes the set of continuous shift-invariant positive definite
kernels onRn by the Fourier transform. It also implies that the continuous positive definite functions
form a convex cone with the extreme points given by the Fourier kernels {e

√−1xT ω | ω ∈ Rn}.

It is interesting to determine the class of continuous shift-invariant “characteristic” kernels on Rn.
[14] gives a complete solution: if supp(Λ) = Rn,1 then φ(x − y) is characteristic. In addition, if
a continuous positive definite function of the form in Eq. (2) is real-valued and characteristic, then
supp(Λ) = Rn. The basic idea is the following: since the mean element EP [φ(y −X)] is equal to
the convolution φ ∗ P , the Fourier transform rewrites the definition of characteristic property as

(P̂ − Q̂)Λ = 0 =⇒ P = Q,

where ̂ denotes the Fourier transform, and we use φ̂ ∗ P = ΛP̂ . Hence, it is natural to expect that
if Λ is everywhere positive, then (P̂ − Q̂) must be zero, which means P = Q.

We will extend these results to more general algebraic objects, such as groups and semigroups, on
which Fourier analysis and Bochner’s theorem can be extended.

3 Characteristic kernels on locally compact Abelian groups

It is known that most of the results on Fourier analysis for Rn are extended to any locally compact
Abelian (LCA) group, which is an Abelian (i.e. commutative) topological group with the topology
Hausdorff and locally compact. The basic terminologies are provided in the supplementary material
for readers who are not familiar to them. The group operation is denoted by “+” in Abelian cases.

Hereafter, for a LCA group G, we consider only the probability measures included in the set of finite
regular measures M(G) (see Supplements) to discuss characteristic property. This slightly restricts
the class of measures, but removes only pathological ones.

3.1 Fourier analysis on LCA Group

We briefly summarize necessary results to show our main theorems. For the details, see [12, 11].

For a LCA group G, there exists a non-negative regular measure m on G such that m(E + x) =
m(E) for every x ∈ G and every Borel set E in G. This measure is called Haar measure. We use
dx to denote the Haar measure of G. With the Haar measure, the integral is shift-invariant, that is,∫

G

f(x + y)dx =
∫

G

f(x)dx (∀y ∈ G).

The space of Lp(G, dx) is simply denoted by Lp(G).

A function γ : G → C is called a character of G if γ(x+y) = γ(x)γ(y) and |γ(x)| = 1. The set of
all continuous characters of G forms an Abelian group with the operation (γ1γ2)(x) = γ1(x)γ2(x).
By convention, the group operation is denoted by addition “+”, instead of multiplication; i.e., (γ1 +
γ2)(x) = γ1(x)γ2(x). This group is called the dual group of G, and denoted by Ĝ.

For any x ∈ G, the function x̂ on Ĝ given by x̂(γ) = γ(x) (γ ∈ Ĝ) defines a character of Ĝ. It is
known that Ĝ is a LCA group if the weakest topology is introduced so that x̂ is continuous for each
x ∈ G. We can therefore consider the dual of Ĝ, denoted by Gˆ̂, and the group homomorphism

G → Gˆ̂, x 7→ x̂.

The Pontryagin duality guarantees that this homomorphism is an isomorphism, and homeomor-
phism, thus Gˆ̂can be identified with G. In view of the duality, it is customary to write (x, γ) :=
γ(x). We have (−x, γ) = (x,−γ) = γ(x)−1 = (x, γ), where z is the complex conjugate of z.

Let f ∈ L1(G) and µ ∈ M(G), the Fourier transform of f and µ are respectively defined by

f̂(γ) =
∫

G

(−x, γ)f(x)dx, µ̂(γ) =
∫

G

(−x, γ)dµ(x), (γ ∈ Ĝ). (3)

1For a finite regular measure, there is the largest open set U with µ(U) = 0. The complement of U is called
the support of µ, and denoted by supp(µ). See the supplementary material for the detail.
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Let f ∈ L∞(G), g ∈ L1(G), and µ, ν ∈ M(G). The convolutions are defined respectively by

(g∗f)(x) =

∫

G

f(x−y)g(y)dy, (µ∗f)(x) =

∫

G

f(x−y)dµ(y), (µ∗ν)(E) =

∫

G

χE(x+y)dµ(x)dν(y).

g ∗ f is uniformly continuous on G. For any f, g ∈ L1(G) and µ, ν ∈ M(G), we have the formula

f̂ ∗ g = f̂ ĝ, µ̂ ∗ f = µ̂f̂ , µ̂ ∗ ν = µ̂ν̂. (4)

Proposition 4. For µ ∈ M(G), the Fourier transform µ̂ is bounded and uniformly continuous.
Theorem 5 (Uniqueness theorem). If µ ∈ M(G) satisfies µ̂ = 0, then µ = 0.

It is known that the dual group of the LCA group Rn is {e
√−1ωT x | ω ∈ Rn}, which can be

identified with Rn. The above definition and properties of Fourier transform for LCA groups are
extension of the ordinary Fourier transform for Rn. Bochner’s theorem can be also extended.
Theorem 6 (Bochner’s theorem. e.g., [12] Section 1.4.3). A continuous function φ on G is positive
definite if and only if there is a unique non-negative measure Λ ∈ M(Ĝ) such that

φ(x) =
∫

Ĝ

(x, γ)dΛ(γ) (x ∈ G). (5)

3.2 Shift-invariant characteristic kernels on LCA group

Based on Bochner’s theorem, a sufficient condition of the characteristic property is obtained.
Theorem 7. Let φ be a continuous positive definite function on a LCA group G given by Eq. (5)
with Λ. If supp(Λ) = Ĝ, then the positive definite kernel k(x, y) = φ(x− y) is characteristic.

Proof. It suffices to prove that if µ ∈ M(G) satisfies µ ∗ φ = 0 then µ = 0. We have
∫

G
(µ ∗

φ)(x)dµ(x) = 0. On the other hand, by using Fubini’s theorem,∫
G

(µ ∗ φ)(x)dµ(x) =
∫

G

∫
G

φ(x− y)dµ(y)dµ(x) =
∫

G

∫
G

∫
Ĝ

(x− y, γ)dΛ(γ)dµ(y)dµ(x)

=
∫

Ĝ

∫
G

(x, γ)dµ(x)
∫

G
(−y, γ)dµ(y)dΛ(γ) =

∫
Ĝ
|µ̂(γ)|2dΛ(γ).

Since µ̂ is continuous and supp(Λ) = Ĝ, we have µ̂ = 0, which means µ = 0 by Theorem 5.

In real-valued cases, the condition supp(Λ) = Ĝ is almost necessary.
Theorem 8. Let φ be a R-valued continuous positive definite function on a LCA group G given
by Eq. (5) with Λ. The kernel φ(x − y) is characteristic if and only if (i) 0 ∈ Ĝ is not open and
supp(Λ) = Ĝ, or (ii) 0 ∈ Ĝ is open and supp(Λ) ⊃ Ĝ− {0}. The case (ii) occurs if G is compact.

Proof. It suffices to prove the only if part. Assume k(x, y) = φ(x − y) is characteristic. It is
obvious that k is characteristic if and only if so is k(x, y) + 1. Thus, we can assume 0 ∈ supp(Λ).
Suppose supp(Λ) 6= Ĝ. Since φ is real-valued, Λ(−E) = Λ(E) for every Borel set E. Thus
U := Ĝ\supp(Λ) is a non-empty open set, with −U = U , and 0 /∈ U by assumption. Let γ0 ∈ U

and τ : Ĝ × Ĝ → Ĝ, (γ1, γ2) 7→ γ1 − γ2. Take an open neighborhood W of 0 in Ĝ with compact
closure such that W ⊂ τ−1(U − γ0). Then, (W + (−W ) + γ0) ∪ (W + (−W )− γ0) ⊂ U .

Let g = χW ∗ χ−W , where χE denotes the indicator function of a set E. g is contin-
uous, and supp(g) ⊂ cl(W + (−W )). Also, g is positive definite, since

∑
i,jcicjg(xi −

xj) =
∑

i,j cicj

∫
G

χW (xi − xj − y)χ−W (y)dy =
∑

i,j cicj

∫
G

χW (xi − y)χ−W (y − xj)dy =∫
G

(∑
iciχW (xi − y)

)(∑
j cjχW (xj − y)

)
dy ≥ 0. By Bochner’s theorem and Pontryagin duality,

there is a non-negative measure µ ∈ M(G) such that

g(γ) =
∫

G
(x, γ)dµ(x) (γ ∈ Ĝ).

It follows that

g(γ − γ0) + g(γ + γ0) =
∫

G
{(x, γ − γ0) + (x, γ + γ0)}dµ(x) =

∫
G

(x, γ)d((γ0 + γ0)µ)(x).

Since supp(g) ⊂ cl(W +(−W )), the left hand side is non-zero only in (W +(−W )+ γ0)∪ (W +
(−W )− γ0) ⊂ U , which does not contain 0. Thus, by setting γ = 0, we have

((γ0 + γ0)µ)(G) = 0. (6)
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The measure (γ0 + γ0)µ is real-valued, and non-zero since the function g(γ − γ0) + g(γ + γ0) is
not constant zero. Let m = |(γ0 + γ0)µ|(G), and define the non-negative measures

µ1 = |(γ0 + γ0)µ|/m, µ2 = {|(γ0 + γ0)µ| − (γ0 + γ0)µ}/m.

Both of µ1 and µ2 are probability measures on G from Eq. (6), and µ1 6= µ2. From Fubini’s theorem,

m× ((µ1 − µ2) ∗ φ)(x) =
∫

G
φ(x− y)(γ0(y) + γ0(y))dµ(y)

=
∫

Ĝ
(x, γ)

∫
G
{(y, γ − γ0) + (y, γ + γ0)}dµ(y)dΛ(γ) =

∫
Ĝ

(x, γ){g(γ − γ0) + g(γ + γ0)}dΛ(γ)

Since the integrand is zero in supp(Λ), we have (µ1 − µ2) ∗ φ = 0, which derives contradiction.
The last assertion is obvious, since Ĝ is discrete if and only if G is compact [12, Sec. 1.7.3].

Theorems 7 and 8 are generalization of the results in [14]. From Theorem 8, we can see that the
characteristic property is stable under the product for shift-invariant kernels.
Corollary 9. Let φ1(x − y) and φ2(x − y) be R-valued continuous shift-invariant characteristic
kernels on a LCA group G. If (i) G is non-compact, or (ii) G is compact and 2γ 6= 0 for any nonzero
γ ∈ Ĝ. Then (φ1φ2)(x− y) is characteristic.

Proof. We show the proof only for (i). Let Λ1, Λ2 be the non-negative measures to give φ1 and φ2,
respectively, in Eq. (5). By Theorem 8, supp(Λ1) = supp(Λ2) = Ĝ. This means supp(Λ1 ∗ Λ2) =
Ĝ. The proof is completed because Λ1 ∗ Λ2 gives a positive definite function φ1φ2.

Example 1. (Rn, +): As already shown in [6, 14], the Gaussian RBF kernel exp(− 1
2σ2 ‖x− y‖2)

and Laplacian kernel exp(−β
∑n

i=1 |xi − yi|) are characteristic on Rn. An example of a positive
definite kernel that is not characteristic on Rn is sinc(x− y) = sin(x−y)

x−y .

Example 2. ([0, 2π), +): The addition is made modulo 2π. The dual group is {e
√−1nx | n ∈ Z},

which is isomorphic to Z. The Fourier transform is equal to the ordinary Fourier expansion. The
following are examples of characteristic kernels given by the expression

φ(x) =
∑∞

n=−∞ane
√−1nx, a0 ≥ 0, an > 0 (n 6= 0),

∑∞
n=0an < ∞.

(1) a0 = π2/3, an = 2/n2 (n 6= 0) ⇒ k1(x, y) = (π − (x− y)mod 2π)2.

(2) a0 = 1/2, an = 1/(1 + n2) (n 6= 0) ⇒ k2(x, y) = cosh(π − (x− y)mod 2π).

(3) a0 = 0, an = αn/n (n 6= 0), (|α| < 1) ⇒ k3(x, y) = − log(1− 2α cos(x− y) + α2).

(4) an = α|n|, (0 < α < 1) ⇒ k4(x, y) = 1/(1− 2α cos(x− y) + α2) (Poisson kernel).

Examples of non-characteristic kernels on [0, 2π) include cos(x− y), Féjer, and Dirichlet kernel.

4 Characteristic kernels on compact groups

We discuss non-Abelian cases in this section. Non-Abelian groups include various matrix groups,
such as SO(3) = {A ∈ M(3 × 3;R) | AT A = I3, detA = 1}, which represents rotations in R3.
SO(3) is used in practice as the data space of rotational data, which popularly appear in many fields
such as geophysics [10] and robotics [15]. Providing useful positive definite kernels on this class is
important in those applications areas. First, we give a brief summary of known results on the Fourier
analysis on locally compact and compact groups. See [11, 4] for the details.

4.1 Unitary representation and Fourier analysis

Let G be a locally compact group, which may not be Abelian. A unitary representation (T, H) of
G is a group homomorphism T into the group U(H) of unitary operators on some nonzero Hilbert
space H , that is, a map T : G → U(H) that satisfies T (xy) = T (x)T (y) and T (x−1) = T (x)−1 =
T (x)∗, and for which x 7→ T (x)u is continuous from G to H for any u ∈ H .

For a unitary representation (T, H) on a locally compact group G, a subspace V in H is called G-
invariant if T (x)V ⊂ V for every x ∈ G. A unitary representation (T, H) is irreducible if there are
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no closed G-invariant subspace except {0} and H . Unitary representations (T1,H1) and (T2, H2)
are said to be equivalent if there is a unitary isomorphism A : H1 → H2 such that T1 = A−1T2A.

The following facts are basic (e.g., [4], Section 3,1, 5.1).
Theorem 10. (i) If G is a compact group, every irreducible unitary representation (T,H) of G is
finite dimensional, that is, H is finite dimensional. (ii) If G is an Abelian group, every irreducible
unitary representation of G is one dimensional. They are the continuous characters of G.

It is possible to extend the Fourier analysis on locally compact non-Abelian groups. Unlike Abelian
cases, the Fourier transform by the characters are not possible, but we need to consider unitary
representations and operator-valued Fourier transform. Since extending the results of the LCA case
to the general cases causes very complicated topology, we focus on compact groups. Also, for
simplicity, we assume that G is second countable, i.e., there are countable open basis on G.

We define Ĝ to be the set of equivalent classes of irreducible unitary representations of a compact
group G. The equivalence class of a unitary representation (T, HT ) is denoted by [T ], and the
dimensionality of HT by dT . We fix a representative T for every [T ] ∈ Ĝ for all.

It is known that on a compact group G there is a Haar measure m, which is a left and right invariant
non-negative finite measure. We normalize it so that m(G) = 1 and denote it by dx.

Let (T, HT ) be a unitary representation. For f ∈ L1(G) and µ ∈ M(G), the Fourier transform of f

and µ are defined by the “operator-valued” functions on Ĝ,

f̂(T ) =
∫

G

f(x)T (x−1)dx =
∫

G

f(x)T (x)∗dx, µ̂(T ) =
∫

G

T (x−1)dµ(x) =
∫

G

T (x)∗dµ(x),

respectively. These are operators on HT . This is a natural extension of the Fourier transform on
LCA groups, where Ĝ is the characters serving as the Fourier kernel in view of Theorem 10.

We can define the “inverse Fourier transform”. Let AT ([T ] ∈ Ĝ) be an operator on HT . The series∑
[T ]∈ĜdT Tr[AT T (x)] (7)

is said to be absolutely convergent if
∑

[T ]∈Ĝ dT Tr[|AT |] < ∞, where |A| =
√

AT A. It is obvious
that if the above series is absolutely convergent, the convergence is uniform on G. It is known that
if G is second countable, Ĝ is at most countable, thus the sum is taken over the countable set.

Bochner’s theorem can be extended to compact groups as follows [11, Section 34.10].
Theorem 11. A continuous function φ on a compact group G is positive definite if and only if the
Fourier transform φ̂(T ) is positive semidefinite, gives an absolutely convergent series Eq. (7), and

φ(x) =
∑

[T ]∈ĜdT Tr[φ̂(T )T (x)]. (8)

The proof of “if” part is easy; in fact,
∑

i,jcicjφ(x−1
j xi) =

∑
i,jcicj

∑
[T ]∈ĜdT Tr[φ̂(T )T (x−1

j xi)]

=
∑

i,jcicj

∑
[T ]dT Tr[T (xi)φ̂(T )T (xj)∗] =

∑
[T ]dT Tr[

(∑
iciT (xi)

)
φ̂(T )

(∑
jcjT (xj)

)∗] ≥ 0.

4.2 Shift-invariant characteristic kernels on compact groups

We have the following sufficient condition of characteristic property for compact groups.
Theorem 12. Let φ be a positive definite function of the form Eq. (8) on a compact group G. If
φ̂(T ) is strictly positive definite for every [T ] ∈ Ĝ\{1}, the kernel φ(y−1x) is characteristic.

Proof. Let P, Q ∈ M(G) be probabilities on G. Define µ = P − Q, and
suppose

∫
G

φ(y−1x)dµ(y) = 0. If we take the integral over x with the mea-
sure µ, Fubini’s theorem shows 0 =

∫
G

∫
G

∑
[T ]dT Tr[φ̂(T )T (y−1x)]dµ(y)dµ(x) =∑

[T ]dT

∫
G

∫
G

Tr[T (x)φ̂(T )T (y)∗]dµ(x)dµ(y) =
∑

[T ]dT Tr[µ̂(T )φ̂(T )µ̂(T )∗]. Since dT > 0 and

φ̂(T ) is strictly positive, µ̂(T ) = 0 for every [T ] ∈ Ĝ, that is,
∫

G
T (x)∗dµ(x) = O. If we fix an

orthonormal basis of HT and express T (x) by the matrix elements Tij(x), we have
∫

G
Tij(x)dµ(x) = 0 (∀[T ] ∈ Ĝ, i, j = 1, . . . , dT ).
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The Peter-Weyl Theorem (e.g., [4, Section 5.2]) shows that {√dT Tij(x) | [T ] ∈ Ĝ, i, j =
1, . . . , dT } is a complete orthonormal basis of L2(G), which means µ = 0.

It is interesting to ask whether Theorem 8 can be extended to compact groups. The same proof does
not apply, however, because application of Bochner’s theorem to a positive definite function on Ĝ is
not possible by the lack of duality.

Example of SO(3). It is known that ŜO(3) consists of (Tn,Hn) (n = 0, 1, 2, . . .), where dTn =
2n + 1. We omit the explicit form of Tn, while it is known (e.g., [4], Section 5.4), but use the
character defined by γn(x) = Tr[Tn(x)]. It is also known that γn is given by

γn(A) =
sin((2n + 1)θ)

sin θ
(n = 0, 1, 2, . . .),

where e±
√−1θ (0 ≤ θ ≤ π) are the eigenvalues of A, i.e., cos θ = 1

2Tr[A]. Since plugging
φ̂(Tn) = anIdTn

in Eq. (8) derives anγn for each term, we see that a sequence {an}∞n=0 such that
a0 ≥ 0, an > 0 (n ≥ 1), and

∑∞
n=0 an(2n + 1)2 < ∞ defines a characteristic positive definite

kernel on SO(3) by

k(A,B) =
∑∞

n=0(2n + 1)an
sin((2n + 1)θ)

sin θ
(cos θ =

1
2
Tr[B−1A], 0 ≤ θ ≤ π).

Some examples are listed below (α is a parameter such that |α| < 1).

(1) an =
1

(2n + 1)4
: k1(A,B) =

1
sin θ

∞∑
n=0

sin((2n + 1)θ)
(2n + 1)3

=
πθ(π − θ)

8 sin θ
.

(2) an =
α2n+1

(2n + 1)2
: k2(A,B) =

∞∑
n=0

α2n+1 sin((2n + 1)θ)
(2n + 1) sin θ

=
1

2 sin θ
arctan

(2α sin θ

1− α2

)
.

5 Characteristic kernels on the semigroup Rn
+

In this section, we consider kernels on an Abelian semigroup (S, +). In this case, a kernel based
on the semigroup structure is defined by k(x, y) = φ(x + y). For an Abelian semigroup (S, +), a
semicharacter is defined by a map ρ : S → C such that ρ(x + y) = ρ(x)ρ(y).

While extensions of Bochner’s theorem are known for semigroups [2], the topology on the set of
semicharacters are not as obvious as LCA groups, and the straightforward extension of the results
in Section 3 is difficult. We focus only on the Abelian semigroup (Rn

+,+), where R+ = [0,∞).
This semigroup has many practical applications of data analysis including expressions of nonneg-
ative measures or frequency on n points [3]. For Rn

+, it is easy to see the bounded continuous
semicharacters are given by {∏n

i=1 e−λix | λi ≥ 0 (i = 1, . . . , n)} [2, Section 4.4].

For Rn
+, Laplace transform replaces Fourier transform to give Bochner’s theorem.

Theorem 13 ([2], Section 4.4). Let φ be a bounded continuous function onRn
+. φ is positive definite

if and only if there exists a unique non-negative measure Λ ∈ M(Rn
+) such that

φ(x) =
∫

Rn
+

e−
∑n

i=1 tixidΛ(t) (∀x ∈ Rn
+). (9)

Based on the above theorem, we have the following sufficient condition of characteristic property.
Theorem 14. Let φ be a positive definite function given by Eq. (9). If suppΛ = Rn

+, then the
positive definite kernel k(x, y) = φ(x + y) is characteristic.

Proof. Let P and Q be probabilities on Rn
+, and µ = P − Q. Define the Laplace transform by

Lµ(t) =
∫
Rn

+
e−

∑n
i=1 tixidµ(x). It is easy to see Lµ is bounded and continuous on Rn

+. Suppose∫
φ(x + y)dµ(y) = 0 for all x ∈ Rn

+. In exactly the same way as the proof of Theorem 7, we have
LP = LQ. By the uniqueness part of Theorem 13, we conclude P = Q.
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We show some examples of characteristic kernels on (Rn
+, +). Let a = (ai)n

i=1 and b = (bi)n
i=1

(ai ≥ 0, bi ≥ 0) be non-negative measures on n points.
(1) Λ =

∏n
i=1t

ν−1
i eλti (λ > 0) : k1(a, b) =

∏n
i=1(ai + bi + λ)−1.

(2) Λ = t−3/2e−β2/(4t) (β > 0) : k2(a, b) = e−β
∑n

i=1

√
ai+bi .

Since the proof of Theorem 14 shows
∫

φ(x + y)dµ(y) = 0 means µ = 0 for µ ∈ M(Rn
+), Lemma

2 shows
k̃2(a, b) = exp

{−β
(∑n

i=1

√
(ai + bi)/2− (

∑n
i=1

√
ai +

∑n
i=1

√
bi)/2

)}

is also characteristic. The exponent has the form h
(

a+b
2

)− h(a)+h(b)
2 with h(c) =

∑n
i=1

√
ci, which

compares the value of h of the merged measure (a + b)/2 and the average of h(a) and h(b). This
type of kernel on non-negative measures is discussed in [3] in connection with semigroup structure.

6 Conclusions

We have discussed conditions that kernels defined by the algebraic structure of groups and semi-
groups are characteristic. For locally compact Abelian groups, the continuous shift-invariant R-
valued characteristic kernels are completely determined by the Fourier inverse of positive measures
with support equal to the entire dual group. For compact (non-Abelian) groups, we show a sufficient
condition of continuous shift-invariant characteristic kernels in terms of the operator-valued Fourier
transform. We show a condition for the semigroupRn

+. In the advanced theory of harmonic analysis,
Bochner’s theorem and Fourier analysis can be extended to more general algebraic structure to some
extent. It is interesting to consider generalization of the results in this paper to such general classes.

In practical applications of machine learning, we are given a finite sample from a distribution, rather
than the distribution itself. In this setting, it becomes important to choose the best possible kernel
for inference on this sample. While the characteristic property gives a necessary requirement for
RKHS embeddings of distributions to be distinguishable, it does not address optimal kernel choice
at finite sample sizes. Theoretical approaches to this problem are the basis for future work.

References
[1] F. R. Bach and M. I. Jordan. Kernel independent component analysis. JMLR, 3:1–48, 2002.
[2] C. Berg, J. P. R. Christensen, and P. Ressel. Harmonic Analysis on Semigroups. Springer, 1984.
[3] M. Cuturi, K. Fukumizu, and J.-P. Vert. Semigroup kernels on measures. JMLR, 6:1169–1198, 2005.
[4] B. B. Folland. A course in abstract harmonic analysis. CRC Press, 1995.
[5] K. Fukumizu, F. R. Bach, and M. I. Jordan. Dimensionality reduction for supervised learning with repro-

ducing kernel Hilbert spaces. JMLR, 5:73–99, 2004.
[6] K. Fukumizu, A. Gretton, X. Sun, and B. Schölkopf. Kernel measures of conditional dependence. Ad-

vances in NIPS 20, 489–496. MIT Press, 2008.
[7] K. Fukumizu, F. R.Bach, and M. I. Jordan. Kernel dimension reduction in regression. Tech. Report 715,

Dept. Statistics, University of California, Berkeley, 2006.
[8] A. Gretton, K. M. Borgwardt, M. Rasch, B. Schölkopf, and A. Smola. A kernel method for the two-

sample-problem. Advances in NIPS 19. MIT Press, 2007.
[9] A. Gretton, K. Fukumizu, C. H. Teo, L. Song, B. Schölkopf, and A. Smola. A kernel statistical test of

independence. Advances in NIPS 20, 585–592. MIT Press, 2008.
[10] M. S. Hanna and T. Chang. Fitting smooth histories to rotation data. Journal of Multivariate Analysis,

75:47–61, 2000.
[11] E. Hewitt and K. A. Ross. Abstract Harmonic Analysis II. 1970.
[12] W. Rudin. Fourier Analysis on Groups. Interscience, 1962.
[13] B. Schölkopf and A.J. Smola. Learning with Kernels. MIT Press. 2002.
[14] B. K. Sriperumbudur, A. Gretton, K. Fukumizu, G. Lanckriet, and B. Schölkopf. Injective Hilbert space

embeddings of probability measures. In Proc. COLT 2008, to appear, 2008.
[15] O. Stavdahl, A. K. Bondhus, K. Y. Pettersen, and K. E. Malvig. Optimal statistical operators for 3-

dimensional rotational data: geometric interpretations and application to prosthesis kinematics. Robotica,
23(3):283–292, 2005.

[16] I. Steinwart. On the influence of the kernel on the consistency of support vector machines. JMLR, 2:67–
93, 2001.

[17] S. Wu and S-I. Amari. Conformal Transformation of Kernel Functions: A Data-Dependent Way to Im-
prove Support Vector Machine Classifiers. Neural Process. Lett., 15(1):59–67, 2002.

8



Supplements to ”Characteristic Kernels on Groups and
Semigroups”

A Terminology on groups and semigroups

General references are [2] and [12, Appendix B].

A semigroup (S, ◦) is a nonempty set S equipped with an operation ◦ that satisfies the associative
law;

(x ◦ y) ◦ z = x ◦ (y ◦ z)

for any x, y, z ∈ S.

A semigroup (S, ◦) is said to be Abelian if the operation is commutative; i.e.,

x ◦ y = y ◦ x

for any x, y ∈ S. For an Abelian semigroup, the operation is often denoted by +.

Let (S, ◦) be a semigroup. An element e ∈ S is called a unit element if

x ◦ e = e ◦ x = x (x ∈ S).

The unit element is unique, if it exits.

Suppose that a semigroup (S, ◦) has a unit element e. For x ∈ S, if y ∈ S satisfies

y ◦ x = x ◦ y = e,

y is called the inverse of x. The inverse is unique, if it exists, and the inverse of x is denoted by x−1.

A semigroup (G, ◦) is called a group if there is a unit element, and every element has its inverse.
For an Abelian group, the operation is often denoted by +, and the unit element and the inverse of x
are written by 0 and −x, respectively.

Let S be a semigroup equipped with a topology. S is called a topological semigroup if the semigroup
operation (x, y) 7→ x ◦ y is continuous with respect to the topology. Likewise, a group G with a
topology is called a topological group if the group operations (x, y) 7→ x ◦ y and x 7→ x−1 are
continuous with respect to the topology.

In general, a topological space X is called locally compact, if every x ∈ X has an open neighbor-
hood W such that the closure of W is compact.

A locally compact Abelian (LCA) group is a Hausdorff topological group which is Abelian and
locally compact. This class is the topic of Section 3. Examples of LCA groups are R, T = [0, 1),
where the addition is modulo 1, and their direct products Rn and Tn. Every finite group is also a
LCA group with discrete topology.

Typical examples of non-Abelian topological group are the ones consisting of matrices, such as the
general linear group GL(n;K) = {A ∈ M(n × n;K) | A : invertible}, the special linear group
SL(n) = {A ∈ GL(n;K) | detA = 1}, the orthogonal group O(n) = {A ∈ GL(n;R) | AT A =
In}, and the unitary group U(n) = {A ∈ GL(n;C) | A∗A = In}, where K = R or C.

B Terminology on measure theory

General references are [2, Chapter 2] and [12, Appendix E].

Let X be a Hausdorff topological space. A Radon measure µ on X is a Borel measure such that
(i) µ(K) < ∞ for every compact set in X ,
(ii) (inner regular) µ(E) = sup{µ(K) | K ⊂ E, K is compact } for each Borel set E .

The difference between Borel measures and Radon measures is subtle. It is known that on a Pol-
ish space, which is a space homeomorphic to a complete separable metric space, any finite Borel
measure is automatically a Radon measure.
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Let µ1 and µ2 be finite measures on a measurable space (Ω,B). A σ-additive function µ1−µ2 on B
is called a signed measure. We also define a complex-valued measure by µ1−µ2 +

√−1(µ3−µ4).

For a complex-valued Radon measure µ, there is a non-negative Radon measure |µ| defined by

|µ|(E) = sup{∑i|µ(Ei)| | E =
∑

iEi is a partition of E by Borel sets Ei}. (10)

A complex-valued Radon measure µ on X is said to be regular if |µ| is outer regular, that is,

|µ|(E) = inf{|µ|(U) | U is an open set including E}
for every Borel set E. We define M(X) to be the set of all complex-valued regular measures on X
for which |µ|(X) is finite.

For µ ∈ M(X), it is known that there is the largest open set U such that µ(U) = 0. The complement
of this open set is called the support of µ and denoted by supp(µ). By the definition

supp(µ) = {x ∈ X | for any open set U such that x ∈ U , µ(U) 6= 0}.
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