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» X : measurable space.
> & : set of all probability measures defined on X.

> v P x P — R is a notion of distance on &2, called the
probability metric.

Popular example: ¢-divergence

D¢(P, @) — { fX ¢ (%) d@) P < Q |

+00, otherwise
where ¢ : [0, 00) — (—00,00] is a convex function.

Appropriate choice of ¢: Kullback-Leibler divergence, Jensen-Shannon
divergence, Total-variation distance, Hellinger distance, y?-distance.
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» Determine: are P and Q different?

» (P, Q) : distance metric between P and Q.

Hy : P=Q Ho : v(P,Q) =0

Hi :P#Q Hy:v(P,Q) >0

» Test: Say Hy if 7(P,Q) < . Otherwise say H;.

Other applications:
» Hypothesis testing : Independence test, Goodness of fit test, etc.

» Limit theorems (central limit theorem), density estimation, etc.



Estimation of Dy(P, Q)

» Given random samples {Xi,..., X;n} and {Yi,...,Y,} drawn i.i.d.
from P and Q, estimate Dy (PP, Q).

» Well-studied for ¢(t) = tlogt, t € [0,00), i.e., Kullback-Liebler
divergence.



Estimation of Dy(P, Q)

» Given random samples {Xi,..., X;n} and {Yi,...,Y,} drawn i.i.d.
from P and Q, estimate Dy (PP, Q).

» Well-studied for ¢(t) = tlogt, t € [0,00), i.e., Kullback-Liebler
divergence.

» Approaches:



Estimation of Dy(P, Q)

» Given random samples {Xi,..., X;n} and {Yi,...,Y,} drawn i.i.d.
from P and Q, estimate Dy (PP, Q).

» Well-studied for ¢(t) = tlogt, t € [0,00), i.e., Kullback-Liebler
divergence.

» Approaches:

» Histogram estimator based on space partitioning scheme
[Wang et al., 2005].



Estimation of Dy(P, Q)

» Given random samples {Xi,..., X;n} and {Yi,...,Y,} drawn i.i.d.
from P and Q, estimate Dy(PP, Q).

» Well-studied for ¢(t) = tlogt, t € [0,00), i.e., Kullback-Liebler
divergence.

» Approaches:

» Histogram estimator based on space partitioning scheme
[Wang et al., 2005].

» M-estimation based on the variational characterization
[Nguyen et al., 2008],

D4(P,Q) = sup [/dep—/xqb*(f)d@},

fX—R

where ¢ is the convex conjugate of ¢.
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Issues:

» Though the estimators of Dy(IP, Q) are consistent, their rate of
convergence can be arbitrarily slow depending on P and Q.

» Let X C RY. For large d, the estimator proposed by
[Wang et al., 2005] is computationally inefficient.



Integral Probability Metrics

» The integral probability metric [Miller, 1997] between P and Q is

defined as
/ deP—/ fd@‘.
X X

» Many popular probability metrics can be obtained by appropriately
choosing J.

Y7 (P, Q) = sup
fed

> Total variation distance : F = {f : ||f||cc := sup,ex |f(x)| < 1}.

» Wasserstein distance : F = {f L = sup,syex |f(;z;;§y)| < 1}.

» Dudley metric: F ={f : ||f]|L + || f]|lcc < 1}.
> LP metric: F = {f: ||fllex,p) = (fy [FIPdp)/P < 1,1 < p < oo}

» well-studied in probability theory, mass transporation problems, etc.
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/YS’(IP)a @) V5. qu(IP)a Q)

fed

Dy 5(P, Q) := sup [/x fd[P_/ng*(f) d@]

Dy (P, Q) = Dy(P, Q) if F is the set of all real-valued measurable

functions on X.

0, t=1

Ds(P.Q) = s Qo) ={ % 2]

Dy(P,Q) = v5(P, Q) if and only if any one of the following hold:

(i) T ={f :|Ifllc <73%} and ¢(t):{ ggi:ig Sg;gl

some o < [ < 00.

(i) F={f: f=c,ceR}, P(t) =a(t—1),t>0,aeR

Total-variation is the only ¢-divergence that is also an integral
probability metric.

for
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Estimation of vy5(IP, Q)

Given random samples {Xi,..., X} and {Y1,..., Y,} drawn i.i.d.
from P and QQ, estimate 4 (PP, Q).

Estimator:
1 n
P, Q) = sup f(X;)— = (Y,
7 (Fn: Qs feF Z n ; (
where P, := % ST 0x and Q, = %27:1 Oy
Computability: Possible for certain choices of J.
> F={f:||f|loo <1}
s F={f:|f||l. <1}
s F={F I+ oo < 1)
» F={f:||f||lsc <1} where H is a reproducing kernel Hilbert space.

Consistency and rate of convergence: determined by the “size” of JF.



Estimation of vy5(IP, Q)

\/::{Xl,...,Xm,Yl,...,Yn},5;:{%7“. 1 _1

N := m-+ n.

,m7 n,noo



Estimation of vy5(IP, Q)

Vi={Xt,....Xm, Y1,..., Yo}, S:={L, ..., 2 -1 ... -1},
N := m-+ n.
Theorem

> F={f:||fll. <1}: 75 (Pm, Q,) = SN, S;a¥, where

{af}V | = argmax{ZSa, : —p(Vi, Vi) < ai—aj < p(Vi, \/j),Vi,j}.
=1

> F={f [l + [ Flloe <1} 75(Pm, Qn) = SN, SibF, where

N
prAN | = Sib;
{b/};_; = arg ,, MAX Z

st. —ep(Vi, V) < b — by < ep(Vi, Vj), Vi
—c< b <c,Vi,e+c<l1
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F = {f:||f||ls¢ <1}, where H is a reproducing kernel Hilbert space
(RKHS).

Definition
A Hilbert space H is said to be an RKHS if the evaluation functionals
(0,(f) = f(x), x € X, f € H) are bounded and continuous.

» There exists a unique kernel, kK : X x X — R such that
Vx e X, VfeXH, (f k(-,x))gc = f(x).

> k is the reproducing kernel (r.k.) of H as
k(x,y) = (k(-,x), k(-,¥)) 3¢, x, ¥ € X.

» Every r.k. is a positive definite function.

» For every positive definite function, kK on X x X, there exists a
unique RKHS, H as k as its r.k.

» Example: k(x,y) = e *7¥l x,y € R induces a Sobolev space.



Estimation of vy5(IP, Q)

Vo= {X1, ., X, Y1, 0, Yo}, Si= {2 . L 1Ly
N:=m-+ n.
Theorem

Let F =A{f :||f||lsc < 1} with k being bounded and measurable. Then

N
V?(vaQn) — Z Slsjk(\/la \/_I)

\ ij=1
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Consistency and Rate of Convergence

Theorem

Suppose J be such that v 1= supscq e x |f(X)] < 00. Fixd € (0,1).
Then with probability 1 — § over the choice of samples, {X;}™, and
{Yi}"_,, the following holds:

V5 (Pm, Qn) — v5(P, Q)| < \/18V2 |Og% (% n \%)
2R (T {Xi}) + 2Ra (T {Yi}),

where

Rm(F:{xi}il1) == Eq sup
feF

Y

% Izm; oif(x;i)

is called the Rademacher complexity of ¥ and {o;} are independent
Rademacher random variables defined as o; = 2B; — 1, with {B;} being
Bernoulli random variables.



Consistency and Rate of Convergence

Note that if Ry(F; {X;}™,) = Op(rm) and R,(F;{Y:}"_;) = Og(r),
then

Y5 (Pms Q) — 75 (P, Q)| = Op.g(rm VvV m™ Y2 41, v n71/2),

where a V b := max(a, b).

Theorem ([von Luxburg and Bousquet, 2004])
For every ¢ > 0, the following holds:

Rn(F; {xi} ;) <2+ % V0eg N (7, T, L2(P,,)) dT.

e/4




Consistency and Rate of Convergence

Corollary

> Let X be a bounded subset of (RY, || - ||s) for some 1 < s < oo.
Then, for F={f : ||f||L <1} and F={f : ||f]lco + ||f]l <1}, we

have
‘W?(Pm7 @n) _ 73'“(1[3)7 Q)‘ — OP,Q(rm + rn)
where
B m~—1/2 log m, d=1
Fm = m—1/(d+1) d>?2
In addition if X is a bounded, convex subset of (R, || - ||s) with

non-empty interior, then

[ m Y2 d=1
rm =< m~Y2logm, d=2
m~1/d d>?2



Consistency and Rate of Convergence

Corollary

» Let X be a measurable space. Suppose k is measurable and
sup,ep k(x,x) < C < oo. Then, for T = {f : ||f|lsc <1}, we have

|/73"(Pma Qn) - /79’(IP)7 Q)| — OP,Q(m_1/2 + n—1/2).

Examples:
» Gaussian kernel: k(x,y) = e“"'x_y”g, o>0, x,y€R?
> Laplacian kernel: k(x,y) = e ?Ixlh 5 >0, x,y € R

» Inverse multi-quadratic kernel: k(x,y) = (c*+ ||x — y||3)"%, ¢ >0,
t>d/2, x,y € RY.



Estimation of Total Variation Distance

Total variation distance is both a ¢-divergence and integral probability
metric given by

TV(P,@):sup{/ FAP—Q) : ||f]le < 1}.

X

» Estimator: TV (P, Q,) = vazl S:at where {a7}, solve the linear

program:
N
max{ZS;a; r —1 < 2H < 1, VI}
i=1

Easy to see that af = sign(S5;) and therefore TV (P,,,Q,) = 2 for
any m, n. Not consistent.

» Can be estimated consistently using kernel density estimators.



Lower Bounds on Total Variation Distance
> W(P,Q) =sup{ [, fdP—-Q) : [f]. <1}
> B(P,Q) =sup{ [ fd(P—Q) : [[flle +[fllc <1}
> (P, Q) =sup{ [ Fd(P—Q) : [[fflsc <1}

Theorem
(i) For all P # Q, we have

O I X ) X))

(ii) Suppose C :=sup,x k(x,x) < oo. Then

’Vk(]P)v @)
\/E :

» Lower bounds on Kullback-Leibler divergence through Pinsker’s
inequality.

TV(P,Q) >



Summary

Integral probability metrics vs. ¢-divergences.

Estimation of integral probability metrics from finite samples: easily
computable compared to ¢-divergences.

Fast rates of convergence compared to ¢-divergences.

Open question: Minimax rates for estimating integral probability
metrics.



Thank You
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