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Abstract

Medical image fusion is becoming increasingly popular
for enhancing diagnostic accuracy by intelligently ‘fusing’
information obtained from two different images. These im-
ages may be obtained from the same modality at different
time instances or from multiple modalities recording com-
plementary information. Due to the nature of the human
body and also due to patient motion and breathing, there
is a need for deformable registration algorithms in medical
imaging. Typical non-parametric (deformable) registration
algorithms such as the fluid-based, demons and curvature-
based techniques are computationally intensive and have
been demonstrated for mono-modality registrations only.
We propose a fast and deformable algorithm using a2-
tiered strategy wherein a global MI-based affine registra-
tion is followed by a local piece-wise refinement. We have
successfully tested this method on CT and PET images and
validated the same using clinical experts.

1. Introduction

Image registration (fusion) is an important and a classical
problem in medical image analysis and understanding for
patient care. The key step of image registration is to find a
spatial transformation such that a chosen similarity metric
between two or more images of the same scene achieves its
maximum.

The accurate and reliable registration of multi-modality
images is an important tool for assessing temporal and
structural changes between images. Different imaging
modalities provide information about different properties
of the underlying tissues such as the X-ray attenuation
coefficient from X-ray Computed Tomography (CT), and
proton density or proton relaxation times from Magnetic
Resonance (MR) imaging. These images allow clinicians
to gather information about the size, shape and spatial re-
lationship between anatomical structures and any pathol-

ogy, if present. Other imaging modalities provide func-
tional information such as the blood flow form ultrasound
doppler or glucose metabolism from Positron Emission To-
mography (PET) or Single-Photon Emission Tomography
(SPECT), and permit clinicians to study the relationship be-
tween anatomy and physiology.

The bulk of registration algorithms in medical imag-
ing [11, 13, 2] can be classified as being either frame-based,
point landmark-based, surface-based or voxel-based. Re-
cently, the voxel-based similarity approaches to image reg-
istration have attracted significant attention since these full-
volume-based registration algorithms do not rely upon data
reduction, require no segmentation, and involve little or
no user interactions. More importantly, they can be fully
automated and quantitative assessment becomes possible.
Maintz et al. [10] give a good overview while Studholme
et al. [4] and Pennyet al. [8] provide a detailed compar-
ative assessment. In particular, the voxel-based similarity
measures based on joint entropy [3], mutual information
(MI) [4, 1] and normalized mutual information [5, 6] have
been shown to align images acquired with different imag-
ing modalities robustly. The utility of these information-
theoretic measures arises from the fact that they make no
assumptions about the actual intensity values in the images,
but instead measure statistical relationships between the two
images [11].

Generally, global registration is performed to capture the
gross misalignment between images. In the case of medi-
cal data, especially with thoracic imaging, deformable tech-
niques are required to capture breathing artifacts, which
calls for local registration so as to cope with local geometric
differences. This means that the final mapping has to com-
prise, for example, a global rigid/affine transformation as
well as a locally adaptive transformation so as to cope with
gross and subtle misalignments between the images. The
major class of locally adaptive non-parametric transforma-
tions in medical image analysis include computationally in-
tensive methods such as the fluid, diffusion, and curvature-
based techniques. Though these methods capture local vari-



ations, they would require landmarks to be defined before
registration, making them semi-automatic (requiring the in-
volvement of clinician). Furthermore, these methods are
proven to be suitable especially for mono-modality, inter-
subject and time-series registration [10]. On the other hand,
in a multi-modality setting, rigid/affine transformation is
widely used, which fails to recover motion artifacts such
as breathing in the case of thoracic imaging.

In order to address the aforementioned issues, in this pa-
per, we propose a generic framework for fast and accurate
MI-based deformable registration of multi-modality im-
ages. Instead of performing elastic transformations which
are very computationally intensive [10], we compute affine
transformations both at the global and local levels (on pre-
computed Volumes of Interest (VOIs) calledBlobs), essen-
tially resulting in piece-wise deformation model. These
VOIs can be considered as analytical landmarks for other
registration schemes, which can be both parametric and
non-parametric. The proposed method involves a global
registration followed by local registrations in the pre-
computed VOIs. The initial global match is performed to
correct for gross misalignments. A pyramid-based multi-
resolution decomposition [12] at this stage helps to improve
the robustness and timing of the global registration. The
latter step involves automatic selection of a VOI, followed
by local matching (typically affine/rigid or deformable) and
finally interpolating the individual transformations obtained
across the entire volume. Also, even if deformable methods
are used locally, the overall registration is fast considering
the data size in the VOIs as compared to the original data
size.

The paper is organized as follows. In Section 2, we
provide a broad overview on the rigid/affine registration
method along with the details on metric and optimizer. We
provide motivation for piece-wise affine transformation and
build blob framework for fast deformable registration. We
present the results of our proposed blob-based registration
method on various modalities by comparing it with affine
registration in Section 3. In Section 4, we conclude our pa-
per by showing that our proposed method provides a frame-
work for fast deformable registration of volumetric data
from CT-PET images.

2 Blob-Based Deformable Registration

As mentioned in Section 1, registration of medical im-
ages requires computation of transformations at both global
and local levels to achieve good accuracy. We propose a
piece-wise affine registration which is an approximation to
deformable method. The proposed method is motivated
from the fact that the local subtle variations can be cap-
tured with a set of piecewise affine transformations within
the pre-computed analytical landmarks calledblobsand is

Figure 1. Deformable registration using a2-tiered strategy

computationally less intensive compared to that of elastic
transformation. These analytical landmarks are computed
automatically thus removing the need for clinician’s inter-
vention in marking the landmarks.

Figure 1 shows the steps involved in the2-tiered strat-
egy of our proposed blob-based deformable method. Blob-
based deformable registration involves defining and iden-
tifying blobs/VOIs in the fixed volume. We then per-
form a blob-based local matching or registration (typically
affine/rigid, can be deformable also), followed by blob-
interpolation, i.e. estimate the deformation at every point
in the moving volume based on the transformation matrices
obtained at the blobs.

We automate the finding of this small set of ‘landmark-
like’ points in the moving image, defined as the centers of
‘blobs’ with high levels of spatially organized differentia-
tion in their intensity values, and low levels of symmetry.
Blob search constitutes the finding of these ‘landmark-like’
points. We use standard methods to find an approximate
transformation quickly by maximizing mutual information
(MI) over affine candidates. For each blob in the moving
image, this matching gives an initial guess for the blob’s
transformation to a particular position in the fixed image.
We perform a local search for improvements on this guess
and optionally retain the blob only if the match found ex-
ceeds a pre-assigned quality threshold. The search can also
use a multi-resolution approach (seeking a coarse fit in a
reduced resolution version of the images, then iteratively
refining), both for computational efficiency and to avoid in-
appropriate local optima. This search process is called blob
matching.

The blob centers and the points to which they correspond
provide a matched landmark list, to which any standard in-
terpolation or fitting method can be applied [9].



2.1 Affine Registration by Maximizing
Mutual Information

The affine registration of two volumetric images,V1

(fixed image) andV2 (moving Image) involves the regis-
tration ofV2 to V1 by determining the best affine transfor-
mationT ∗, which maximizes a given metric, sayφ(.).

T ∗ = arg max
T

φ(V1, T (V2)) (1)

where

T =


a11 a12 a13 x′

a21 a22 a23 y′

a31 a32 a33 z′

0 0 0 1

 (2)

is an affine transformation. InT , the sub-matrix

S =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 (3)

can be decomposed into shear, scale and rotation and the

vector
[

x′ y′ z′
]T

contains the translations along the
3-dimensions. The volumeT (V2) is the transformed image
of V2 using the affine transformationT . It can be seen that
each of shear, scale, rotation and translation are represented
with 3 parameters affecting the 3-dimensions.

The mutual information between two discrete random
variablesU andV corresponding toV1 andV2 is defined
as

I(U ;V ) = −
∑

u∈U ′,v∈V ′

P (u, v) log
P (u)P (v)
P (u, v)

(4)

= −
N∑

i=1

M∑
j=1

pij log
piqj

pij
(5)

where the random variablesU andV take values in the set
U ′ = {u1, u2, · · · , uN} andV ′ = {v1, v2, · · · , vM} having
probabilities{p1, p2, · · · , pN} and {q1, q2, · · · , qM} such
thatP (U = ui) = pi, P (V = vi) = qi, pi > 0, qi > 0
and

∑
u∈U ′ P (u) = 1,

∑
v∈V ′ P (v) = 1. P (U, V ) is the

joint probability of the random variablesU andV . MI rep-
resents the amount of information that one random variable,
hereV contains about the second random variable, hereU
and vice-versa.I(U ;V ) is the measure of shared informa-
tion or dependence betweenU and V . It is to be noted
that I(U ;V ) ≥ 0 with equality if, and only if,U andV
are independent. MI measures the dependence of the im-
ages by determining the distance of their joint distribution
pij to the joint distribution in case of complete indepen-
dence,piqj . Extending from (1), the best affine transfor-
mationT ∗

MI , which maximizes MI defined in (4) is given
as

T ∗
MI = arg max

T
I(V1;T (V2)) (6)

2.2 Blob Search

A candidate VOI qualifies as a blob if it algorithmically
resembles a region of radiusR containing what a human
would recognize as a landmark. The size of each blob is
chosen such that when the spatial samples are chosen from
a blob, it contains statistically sufficient voxels for further
calculations. Blob search involves finding the centers of a
small set of radiusR regions in the moving image depend-
ing on the information content present in it. Blob search
involves 3 steps.

1. Blob partitioning

2. Blob score evaluation

3. Blob ranking

2.2.1 Blob partitioning

To start with, the moving image is partitioned into smaller
VOIs/blobs. Each of these blobs would then be locally
registered. The shape and placement of the blobs gov-
ern the accuracy of the deformation field estimation. The
blobs can be cubes or spheres and the initial arrangement
could be a Hexagonal Close Packing (HC), Simple Cu-
bic Packing (SC) or Body Centered Cubic Packing (BCC)
configuration, with the inspiration from molecular chem-
istry.

2.2.2 Blob score evaluation

Based on the information content in each blob, a statistical
metric (normalized to the blob volume) is calculated. This
metric has to be correlated with the predicted deformation
within each blob. The metric can be the extent of surface
mismatches between blobs, the MI value inside the blob,
the volume overlap of the two images in the blob etc. The
exact selection of the metric is application dependent.

2.2.3 Blob ranking

This step ranks the blobs based on their expected level of
deformation in the descending order. The advantage of this
step would be the tradeoff for computation time without
considerable loss in accuracy by retaining the critically im-
portant blobs (see Figure 2). This step is analogous to a
manual process wherein with increasing availability of time,
the clinical expert would deposit more landmarks (while a
skilled operator can define landmark pairs in as much as
6−10 seconds, the program generated up to200 landmarks
in less than1 second for a volume of size128×128×109).
This actively reduces the number of landmarks to actually
use in the registration step based on a cutoff percentage of
the metric value or the number of landmarks to process can



(a) (b)

Figure 2. (a) Blob centers selected based on HC arrange-
ment. (b) Blobs retained for local refinement after the ‘blob
ranking’ step.

be specified. Let us consider two volumesV1 andV2. The
metric based on the information content in the blobs be-
tween these volumes is computed as follows.

M = αvo(V1, V2) + βg(V2) (7)

whereM is the metric,vo(V1, V2) is the volume overlap
betweenV1 andV2 given as

vo(V1, V2) = 0.5− (DSC(V1, V2) mod 0.5) (8)

and

g(V2) =
1
n

∑
i

V i
2

max(V2)
if V i

2 > γ (9)

whereV i
2 is theith voxel’s intensity ofV2, max(V2) is the

maximum voxel intensity ofV2 andγ is some threshold.α
andβ are the weighting factors such thatα + β = 1 so that
0 ≤ M ≤ 1. DSC(V1, V2) is the dice similarity coefficient
betweenV1 andV2 defined as

DSC(V1, V2) =
2(V1 ∩ V2)
(V1 ∪ V2)

(10)

2.3 Blob Matching

With the selection of blobs, we perform a standard search
for a12-parameter affine fit between the images, for which
many schemes exist in the literature. We prefer the use of
an affine match to the search for a rigid match because the
collection of affine transformations is a flat12-parameter
space within which search is easier than when confined to
its curved6-parameter subset of rigid motions. The affine
search is thus by most methods faster, as well as having
extra six degrees of freedom that allow a better match, un-
less there are strong a priori reasons to expect a rigid fit
to be possible. We could use any other fitting method like

rigid, affine or curvilinear, provided that it is fast and reli-
ably gives a fair match: high accuracy is not necessary in
this initial step of whole-image match.

Having removed the gross differences at global level
by computing an affine transformation relating the mov-
ing and fixed images, we next proceed to remove the lo-
cal subtle variations by performing the matching of pre-
computed blobs. An affine process like the one used in the
whole-image match uses the initial guess from the global
output to start a search process and thus converges on a
nearby better fit. Because this region matching involves
multiple pixels or voxels in the blob, it can often locate
the best fit with an error substantially less than the spac-
ing of neighboring grid points in the fixed image. Since
the blob is small compared to the entire moving image, for
most search methods convergence to the best fit is many
times faster. To reduce the chances of a mismatch, the ratio
blobSizeMoving/blobSizeF ixed is chosen to be> 1.

2.4 Blob Interpolation

The blob matching results in an affine transformation
around each blob center in the moving image, which is lin-
ear when considered as mapping a space of vectors based
at the said center to a space of vectors based at the corre-
sponding point in the fixed image, which should approxi-
mate the global transformation around the said center. The
transformations obtained for each blob, influences a definite
region around it. Hence the corresponding transformation
for each voxel will be proportional to its distance from the
blob center of the nearestn blobs. This distance from the
blob centers form a weighting factor to provide appropriate
influence effects. An exponential decay around the center
of each blob is used to define its zone of influence (see Fig-
ure 3). This ensures that points outside this region remain
unaffected. This step is necessary to avoid forcing a trans-
formation to an already well-transformed point. A well-
transformed point is defined as that point which has not
been identified as interesting and furthermore has obtained
a convincing transformation after the global affine registra-
tion and thus does not require any further refinement. This
step of blob interpolation handles the 3D translation com-
ponent. One could also use a quaternion-based interpo-
lation similar to Shekharet al. [14] to represent 3D rota-
tions. Once the displacement vectors are obtained for the
entire volume, the corresponding pixel intensities are ob-
tained from the moving image by tri-linear interpolation.
This provides sub-pixel accuracy and avoids artifacts in the
final image.
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Figure 3. (a) The deformation field overlaid on a lung image
(b) The zone of influence of each blob

3 Results and Validation

The proposed approach was tested on implicit function-
based3-D phantom images [7] and on eight pairs of CT-
PET thoracic datasets [see Figure 4]. The CT datasets were
acquired using GE LightSpeed QXi/Plus multi-detector CT
scanner (Matrix Size:512 × 512, DFOV: 48 − 63 cm,
Slice Thickness:2.5 − 5.0 mm) and PET (Transmission
[Tr] and Emission [Em]) datasets (Matrix Size:128× 128,
DFOV: 55 − 66 cm, Voxel Size:4.25 − 5.14 mm) from
multiple vendors. In our experiments,12-parameter affine
transform with2 levels of multi-resolution decomposition is
used while maximizing MI as the similarity metric. While
performing blob search, we used ‘HC’ as the initial pack-
ing arrangement for blob partitioning along with ‘surface
mismatching’ as the metric for blob score evaluation. The
registered outputs from these images were validated using
multiple clinical experts. These readers were only shown
the CT andEm data for each case and empowered with a
visualization tool offering a common cursor, and allowing
selection of the orthogonal views, window-level and zoom.
Point-pairs were recorded in a sequential manner alternating
between CT and PET (Em). The mis-registration between
the recorded points was calculated on the basis of a mean-
squared measure and categorized based on reader and reg-
istration methodology. The mean registration error across
all cases for rigid registration was7.86 mm (σ = 2.93 mm,
p = 0.552) and that for non-rigid registration was7.13 mm
(σ = 2.55 mm, p = 0.521). Inter-observer variability (3
readers) was computed to be2.66 mm. The timing results
obtained on an Intel2 GHz processor with2 GB RAM are
included in Table 1.

4 Conclusions and Future Direction

The current methodology used to down-sample the num-
ber of blobs in an image is dependant on the modality of the
image and also the appropriate threshold that is selected.

Patient GA BR BI Total sec/slice
1 2.614 0.701 2.294 5.609 0.1002
2 2.784 1.172 3.034 6.990 0.0852
3 2.584 1.101 3.029 6.714 0.0819
4 2.805 1.032 2.423 6.260 0.1118
5 2.551 1.007 2.990 6.584 0.0803
6 2.735 0.981 2.795 6.511 0.0794
7 2.731 0.979 2.792 6.502 0.0793
8 2.641 0.719 2.342 5.702 0.1018

Table 1. Timing results (in seconds) for8 pairs of data.
GA=Global Registration, BR=Blob Registration, BI=Blob
Interpolation

(a) (b)

Figure 4. Fixed and moving images tiled using checker-
board (a) after global affine registration. (b) after blob-
based registration

We plan on making this step more modality independent by
applying image specific tests (homogeneity test etc). We
are also experimenting on other techniques to extrapolate
the local transforms.
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