Product Development

Team 1
Locations considered

Hospitals
• Locations usually require sterile or very clean instruments
• Lots of movement/people moving in and out of a room (waiting room, surgery, examination room, bathrooms, etc.)
• Possible products could include; examination equipment, sterilizing equipment, etc.
Locations

Schools

• Locations have numerous high traffic areas; hallways, classrooms, counseling offices etc.
• Products would either help productivity or organization in some way.
• Wide range of consumers, from ages 5-25. therefore products must cover a wide range of needs.
Locations

Offices

- Lower traffic areas than schools or hospitals. Employees usually stay at a desk for hours at a time.
- The amount of products that can be applied here are more numerous than other locations.
- Products used to increase efficiency and/or comfort.
Locations

Criteria evaluated for product locations

- **Purpose**-to improve efficiency or comfort
- **Normal conditions**-low ceilings, lots of movement, lots of people
- Low DC voltage, Innovative, value, available technology, Industry to bring to market, safety
Advantages of DC

• Safer than AC
• Easier to transmit
• Simpler to use

Disadvantages of DC

• Lower power
• Must be converted from AC
Possible ideas considered and why

- Security Camera
- Air purifier
- Fan
- Extension cords from ceiling
- Wireless energy transfer
- Speakers (sound laser)
Overview of chosen project

Bladeless fan

• Based off of design by Dyson™
• Fan hung from DC power rails
• 40 watts of DC power needed
• Easily controlled by remote
• Quieter and more visually attractive than a conventional fan
Selection Criteria

<table>
<thead>
<tr>
<th>Selection criteria</th>
<th>Weighted Score</th>
<th>Hypersonic Sound</th>
<th>Bladeless fan</th>
<th>Air Purifier</th>
<th>Security camera</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low DC Voltage</td>
<td>0.285714286</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Innovative in Function</td>
<td>0.071428571</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Value for Office operation</td>
<td>0.214285714</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Availability of Technology</td>
<td>0.142857143</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Industry to Bring to market</td>
<td>0.071428571</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Safety</td>
<td>0.214285714</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Totals</td>
<td>2.928571429</td>
<td>4.071428571</td>
<td>4</td>
<td>3.928571429</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Desired objectives</th>
<th>Low DC Voltage</th>
<th>Innovative in Function</th>
<th>Value for Office operation</th>
<th>Availability of Technology</th>
<th>Industry to Bring to market</th>
<th>Safety</th>
<th>tots</th>
<th>WF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low DC Voltage</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>0.285714</td>
</tr>
<tr>
<td>Innovative in Function</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.071429</td>
</tr>
<tr>
<td>Value for Office operation</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>0.214286</td>
</tr>
<tr>
<td>Availability of Technology</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0.142857</td>
</tr>
<tr>
<td>Industry to Bring to market</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.071429</td>
</tr>
<tr>
<td>Safety</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0.214286</td>
</tr>
</tbody>
</table>