Boundary layers

Toan T. Nguyen $^1,^2$ (Penn State)
Emmanuel Grenier (ENS Lyon)

International Online Conference
Nonlinear Evolutionary Partial Differential Equations
December 1-4, 2020

1Homepage: http://math.psu.edu/nguyen
2Math blog: https://sites.psu.edu/nguyen
Flows past a flat plate

Figure: source internet.
Flows around an airfoil

Figure: source internet.
Hydrodynamics stability

- Helmholtz (1868), Kelvin (1871), Rayleigh (1879) on inviscid flows
- Reynolds (1883) on role of viscosity (e.g., flows in a pipe):

\[Re = \frac{UL}{\nu}. \]
Hydrodynamics stability

- Helmholtz (1868), Kelvin (1871), Rayleigh (1879) on inviscid flows
- Reynolds (1883) on role of viscosity (e.g., flows in a pipe):
 \[Re = \frac{UL}{\nu}. \]

- Orr (1907), Sommerfeld (1908), Heisenberg (1924), Tollmien (1929), Schlichting (1933), C. C. Lin (1940s):

 Viscosity may destabilize the flows!
All shear flows are unstable at large Reynolds numbers!

\[\alpha^2 \]

\[\alpha_{\text{low}} \approx Re^{-1/4} \]

\[\alpha_{\text{up}} \approx Re^{-1/10} \]

Inviscid limit problem

- For \(\nu > 0 \), Navier-Stokes equations

\[
\partial_t u + u \cdot \nabla u + \nabla p = \nu \Delta u \\
\nabla \cdot u = 0 \\
\left. u \right|_{\partial \Omega} = 0.
\]
Inviscid limit problem

• For $\nu > 0$, Navier-Stokes equations

\[\partial_t u + u \cdot \nabla u + \nabla p = \nu \Delta u \]
\[\nabla \cdot u = 0 \]
\[u \mid_{\partial \Omega} = 0. \]

• At $\nu = 0$, Euler equations

\[\partial_t u + u \cdot \nabla u + \nabla p = 0 \]
\[\nabla \cdot u = 0 \]
\[u \cdot n \mid_{\partial \Omega} = 0. \]
As $\nu \to 0$ and $\nu = 0$:

- The nature of equations changes: “Navier-Stokes to Euler”.

Boundary conditions change: $u_\nu(x, y) = 0$ to $u_{\text{Euler}}(x, y) = 0$ on $\partial \Omega$ (ideal fluids may “slip” on the boundary: $u_{\text{Euler}}(x, y) \neq 0$ on $\partial \Omega$). Boundary layers appear...
As $\nu \to 0$ and $\nu = 0$:

- The nature of equations changes: “Navier-Stokes to Euler”.
- Boundary conditions change: “$u^\nu = 0$ to $u_n^{\text{Euler}} = 0$ on $\partial \Omega$” (ideal fluids may “slip” on the boundary: $u_T^{\text{Euler}} \neq 0$ on $\partial \Omega$).
As $\nu \to 0$ and $\nu = 0$:

- The nature of equations changes: “Navier-Stokes to Euler”.

- Boundary conditions change: “$u^\nu = 0$ to $u_{n}^{\text{Euler}} = 0$ on $\partial \Omega$” (ideal fluids may “slip” on the boundary: $u_{T}^{\text{Euler}} \neq 0$ on $\partial \Omega$).

- Boundary layers appear.....
As $\nu \to 0$ and $\nu = 0$:

- The nature of equations changes: “Navier-Stokes to Euler”.

- Boundary conditions change: “$u^n = 0$ to $u^n_{\text{Euler}} = 0$ on $\partial \Omega$” (ideal fluids may “slip” on the boundary: $u^\tau_{\text{Euler}} \neq 0$ on $\partial \Omega$).

- Boundary layers appear.....Prandtl’s 1904 Ansatz:

$$u^n = u^{\text{Euler}}(t, x, y) + u^{\text{BL}}(t, x, \frac{y}{\sqrt{\nu}}) + o(1)_{L^\infty}$$

(due to the boundary discrepancy and balancing $u \cdot \nabla u \approx \nu \Delta u$)
• More precisely, near the boundary,

\[u^\nu \approx \left(\frac{u_1}{\sqrt{\nu} u_2} \right) (t, x, \frac{y}{\sqrt{\nu}}) \]

(pertaining the divergence free condition: \(\partial_x u_1 + \partial_y u_2 = 0 \))
• More precisely, near the boundary,

\[
u^n \approx \left(\frac{u_1}{\sqrt{\nu} u_2} \right) (t, x, \frac{y}{\sqrt{\nu}})
\]

(pertaining the divergence free condition: \(\partial_x u_1 + \partial_Y u_2 = 0\))

• Prandtl's famous equation (in blue!):

\[
\begin{align*}
(\partial_t + u \cdot \nabla)u_1 + \partial_x p &= \partial_Y^2 u_1 + \nu \partial_x^2 u_1 \\
\nu(\partial_t + u \cdot \nabla)u_2 + \partial_Y p &= 0 + \nu(\partial_Y^2 + \nu \partial_x^2)u_2
\end{align*}
\]

\[
u_1|_{Y=0} = u_2|_{Y=0} = 0
\]

\[
\lim_{Y \to \infty} u_1 = u_{\text{Euler}}(t, x, 0)
\]
• More precisely, near the boundary,

\[u^\nu \approx \left(\frac{u_1}{\sqrt{\nu} u_2} \right) (t, x, \frac{y}{\sqrt{\nu}}) \]

(pertaining the divergence free condition: \(\partial_x u_1 + \partial_y u_2 = 0 \))

• Prandtl’s famous equation (in blue!):

\[
\begin{align*}
(\partial_t + u \cdot \nabla) u_1 + \partial_x p &= \partial_y^2 u_1 + \nu \partial_x^2 u_1 \\
\nu (\partial_t + u \cdot \nabla) u_2 + \partial_y p &= 0 + \nu (\partial_y^2 + \nu \partial_x^2) u_2 \\
\end{align*}
\]

\[u_1|_{Y=0} = u_2|_{Y=0} = 0 \]

\[\lim_{Y \to \infty} u_1 = u_{Euler}^{\text{Euler}}(t, x, 0) \]

• Great advantage: pressure is known! Blasius self-similar solutions! Reliable calculation of the drag (airplane works!). Boundary layer separation. Plus, many mathematical works.
Validity of the Prandtl's Analysis: $\nu \to 0$?

\[u^\nu = u^{\text{Euler}}(t, x, y) + u^{\text{BL}}(t, x, \frac{y}{\sqrt{\nu}}) + o(1)_{L^\infty} \]
Validity of the Prandtl's Analysis: $\nu \to 0$?

\[u^\nu = u^{\text{Euler}}(t, x, y) + u^{\text{BL}}(t, x, \frac{y}{\sqrt{\nu}}) + o(1)_{L^\infty} \]

- Sammartino-Caflisch '98 for analytic data
- Maekawa '14 for compactly supported data
- Gérard-Varet-Masmoudi-Maekawa '16, '20, for Gevrey data.
For Sobolev data
For Sobolev data Prandtl’s Ansatz is FALSE!
Theorem (Grenier-Toan: The failure of Prandtl’s Ansatz)

- There are Prandtl’s layers u^{Prandtl} so that
 \[\| (u^\nu - u^{\text{Prandtl}})(t^\nu) \|_{L^\infty} \gtrsim 1 \]

at time $t^\nu \sim \sqrt{\nu} \log \frac{1}{\nu} \to 0$.
Theorem (Grenier-Toan: The failure of Prandtl’s Ansatz)

- There are Prandtl’s layers u^{Prandtl} so that
 \[\| (u^{\nu} - u^{\text{Prandtl}})(t^{\nu}) \|_{L^\infty} \gtrsim 1 \]
 at time $t^{\nu} \sim \sqrt{\nu} \log \frac{1}{\nu} \to 0$.
- Even more: for “generic” stable Prandtl’s layers:
 \[\| (u^{\nu} - u^{\text{Prandtl}})(t^{\nu}) \|_{L^\infty} \gtrsim \nu^{1/4} + \epsilon \]
 $t^{\nu} \sim \nu^{1/4} \log \frac{1}{\nu} \to 0$.

• Precisely, Prandtl’s profiles

\[
\begin{align*}
 u^{\text{Euler}} &= \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \\
 u^{\text{Prandtl}} &= \begin{pmatrix} U(t, y / \sqrt{\nu}) \\ 0 \end{pmatrix}
\end{align*}
\]

where \(U(t, z) \) solves the heat equation

\[
\partial_t U = \partial_z^2 U
\]

\(U \big|_{z=0} = 0, \quad \lim_{z \to \infty} U(t, z) = 1. \)
Precisely, Prandtl’s profiles

\[u^{\text{Euler}} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad u^{\text{Prandtl}} = \begin{pmatrix} U(t, y/\sqrt{\nu}) \\ 0 \end{pmatrix} \]

where \(U(t, z) \) solves the heat equation

\[\partial_t U = \partial_z^2 U \]

\[U|_{z=0} = 0, \quad \lim_{z \to \infty} U(t, z) = 1. \]

Navier-Stokes near boundary layers

\[\omega_t + U\omega_x + u_2 U'' + u \cdot \nabla \omega = \nu \Delta \omega \]

together with the no-slip condition on \(u = \nabla^\perp \Delta^{-1} \omega \).
The failure of Prandtl’s Ansatz

\[u^{\text{Euler}} \]

Figure: Sketched is a shape of \(U(\cdot) \)
The failure of Prandtl’s Ansatz

Figure: Sketched is a shape of $U(\cdot)$

- Within the hyperbolic scaling of size $\sqrt{\nu}$:
The failure of Prandtl’s Ansatz

Within the hyperbolic scaling of size $\sqrt{\nu}$:

- Euler around $U(y_1)$ is either spectrally stable or unstable:

$$u^{e,1} = e^{\lambda_0 t_1} \hat{u}^{e,1}, \quad \hat{u}^{e,1} = \nabla_\perp (e^{i\alpha x_1} \phi(y_1)),$$

with ϕ solving the Rayleigh equation.

Figure: Sketched is a shape of $U(\cdot)$.

Toan T. Nguyen (Penn State)

Boundary layers
• Within the hyperbolic scaling of size $\sqrt{\nu}$:

 - Start with an unstable mode of Euler: $u^{e,1} = e^{\lambda_0 t_1} \hat{u}^{e,1}$, $\Re \lambda_0 > 0$.

• Within the hyperbolic scaling of size $\sqrt{\nu}$:

 • Start with an unstable mode of Euler: $u^{e,1} = e^{\lambda_0 t_1} \hat{u}^{e,1}$, $\Re \lambda_0 > 0$.

 • (local) Reynolds number: $\text{Re}_1 = \frac{UL}{\nu} = \frac{1}{\sqrt{\nu}} \to \infty$.

Toan T. Nguyen (Penn State)
• Within the hyperbolic scaling of size $\sqrt{\nu}$:
 • Start with an unstable mode of Euler: $u^{e,1} = e^{\lambda_0 t_1} \hat{u}^{e,1}$, $\Re \lambda_0 > 0$.
 • (local) Reynolds number: $\text{Re}_1 = \frac{UL}{\nu} = \frac{1}{\sqrt{\nu}} \rightarrow \infty$.
 • Navier-Stokes around $U(y_1)$ is also unstable (linearly):

 $$u^{\text{NS},1} = \nu^N e^{\lambda_\nu t_1} \left[\hat{u}^{e,1}(x_1, y_1) + \hat{u}^{\text{BL},1}(x_1, \frac{y_1}{\nu^{1/4}}) \right], \quad \Re \lambda_\nu \rightarrow \Re \lambda_0 > 0.$$

 ($\hat{u}^{\text{BL},1}$ - the viscous boundary sublayer to correct the no-slip condition, computing $\nu^{1/4} = \sqrt[4]{\nu}$ and $y_1/\nu^{1/4} = y/\nu^{3/4}$).
Within the hyperbolic scaling of size \(\sqrt{\nu} \):

- Start with an unstable mode of Euler: \(u^{e,1} = e^{\lambda_0 t_1} \hat{u}^{e,1} \), \(\Re \lambda_0 > 0 \).

- (local) Reynolds number: \(\text{Re}_1 = \frac{UL}{\nu} = \frac{1}{\sqrt{\nu}} \to \infty \).

- Navier-Stokes around \(U(y_1) \) is also unstable (linearly):

\[
u^{NS,1} = \nu^N e^{\lambda_\nu t_1} \left[\hat{u}^{e,1}(x_1, y_1) + \hat{u}^{BL,1}(x_1, \frac{y_1}{\nu^{1/4}}) \right], \quad \Re \lambda_\nu \to \Re \lambda_0 > 0.
\]

(\(\hat{u}^{BL,1} \) - the viscous boundary sublayer to correct the no-slip condition, computing \(\nu^{1/4} = \sqrt{\sqrt{\nu}} \) and \(y_1/\nu^{1/4} = y/\nu^{3/4} \)).

- \(u^{NS,1} \sim \nu^N e^{\lambda_\nu t_1} \), extremely large at \(t = \sqrt{\nu} t_1 \sim \sqrt{\nu} \log \frac{1}{\nu} \to 0 \).
• Linear to nonlinear: stability of the instability

\[u^\nu \approx u^{\text{Prandtl}}(y_1) + \nu^N e^{\lambda_\nu t_1} \left[\hat{u}^{e,1}(x_1, y_1) + \hat{u}^{\text{BL},1}(x_1, \frac{y_1}{\nu^{1/4}}) \right] \]
• **Linear to nonlinear: stability of the instability**

\[
\begin{align*}
u' \approx & \quad u^{\text{Prandtl}}(y_1) + \nu N e^{\lambda \nu t_1} \left[\hat{u}^{e,1}(x_1, y_1) + \hat{u}^{\text{BL},1}(x_1, \frac{y_1}{\nu^{1/4}}) \right] ? \\
\end{align*}
\]

• **YES, as long as**

\[
\| \nabla u^{\text{NS, app}} \|_{L^\infty} \lesssim 1 + \nu N e^{\Re \lambda_0 t_1} \left[1 + \nu^{-1/4} \right] \lesssim 1.
\]
• Linear to nonlinear: stability of the instability

\[u^\nu \approx u^{\text{Prandtl}}(y_1) + \nu^N e^{\lambda_0 t_1} \left[\hat{u}^{e,1}(x_1, y_1) + \hat{u}^{\text{BL},1}(x_1, \frac{y_1}{\nu^{1/4}}) \right] \]

• YES, as long as

\[\| \nabla u^{\text{NS, app}} \|_{L^\infty} \lesssim 1 + \nu^N e^{\Re \lambda_0 t_1} \left[1 + \nu^{-1/4} \right] \lesssim 1. \]

• Grenier, 2000: The instability of \(u^{\text{Prandtl}} \) is of order \(\nu^{1/4} \):

\[\| u^{\text{NS}} - u^{\text{Prandtl}} \|_{L^\infty} \gtrsim \nu^N e^{\Re \lambda_0 t_\nu} \sim \nu^{1/4}, \quad t_\nu \sim \sqrt{\nu \log \frac{1}{\nu}} \to 0 \]

(the sublayer velocity grows up to order \(\nu^{1/4} \) in amplitude).
The failure of Prandtl’s Ansatz

- Going beyond the $\nu^{1/4}$-instability?

\[u^\text{Euler} \]

\[y \quad x \]

$\nu^{1/2}$: Prandtl layer
$\nu^{3/4}$: Viscous sublayer

\[\nu^\frac{1}{4}: \text{instability?} \]
The failure of Prandtl’s Ansatz

Going beyond the $\nu^{1/4}$-instability?

(local) Reynolds number within sublayer: $Re_2 = \frac{UL}{\nu} = \frac{U_{\text{sub}}}{\nu^{1/4}} \to \infty$.

- $\nu^{1/2}$: Prandtl layer
- $\nu^{3/4}$: Viscous sublayer
The failure of Prandtl’s Ansatz

Going beyond the $\nu^{1/4}$-instability?

- (local) Reynolds number within sublayer: $Re_2 = \frac{UL}{\nu} = \frac{U_{\text{sub}}}{\nu^{1/4}} \to \infty$.
- ALL shear flows, including stable ones to Euler, are linearly unstable to Navier-Stokes: viscous destabilization, Heisenberg ’24, C. C. Lin, Tollmien, Schlichting 40s (rigorously proved in Grenier-Guo-Toan ’16).
The failure of Prandtl’s Ansatz

Going beyond the $\nu^{1/4}$-instability?

- (local) Reynolds number within sublayer: $Re_2 = \frac{UL}{\nu} = \frac{U_{\text{sub}}}{\nu^{1/4}} \to \infty$.
- ALL shear flows, including stable ones to Euler, are linearly unstable to Navier-Stokes: viscous destabilization, Heisenberg ’24, C. C. Lin, Tollmien, Schlichting 40s (rigorously proved in Grenier-Guo-Toan ’16).
- Sublayers themselves are unstable! Many instabilities.....!
So, it seems hopeless for stability of the instability.....except:

\[\nu^{1/2}: \text{Prandtl layer} \]
\[\nu^{3/4}: \text{Viscous sublayer} \]
\[\nu^{7/8}: \text{Viscous subsublayer} \]
So, it seems hopeless for stability of the instability.....except:

- Sammartino-Caflisch ’98: **analyticity** prevents sublayers. Navier-Stokes solutions involve precisely \(\text{Euler} + \text{Prandtl} \).
So, it seems hopeless for stability of the instability.....except:

- **Program**: use analyticity to prevent subsublayers. Navier-Stokes solutions involve precisely Euler + Prandtl + Sublayer.
The failure of Prandtl’s Ansatz

\[u^{\nu} \approx u^{\text{Prandtl}}(y_1) + \nu^N e^{\lambda \nu t_1} \left[\hat{u}^{\text{e},1}(x_1, y_1) + \hat{u}^{\text{BL},1}(x_1, \frac{y_1}{\nu^{1/4}}) \right] \]

- Issue:
The failure of Prandtl’s Ansatz

\[u^\nu \approx u^{\text{Prandtl}}(y_1) + \nu^N e^{\lambda t_1} \left[\hat{u}^{e,1}(x_1, y_1) + \hat{u}^{BL,1}(x_1, \frac{y_1}{\nu^{1/4}}) \right] \]

- Issue:
 - Large time analyticity framework: \(t_1 \sim \log \frac{1}{\nu} \to \infty \).
The failure of Prandtl's Ansatz

\[u^{\nu} \approx u^{\text{Prandtl}}(y_1) + \nu^N e^{\lambda_\nu t_1} \left[\hat{u}^{e,1}(x_1, y_1) + \hat{u}^{\text{BL},1}(x_1, \frac{y_1}{\nu^{1/4}}) \right] \]

- **Issue:**
 - Large time analyticity framework: \(t_1 \sim \log \frac{1}{\nu} \to \infty \).
 - Due to shearing, analyticity radius shrinks like \(\frac{1}{t_1} \to 0 \):

\[
\omega_t + U(y)\omega_x + v_2 U'' = \sqrt{\nu} \Delta \omega, \quad v_2 = -\partial_x \Delta^{-1} \omega
\]

(Analyticity is lost when needed!)
However,

Theorem (Grenier-Toan: Annals of PDEs 2019)

There is a complete instability solution

\[u_\nu = u_{\text{Prandtl}}(y_1) + \sum_{j=1}^{\infty} \nu_j N [u_{e,j}(t_1, x_1, y_1) + u_{BL,j}(t_1, x_1, y_1)] \]

(noticing the exponential growth in time!),

which solves Navier-Stokes equations with forcing

\[f_\nu \]

until the instability time:

\[\nu_N e^{\Re \lambda_0 t_1} \sim 1, \]

where

\[\| u_\nu - u_{\text{Prandtl}} \|_{H^s} + \| f_\nu \|_{H^s} \leq \nu_N. \]
However,

Theorem (Grenier-Toan: Annals of PDEs 2019)

There is a complete instability solution $u^\nu = \text{Euler} + \text{Prandtl} + \text{Sublayer}$:

$$u^\nu = u^{\text{Prandtl}}(y_1) + \sum_{j=1}^{\infty} \nu^j \left[u^{\text{e}}(t_1, x_1, y_1) + u^{\text{BL}}(t_1, x_1, \frac{y_1}{\nu^{1/4}})\right]$$

(notating the exponential growth in time!),
However,

Theorem (Grenier-Toan: Annals of PDEs 2019)

There is a complete instability solution \(u^\nu = \text{Euler} + \text{Prandtl} + \text{Sublayer}:

\[
 u^\nu = u^{\text{Prandtl}}(y_1) + \sum_{j=1}^{\infty} \nu^j \left[u^{e,j}(t_1, x_1, y_1) + u^{BL,j}(t_1, x_1, \frac{y_1}{\nu^{1/4}}) \right]
\]

(notating the exponential growth in time!), which solves Navier-Stokes equations with forcing \(f^\nu \), until the instability time:

\[
 \nu^N e^{Re\lambda_0 t_1} \sim 1,
\]

where

\[
 \|(u^\nu - u^{\text{Prandtl}})(0)\|_{H^s} + \|f^\nu\|_{H^s} \leq \nu^N.
\]
Some pains.....

\[u^\nu = u^{\text{Prandtl}}(y_1) + \sum_{j=1}^{\infty} \nu^j u^j(t_1, x_1, y_1) \]
Some pains.....

\[u^{\nu} = u^{\text{Prandtl}}(y_1) + \sum_{j=1}^{\infty} \nu^j N^j u^j(t_1, x_1, y_1) \]

with vorticity \(\omega^j \) iteratively solves:

\[(\partial_t + U \partial_x) \omega^j + u_2^j U'' - \sqrt{\nu} \Delta \omega^j = - \sum_{k+\ell=j} u^k \cdot \nabla \omega^\ell \]

together with the no-slip condition on \(u^j = \nabla^\perp \Delta^{-1} \omega^j \).
Generator functions

\[\text{Gen}_\delta (\omega)(z) = \sum_{\alpha \in \mathbb{Z}} \sum_{\ell \geq 0} e^{z |\alpha|} \| D_y^{\ell} \hat{\omega}_\alpha \|_\delta \frac{z^\ell}{\ell!}, \quad D_y = \frac{y}{1 + y \, \partial_y} \]

where

\[\| \hat{\omega}_\alpha \|_\delta = \sup_y |\hat{\omega}_\alpha(y)| \left(\delta^{-1} e^{-y/\delta} + 1 \right)^{-1}, \quad \delta = \nu^{1/4}. \]
Generator functions

\[\text{Gen}_\delta(\omega)(z) = \sum_{\alpha \in \mathbb{Z}} \sum_{\ell \geq 0} e^{z|\alpha|} \| D_y^\ell \hat{\omega}_\alpha \|_\delta \frac{z^\ell}{\ell!}, \quad D_y = \frac{y}{1 + y} \partial_y \]

where

\[\| \hat{\omega}_\alpha \|_\delta = \sup_y |\hat{\omega}_\alpha(y)| \left(\delta^{-1} e^{-y/\delta} + 1 \right)^{-1}, \quad \delta = \nu^{1/4}. \]

- Good properties with products and derivatives:

\[\text{Gen}_\delta(fg) \leq \text{Gen}_0(f) \text{Gen}_\delta(g), \]

\[\text{Gen}_\delta(\partial_x \omega) = \partial_z \text{Gen}_\delta(\omega), \quad \text{Gen}_\delta(D_y \omega) = \partial_z \text{Gen}_\delta(\omega) \]

\[\text{Gen}_\delta(u \cdot \nabla \omega) \lesssim \partial_z \text{Gen}_0(u) \partial_z \text{Gen}_\delta(\omega) \]
Large time Cauchy-Kovalevskaya theory

- Derive a simple transport inequality for vorticity:

\[\partial_{\tau} \text{Gen} \delta(\omega)(z) \lesssim \text{Gen} \delta(\omega)(z) + \text{Gen} \delta(\omega) \partial_z \text{Gen} \delta(\omega)(z) \]

with \(\tau = \nu^N e^{\Re \lambda_0 t_1} \), giving solution up to a time of order one:

\[u^\nu \approx u^{\text{Prandtl}}(y_1) + \nu^N e^{\lambda \nu t_1} \left[\hat{u}^{e,1}(x_1, y_1) + \hat{u}^{\text{BL},1}(x_1, \frac{y_1}{\nu^{1/4}}) \right]. \]
The failure of Prandtl’s Ansatz

Large time Cauchy-Kovalevskaya theory

- Derive a simple transport inequality for vorticity:

\[\partial_\tau \text{Gen}_\delta(\omega)(z) \lesssim \text{Gen}_\delta(\omega)(z) + \text{Gen}_\delta(\omega)\partial_z \text{Gen}_\delta(\omega)(z) \]

with \(\tau = \nu^N e^{R\lambda_0 t_1} \), giving solution up to a time of order one:

\[u^\nu \approx u^\text{Prandtl}(y_1) + \nu^N e^{\lambda_\nu t_1} \left[\hat{u}^{e,1}(x_1, y_1) + \hat{u}^{BL,1}(x_1, \frac{y_1}{\nu^{1/4}}) \right]. \]

- An application:

A simplification of Mouhot-Villani’s proof of Landau damping

200 pages \(\implies\) an elementary proof (Grenier-Toan-Rodnianski ’20).
Theorem (Grenier-Toan: The failure of Prandtl’s Ansatz)

\[u^{\text{Euler}} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \]

\[\sqrt{\nu} \]

\[\| (u^{\nu} - u^{\text{Prandtl}})(0) \|_{H^s} + \| f^{\nu} \|_{L^\infty([0, t^{\nu}], H^s)} \leq \nu N \]

\[\| (u^{\nu} - u^{\text{Prandtl}})(t^{\nu}) \|_{L^\infty} \gtrsim 1 \]

\[\| (u^{\nu} - u^{\text{Prandtl}})(t^{\nu}) \|_{L^\infty} \gtrsim \nu^{1/4} + \epsilon \]

\[t^{\nu} \sim \nu^{1/4} \log \nu - 1. \]
Theorem (Grenier-Toan: The failure of Prandtl’s Ansatz)

Let \(U(\cdot) \) be spectrally \textbf{unstable} or \textbf{monotone and stable} to Euler. Then, for any \(N, s \), there are solutions \(u^\nu \) of Navier Stokes with forcing terms \(f^\nu \) so that

\[
\| (u^\nu - u^{\text{Prandtl}})(0) \|_{H^s} + \| f^\nu \|_{L^\infty([0,t^\nu],H^s)} \leq \nu^N,
\]

\[
\| (u^\nu - u^{\text{Prandtl}})(t^\nu) \|_{L^\infty} \gtrsim 1 \quad \text{with} \quad t^\nu \sim \sqrt{\nu} \log \nu^{-1},
\]

\[
\| (u^\nu - u^{\text{Prandtl}})(t^\nu) \|_{L^\infty} \gtrsim \nu^{1/4+\epsilon} \quad \text{with} \quad t^\nu \sim \nu^{1/4} \log \nu^{-1}.
\]