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Abstract

Extending previous work with Lattanzio and Mascia on the scalar (in fluid-
dynamical variables) Hamer model for a radiative gas, we show nonlinear orbital
asymptotic stability of small-amplitude shock profiles of general systems of cou-
pled hyperbolic–eliptic equations of the type modeling a radiative gas, that is,
systems of conservation laws coupled with an elliptic equation for the radiation
flux, including in particular the standard Euler–Poisson model for a radiating
gas. The method is based on the derivation of pointwise Green function bounds
and description of the linearized solution operator, with the main difficulty be-
ing the construction of the resolvent kernel in the case of an eigenvalue system
of equations of degenerate type. Nonlinear stability then follows in standard
fashion by linear estimates derived from these pointwise bounds, combined with
nonlinear-damping type energy estimates.
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1. Introduction

In the theory of non-equilibrium radiative hydrodynamics, it is often as-
sumed that an inviscid compressible fluid interacts with radiation through en-
ergy exchanges. One widely accepted model [38] considers the one dimensional
Euler system of equations coupled with an elliptic equation for the radiative en-
ergy, or Euler–Poisson equation. With this system in mind, this paper considers
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general hyperbolic-elliptic coupled systems of the form,

ut + f(u)x + Lqx = 0,

−qxx + q + g(u)x = 0,
(1)

with (x, t) ∈ R× [0,+∞) denoting space and time, respectively, and where the
unknowns u ∈ U ⊆ Rn, n ≥ 1, play the role of state variables, whereas q ∈ R

represents a general heat flux. In addition, L ∈ R
n×1 is a constant vector, and

f ∈ C2(U ;Rn) and g ∈ C2(U ;R) are nonlinear vector- and scalar-valued flux
functions, respectively.

The study of general systems like (1) has been the subject of active research
in recent years [10, 11, 13, 17]. There exist, however, more complete results
regarding the simplified model of a radiating gas, also known as the Hamer model
[6], consisting of a scalar velocity equation (usually endowed with a Burgers’ flux
function which approximates the Euler system), coupled with a scalar elliptic
equation for the heat flux. Following the authors’ concurrent analysis with
Lattanzio and Mascia of the reduced scalar model [16], this work studies the
asymptotic stability of general radiative shock profiles, which are traveling wave
solutions to system (1) of the form

u(x, t) = U(x− st), q(x, t) = Q(x− st), (2)

with asymptotic limits

U(x) → u±, Q(x) → 0, as x→ ±∞,

being u± ∈ U ⊆ Rn constant states and s ∈ R the shock speed. The main
assumption is that the triple (u+, u−, s) constitutes a shock front [19] for the
underlying “inviscid” system of conservation laws

ut + f(u)x = 0, (3)

satisfying canonical jump conditions of Rankine-Hugoniot type,

f(u+)− f(u−)− s(u+ − u−) = 0, (4)

plus classical Lax entropy conditions. In the sequel we denote the jacobians of
the nonlinear flux functions as

A(u) := Df(u) ∈ R
n×n, B(u) := Dg(u) ∈ R

1×n, u ∈ U .

Right and left eigenvectors of A will be denoted as r ∈ Rn×1 and l ∈ R1×n,
and we suppose that system (3) is hyperbolic, so that A has real eigenvalues
a1 ≤ · · · ≤ an.

It is assumed that system (1) represents some sort of regularization of the in-
viscid system (3) in the following sense. Formally, if we eliminate the q variable,
then we end up with a system of form

ut + f(u)x = (LB(u)ux)x + (ut + f(u)x)xx,
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which requires a nondegeneracy hypothesis

lp · (B ⊗ L⊤rp) > 0, (5)

for some 1 ≤ p ≤ n, in order to provide a good dissipation term along the p-th
characteristic field in its Chapman-Enskog expansion [35].

More precisely, we make the following structural assumptions:

f, g ∈ C2 (regularity), (S0)

For all u ∈ U there exists A0 symmetric, positive definite such that
A0A is symmetric, and A0LB is symmetric, positive semi-definite
of rank one (symmetric dissipativity ⇒ non-strict hyperbolicity).
Moreover, we assume that the principal eigenvalue ap ofA is simple.

(S1)

No eigenvector of A lies in kerLB (genuine coupling). (S2)

Remark 1.1. Assumption (S1) assures non-strict hyperbolicty of the system,
with simple principal characteristic field. Notice that (S1) also implies that
(A0)

1/2A(A0)
−1/2 is symmetric, with real and semi-simple spectrum, and that,

likewise, (A0)
1/2B(A0)

−1/2 preserves symmetric positive semi-definiteness with
rank one. Assumption (S2) defines a general class of hyperbolic-elliptic equa-
tions analogous to the class defined by Kawashima and Shizuta [9, 14, 37] and
compatible with (5). Moreover, there is an equivalent condition to (S2) given
by the following

Lemma 1.2 (Shizuta–Kawashima [14, 37]). Under (S0) - (S1), assumption
(S2) is equivalent to the existence of a skew-symmetric matrix valued function
K : U → Rn×n such that

Re (KA+A0LB) > 0, (6)

for all u ∈ U .

Proof. See, e.g., [8].

As usual, we can reduce the problem to the analysis of a stationary profile
with s = 0, by introducing a convenient change of variable and relabeling the
flux function f accordingly. Therefore, we end up with a stationary solution
(U,Q)(x) of the system

f(U)x + LQx = 0,

−Qxx +Q+ g(U)x = 0.
(7)

After such normalizations and under (S0) - (S2), we make the following
assumptions about the shock:
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f(u+) = f(u−), (Rankine-Hugoniot jump conditions), (H0)

ap(u+) < 0 < ap+1(u+),

ap−1(u−) < 0 < ap(u−),
(Lax entropy conditions), (H1)

(∇ap)
⊤rp 6= 0, for all u ∈ U , (genuine nonlinearity), (H2)

lp(u±)LB(u±)rp(u±) > 0, (positive diffusion). (H3)

Remark 1.3. Systems of form (1) arise in the study of radiative hydrodynamics,
for which the paradigmatic system has the form

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p)x = 0,
(
ρ(e+ 1

2u
2)
)

t
+
(
ρu(e+ 1

2u
2) + pu+ q

)

x
= 0,

−qxx + aq + b(θ4)x = 0,

(8)

which corresponds to the one dimensional Euler system coupled with an elliptic
equation describing radiations in a stationary diffusion regime. In (8), u is
the velocity of the fluid, ρ is the mass density and θ denotes the temperature.
Likewise, p = p(ρ, θ) is the pressure and e = e(ρ, θ) is the internal energy. Both
p and e are assumed to be smooth functions of ρ > 0, θ > 0 satisfying

pρ > 0, pθ 6= 0, eθ > 0.

Finally, q = ρχx is the radiative heat flux, where χ represents the radiative
energy, and a, b > 0 are positive constants related to absorption. System (8) can
be (formally) derived from a more complete system involving a kinetic equation
for the specific intensity of radiation. For this derivation and further physical
considerations on (8) the reader is referred to [38, 20, 11].

The existence and regularity of traveling wave type solutions of (1) under
hypotheses (S0) - (S2), (H0) - (H3) is known, even in the more general case
of non-convex velocity fluxes (assumption (H2) does not hold). For details
of existence, as well as further properties of the profiles such as monotonicity
and regularity under small-amplitude assumption (features which will be used
throughout the analysis), the reader is referred to [17, 18].

1.1. Main results

In the spirit of [42, 23, 25, 26], we first consider the linearized equations of
(1) about the profile (U,Q):

ut + (A(U)u)x + Lqx = 0,
−qxx + q + (B(U)u)x = 0,

(9)
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with initial data u(0) = u0. Hence, the Laplace transform applied to system (9)
gives

λu+ (A(U)u)x + Lqx = S,

−qxx + q + (B(U)u)x = 0,
(10)

where source S is the initial data u0.
As it is customary in related nonlinear wave stability analyses (see, e.g.,

[1, 34, 42, 39]), we start by studying the underlying spectral problem, namely,
the homogeneous version of system (10):

λu+ (A(U)u)x + Lqx = 0,

−qxx + q + (B(U)u)x = 0.
(11)

An evident necessary condition for orbital stability is the absence of L2

solutions to (11) for values of λ in {Reλ ≥ 0}\{0}, being λ = 0 the eigenvalue
associated to translation invariance. This spectral stability condition can be
expressed in terms of the Evans function, an analytic function playing a role for
differential operators analogous to that played by the characteristic polynomial
for finite-dimensional operators (see [1, 34, 3, 42, 23] and the references therein).
The main property of the Evans function is that, on the resolvent set of a
certain operator L, its zeroes coincide in both location and multiplicity with
the eigenvalues of L. Thence, we express the spectral stability condition as
follows:

There exists no zero of the Evans function D on {Reλ ≥ 0} \ {0};
equivalently, there exist no nonzero eigenvalues of L with Reλ ≥ 0.

(SS)

Like in previous analyses [42, 39, 41], we define the following stability condition
(or Evans function condition) as follows:

There exists precisely one zero (necessarily at λ = 0; see Lemmas
2.5 - 2.6) of the Evans function on the nonstable half plane {Reλ ≥
0},

(D)

which implies the spectral stability condition (SS) plus the condition that D
vanishes at λ = 0 at order one. Notice that just like in the scalar case [16],
due to the degenerate nature of system (11) (observe that A(U) vanishes at
x = 0) the number of decaying modes at ±∞, spanning possible eigenfunctions,
depends on the region of space around the singularity. Therefore the definition
of D is given in terms of the Evans functions D± in regions x ≷ 0, with same
regularity and spectral properties (see its definition in (43) and Lemmas 2.5 -
2.6 below).

Our main result is then as follows.
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Theorem 1.4. Assuming (5), (S0)–(S2), (H0)–(H3), and the spectral stability
condition (D), then the Lax radiative shock profile (U,Q) with sufficiently small
amplitude is asymptotically orbitally stable. More precisely, the solution (ũ, q̃)
of (1) with initial data ũ0 satisfies

|ũ(x, t)− U(x− α(t))|Lp ≤ C(1 + t)−
1
2
(1−1/p)|u0|L1∩H4

|ũ(x, t)− U(x− α(t))|H4 ≤ C(1 + t)−1/4|u0|L1∩H4

(12)

and
|q̃(x, t)−Q(x− α(t))|W 1,p ≤ C(1 + t)−

1
2
(1−1/p)|u0|L1∩H4

|q̃(x, t)−Q(x− α(t))|H5 ≤ C(1 + t)−1/4|u0|L1∩H4

(13)

for initial perturbation u0 := ũ0 − U that are sufficiently small in L1 ∩H4, for
all p ≥ 2, for some α(t) satisfying α(0) = 0 and

|α(t)| ≤ C|u0|L1∩H4

|α̇(t)| ≤ C(1 + t)−1/2|u0|L1∩H4 .
(14)

Remark 1.5. The time-decay rate of q is not optimal. In fact, it can be
improved as we observe that |q(t)|L2 ≤ C|ux(t)|L2 and |ux(t)|L2 is expected to
decay like t−1/2; however, we omit the detail of carrying this out. Likewise,
assuming in addition a small L1 first moment on the initial perturbation, we
could obtain by the approach of [33] the sharpened bounds |α̇| ≤ C(1 + t)σ−1,
and |α − α(+∞)| ≤ C(1 + t)σ−1/2, for σ > 0 arbitrary, including in particular
the information that α converges to a specific limit (phase-asymptotic orbital
stability); however, we omit this again in favor of simplicity.

We shall prove the following result in appendix Appendix A, verifying Evans
condition (D).

Theorem 1.6. For ǫ := |u+ − u−| sufficiently small, radiative shock profiles
are spectrally stable.

Corollary 1.7. The condition (D) is satisfied for small amplitudes.

Proof. In Lemmas 2.5 - 2.6 below, we show that D(λ) has a single zero at λ = 0.
Together with Theorem 1.6, this gives the result.

1.1.1. Discussion

Prior to [16], asymptotic stability of radiative shock profiles has been studied
in the scalar case in [12] for the particular case of Burgers velocity flux and
for linear g(u) = Mu, with constant M . Another scalar result is the partial
analysis of Serre [36] for the exact Rosenau model (see also [22]). In the case
of systems, we mention the stability result of [21] for the full Euler radiating
system under special zero-mass perturbations, based on an adaptation of the
classical energy method of Goodman-Matsumura-Nishihara [4, 28]. Here, we
recover for systems, under general (not necessarily zero-mass) perturbations,
the sharp rates of decay established in [12] for the scalar case.

6



We mention that works [12, 16] in the scalar case concerned also large-
amplitude shock profiles (under the Evans condition (D), automatically satisfied
in the Burgers case [12]). At the expense of further effort book-keeping– specif-
ically in the resolution of flow near the singular point and construction of the
resolvent– we could obtain by our methods a large-amplitude result similar to
that of [16]. However, we greatly simplify the exposition by the small-amplitude
assumption allowing us to approximately diagonalize before carrying out these
steps. As the existence theory is only for small-amplitude shocks, with upper
bounds on the amplitudes for which existence holds, known to occur, and since
the domain of our hypotheses in [16] does not cover the whole domain of exis-
tence in the scalar case (in contrast to [12], which does address the entire domain
of existence), we have chosen here for clarity to restrict to the small-amplitude
setting. It would be interesting to carry out a large-amplitude analysis valid on
the whole domain of existence in the system case.

1.2. Abstract framework

Before beginning the analysis, we orient ourselves with a few simple ob-
servations framing the problem in a more standard way. Consider now the
inhomogeneous version

ut + (A(U)u)x + Lqx = g,

−qxx + q + (B(U)u)x = h,
(15)

of (9), with initial data u(x, 0) = u0. Defining the operator K := (−∂2x + 1)−1

of order −1, locally compact from L2 to H2, and the bounded operator

J := ∂xLK∂xB(U)

of order 0, we may rewrite this as a nonlocal equation

ut + (A(U)u)x + J u = ∂xLKh+ g,

u(x, 0) = u0(x)
(16)

in u alone, recovering q by

q = −K∂xB(U)u+Kh. (17)

The generator L := −(A(U)u)x−J u of (16) is a zero-order perturbation of the
generator −A(U)ux of a hyperbolic equation, so generates a C0 semigroup eLt

and an associated Green distribution G(x, t; y) := eLtδy(x). Moreover, eLt and
G may be expressed through the inverse Laplace transform formulae

eLt =
1

2πi

∫ η+i∞

η−i∞

eλt(λ − L)−1dλ,

G(x, t; y) =
1

2πi

∫ η+i∞

η−i∞

eλtGλ(x, y)dλ,

(18)
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for all η ≥ η0, where Gλ(x, y) := (λ − L)−1δy(x) is the resolvent kernel of L.
Collecting information, we may write the solution of (15) using Duhamel’s

principle/variation of constants as

u(x, t) =

∫ +∞

−∞

G(x, t; y)u0(y)dy

+

∫ t

0

∫ +∞

−∞

G(x, t − s; y)(∂xLKh+ g)(y, s) dy ds,

q(x, t) =
(
(−K∂xB(U))u +Kh

)
(x, t),

(19)

where G is determined through (18).
That is, the solution of the linearized problem reduces to finding the Green

kernel for the u-equation alone, which in turn amounts to solving the resolvent
equation for L with delta-function data, or, equivalently, solving the differential
equation (10) with source S = δy(x). This we shall do in standard fashion by
writing (10) as a first-order system and solving appropriate jump conditions
at y obtained by the requirement that Gλ be a distributional solution of the
resolvent equations.

This procedure is greatly complicated by the circumstance that the resulting
(n+ 2)× (n+ 2) first-order system

Θ(x)Wx = A(x, λ)W (20)

is singular at the special point where A(U) vanishes (see Remark 1.9 below),
with Θ dropping to rank n+ 1. However, in the end we find as usual that Gλ

is uniquely determined by these criteria, not only for the values Reλ ≥ η0 >
0 guaranteed by C0-semigroup theory/energy estimates, but, as in the usual
nonsingular case [7], on the set of consistent splitting for the first-order system
(20), which includes all of {Reλ ≥ 0} \ {0}. This has the implication that the
essential spectrum of L is confined to {Reλ < 0} ∪ {0}.

Remark 1.8. The fact (obtained by energy-based resolvent estimates) that
L−λ is coercive for Reλ ≥ η0 shows by elliptic theory that the resolvent is well-
defined and unique in class of distributions for Reλ large, and thus the resolvent
kernel may be determined by the usual construction using appropriate jump
conditions. That is, from standard considerations, we see that the construction
must work, despite the apparent wrong dimensions of decaying manifolds (which
happens for any Reλ > 0).

Remark 1.9. Recall that Lax entropy condition reads a+p < 0 < a+p+1 and

a−p−1 < 0 < a−p . This, together with continuity of ap(x) = ap(U(x)) (from
regularity of profile U(x) of the existence theory [17, 18]), shows that ap(x0) = 0
at some point x0 which, without loss of generality, we take as x0 = 0. Thus,
the p-Lax eigenvalue ap(x) connects a−p > 0 with a+p < 0 at x = ±∞. The
degeneracy occurs naturally as the coefficient matrix A(U) of the highest order
derivative of u with respect to x in (16) becomes singular at that point. When
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the associated spectral system is written in first order form (20), this degeneracy
shows up in the drop of rank of the coefficient matrix Θ. To deal with the
singularity of the first-order system is the most delicate and novel part of the
present analysis (see also the analysis of the scalar model [16]). It is our hope
that the methods we use here may be of use also in other situations where the
resolvent equation becomes singular, for example in the closely related situation
of relaxation systems discussed in [23, 26].

Remark 1.10. Comparing to the concurent analysis in the scalar model [16],
the main difference when constructing the Green function in the system case
is that we now have n slow modes at each far field (i.e., at x = ±∞), rather
than only one in scalar case, and one of these modes will have to connect to the
mode having the degeneracy at x = 0 in the above sense (the vanishing p-Lax
eigenvalue). A priori, we were not sure how to treat such situations. However,
as it turns out, we can diagonalize the system with acceptable error of the same
order zero as terms coming from J u, and thus, are able to treat the slow mode
with degeneracy as in the scalar case. We emphasize that the wrong number of
decaying modes clearly remains in the system case, but the cure for it remains as
well: construction of full sets of decaying modes at each side of the singularity.

Another significant difference in the analysis is that the verification of the
spectral stability condition is not straightforward as for the scalar problem; in-
deed, here we have to use a combination of Kawashima- and weighted Goodman-
type energy estimates (see appendix Appendix A), which work (only) for small
amplitudes; we observe that in [16], we (and co-authors) were also able to ver-
ify the condition for arbitrary amplitudes in the existence region of the profile,
provided that b is linear. In addition, the fact that LB is not strictly posi-
tive required special attention while obtaining the damping nonlinear energy
estimates, in contrast with the scalar case.

Plan of the paper

This work is structured as follows. Section 2 pertains to the construction
of the resolvent kernel, based on the study of the solutions to the eigenvalue
equations both near and away from the singularity. In section 3 we establish
bounds for the resolvent kernel in low-frequency regions. Section 4 contains the
analysis towards pointwise bounds for the low-frequency Green function, based
on the spectral resolution formulae. The auxiliary damping energy estimate
and the high-frequency estimate are the content of section 5. The final section 6
blends all the previous estimations into the proof of the main nonlinear Theorem
1.4. Appendix Appendix A contains the verification of the spectral stability
condition in the small amplitude regime, whereas appendix Appendix B contains
a pointwise extension of the tracking lemma of [24].
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2. Construction of the resolvent kernel

2.1. Outline

In what follows we shall denote ′ = ∂x for simplicity; we also write A(x) =
A(U) and B(x) = B(U). Let us now construct the resolvent kernel for L, or
equivalently, the solution of (10) with delta-function source in the u component.
The novelty in the present case is the extension of this standard method to a
situation in which the spectral problem can only be written as a degenerate first
order ODE. Unlike the real viscosity and relaxation cases [23, 24, 25, 26] (where
the operator L, although degenerate, yields a non-degenerate first order ODE
in an appropriate reduced space), here we deal with a system of form

ΘW ′ = A(x, λ)W,

where

Θ =

(
A

I2

)
,

is degenerate at x = 0.
To construct the resolvent kernel we solve

(Θ∂x − A(x, λ))Gλ(x, y) = δy(x), (21)

in the distributional sense, so that

(Θ∂x − A(x, λ))Gλ(x, y) = 0, (22)

in the distributional sense for all x 6= y with appropriate jump conditions (to
be determined) at x = y. The first entry of the three-vector Gλ is the resolvent
kernel Gλ of L that we seek.

Namely Gλ, is the solution in the sense of distribution of system (10) (written
in conservation form):

(Au)′ = − (λ+ LB)u+ Lp+ δy(x)

q′ = Bu− p

p′ = −q.

(23)

2.2. Asymptotic behavior

First, we study at the asymptotic behavior of solutions to the spectral system

(A(x)u)′ = −(λ+ LB(x))u + Lp,

q′ = B(x)u − p,

p′ = −q,

(24)

away from the singularity at x = 0, and for values of λ 6= 0, Reλ ≥ 0. We pay
special attention to the small frequency regime, λ ∼ 0. First, we diagonalize A
as

Ã := LpARp =




A−

1 0
ap

0 A+
2



 (25)
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where A−
1 ≤ −θ < 0, A+

2 ≥ θ > 0, and ap ∈ R, satisfying ap(+∞) < 0 <
ap(−∞). Here, Lp, Rp are bounded matrices and LpRp = I. Defining v := Lpu,
we rewrite (24) as

(Ã(x)v)′ = −(λ+ L̃B̃ + L′
pARp)v + L̃p,

q′ = B̃v − p,

p′ = −q,

(26)

where L̃ := LpL and B̃ := BRp. Denote the limits of the coefficient as

Ã± := lim
x→±∞

Ã(x), B̃± := lim
x→±∞

B(x)Rp. (27)

The asymptotic system thus can be written as

W ′ = A±(λ)W, (28)

where W = (v, q, p)⊤, and

A±(λ) =




−Ã−1

± (λ+ L̃±B̃±) 0 Ã−1
± L̃±

B̃± 0 −1
0 −1 0



 . (29)

To determine the dimensions of the stable/unstable eigenspaces, let λ ∈ R+

and λ→ 0,+∞, respectively. The 2× 2 lower right-corner matrix clearly gives
one strictly positive and one strictly negative eigenvalues (this later will give one
fast-decaying and one fast-growing modes). In the “slow” system (as |λ| → 0),
eigenvalues are

µ±
j (λ) = −λ/a±j +O(λ2), (30)

where a±j are eigenvalues of A± = A(±∞). Thus, we readily conclude that at
x = +∞, there are p+1 unstable eigenvalues and n−p+1 stable eigenvalues. The
stable S+(λ) and unstable U+(λ) manifolds (solutions which decay, respectively,
grow at +∞) have, thus, dimensions

dimU+(λ) = p+ 1,

dimS+(λ) = n− p+ 1,
(31)

in Reλ > 0. Likewise, there exist n − p + 2 unstable eigenvalues and p sta-
ble eigenvalues so that the stable (solutions which grow at −∞) and unstable
(solutions which decay at −∞) manifolds have dimensions

dimU−(λ) = p,

dimS−(λ) = n− p+ 2.
(32)

Remark 2.1. Notice that, unlike customary situations in the Evans function
literature [1, 42, 3, 23, 24, 34], here the dimensions of the stable (resp. un-
stable) manifolds S+ and S− (resp. U+ and U−) do not agree. Under these
considerations, we look at the dispersion relation

π±(iξ) = det
(
− Ã±(λ+ L̃±B̃±)ξ

2 − iξ(1 + ξ2)I − λÃ−1
±

)
= 0.
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For each ξ ∈ R, the λ-roots of the last equation define algebraic curves

λ±j (ξ) ∈ σ
(
(1 + ξ2)−1(−ξ2L̃±B̃± − iξ(1 + ξ2)Ã±)

)
,

touching the origin at ξ = 0. Denote Λ as the open connected subset of C
bounded on the left by the rightmost envelope of the curves λ±j (ξ), ξ ∈ R. Note
that the set {Reλ ≥ 0, λ 6= 0} is properly contained in Λ. By connectedness
the dimensions of U±(λ) and S±(λ) do not change in λ ∈ Λ. We define Λ as
the set of (not so) consistent splitting [1], in which the matrices A±(λ) remain
hyperbolic, with not necessarily agreeing dimensions of stable (resp. unstable)
manifolds.

Notably, the degeneracy of the spectral system shows that there is one slowly
growing mode defined on x > 0 which will vanish as it travels pass the singularity
point x = 0. The same happens for the slow-decaying mode at x = −∞.
It might be useful to the reader to think of it as some loss of information
when passing the singularity point. This phenomenon yields the non-agreeing
dimensions of the stable (resp. unstable) manifolds S+ and S− (resp. U+ and
U−).

Lemma 2.2. For each λ ∈ Λ, the spectral system (28) associated to the limiting,
constant coefficients asymptotic behavior of (24), has a basis of solutions

eµ
±
j (λ)xV ±

j (λ), x ≷ 0, j = 1, ..., n+ 2.

Moreover, for |λ| ∼ 0, we can find analytic representations for µ±
j and V ±

j ,
which consist of 2n slow modes

µ±
j (λ) = −λ/a±j +O(λ2), j = 2, ..., n+ 1,

and four fast modes,
µ±
1 (λ) = ±θ±1 +O(λ),

µ±
n+2(λ) = ∓θ±n+2 +O(λ).

where θ±1 and θ±n+2 are positive constants.

In view of the structure of the asymptotic systems, we are able to conclude
that for each initial condition x0 > 0, the solutions to (24) in x ≥ x0 are spanned
by decaying/growing modes

Φ+ : = {φ+1 , ..., φ
+
n−p+1},

Ψ+ : = {ψ+
n−p+2, ..., ψ

+
n+2},

(33)

as x→ +∞, whereas for each initial condition x0 < 0, the solutions to (24) are
spanned in x < x0 by growing/decaying modes

Ψ− : = {ψ−
1 , ..., ψ

−
n−p+2},

Φ− : = {φ−n−p+3, ..., φ
−
n+2},

(34)

as x→ −∞.
We rely on the conjugation lemma of [30] to link such modes to those of the

limiting constant coefficient system (28).
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Lemma 2.3. For |λ| sufficiently small, there exist growing and decaying solu-
tions ψ±

j (x, λ), φ
±
j (x, λ), in x ≷ 0, of class C1 in x and analytic in λ, satisfying

ψ±
j (x, λ) = eµ

±
j (λ)xV ±

j (λ)(I +O(e−η|x|)),

φ±j (x, λ) = eµ
±
j (λ)xV ±

j (λ)(I +O(e−η|x|)),
(35)

where 0 < η is the decay rate of the traveling wave, and µ±
j and V ±

j are as in
Lemma 2.2 above.

Proof. This a direct application of the conjugation lemma of [30] (see also the
related gap lemma in [3, 42, 23, 24]).

2.3. Solutions near x ∼ 0

Our goal now is to analyze system (24) close to the singularity x = 0. To fix
ideas, let us again stick to the case x > 0, the case x < 0 being equivalent. We
introduce a “stretched” variable ξ as follows:

ξ =

∫ x

1

dz

ap(z)
,

so that ξ(1) = 0, and ξ → +∞ as x → 0+. Under this change of variables we
get

u′ =
du

dx
=

1

ap(x)

du

dξ
=

1

ap(x)
u̇,

and denoting ˙= d/dξ. In the stretched variables, making some further changes
of variables if necessary, the system (26) becomes a block-diagonalized system
at leading order of the form

Ż =

(
−αI 0
0 0

)
Z + ap(ξ)Θ̌(ξ)Z, (36)

where Θ̌(ξ) is some bounded matrix and α is the (p, p) entry of the matrix
λ+ L̃B̃ + L′

pARp + Ã′, noting that

α(ξ) ≥ δ0 > 0,

for some δ0 and any ξ sufficiently large or x sufficiently near zero.
The blocks −αI and 0 are clearly spectrally separated and the error is of

order O(|ap(ξ)|) → 0 as ξ → +∞. By the pointwise reduction lemma (see
Lemma Appendix B.1 and Remark Appendix B.2 below), we can separate the
flow into slow and fast coordinates. Indeed, after proper transformations we
separate the flows on the reduced manifolds of form

Ż1 = −αZ1 +O(ap)Z1, (37)

Ż2 = O(ap)Z2. (38)
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Since −α ≤ −δ0 < 0 for λ ∼ 0 and ξ ≥ 1/ǫ, with ǫ > 0 sufficiently small,
and since ap(ξ) → 0 as ξ → +∞, the Z1 mode decay to zero as ξ → +∞, in
view of

e−
∫

ξ

0
α(z) dz . e−(Reλ+

1
2 δ0)ξ.

These fast decaying modes correspond to fast decaying to zero solutions
when x→ 0+ in the original u-variable. The Z2 modes comprise slow dynamics
of the flow as x→ 0+. Hence we have the following

Proposition 2.4. There exists 0 < ǫ0 ≪ 1 sufficiently small, such that, in
the small frequency regime λ ∼ 0, the solutions to the spectral system (24) in
(−ǫ0, 0) ∪ (0, ǫ0) are spanned by fast modes

w±
kp
(x, λ) =



ũ±kp

q̃±kp

p̃±kp


 ± ǫ0 ≷ x ≷ 0, (39)

decaying to zero as x→ 0± with kp := n− p+ 2 , and slowly varying modes

z±j (x, λ) =




ũ±j
q̃±j
p̃±j



 , ±ǫ0 ≷ x ≷ 0, j 6= kp, (40)

with bounded limits as x→ 0±.
Moreover, the fast modes (39) decay as

ũ±kpp
∼ |x|α0 → 0 (41)

and 

ũ±kpj

q̃±kp

p̃±kp


 ∼ O(|x|α0ap(x)) → 0, j 6= p, (42)

as x→ 0±; here, α0 is some positive constant and ukp
= (ukp1, ..., ukpp, ..., ukpn)

⊤.

2.4. Two Evans functions

We first define the following related Evans functions

D±(y, λ) := det(Φ+ W∓
kp

Φ−)(y, λ), for y ≷ 0, (43)

where Φ± are defined as in (33), (34), and W±
kp

= (u±kp
, q±kp

, p±kp
)⊤ are defined as

in (39). Note that kp here is always fixed and equals to n− p+ 2.
We first observe the following simple properties of D±.

Lemma 2.5. For λ sufficiently small, we have

D±(y, λ) = (detA)−1γ±(y)∆λ +O(|λ|2), (44)
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where

∆ := det
(
r+2 · · · r+kp−1 r−kp+1 · · · r−n+1 −[u]

)

γ±(y) := det

(
q+1 q∓kp

p+1 p∓kp

)

|λ=0

(45)

with [u] = u+ − u− and r±j eigenvectors of (A±)
−1(LB)±, spanning the sta-

ble/unstable subspaces at ±∞, respectively.

Proof. By our choice, at λ = 0, we can take

φ+1 (x, 0) = φ−n+2(x, 0) = W̄x(x) (46)

where W̄ is the shock profile. By Leibnitz’ rule and using (46), we compute

∂λD−(y, 0) = det
(
∂λφ

+
1 , ..., φ

+
kp−1,W

+
kp
, φ−kp+1, ..., φ

−
n+2

)

|λ=0

+ · · ·

· · ·+ det
(
φ+1 , ..., φ

+
kp−1,W

+
kp
, φ−kp+1, ..., ∂λφ

−
n+2

)

|λ=0

,

where, by using (46), only the first and third terms are possibly nonvanishing
and thus grouped together, yielding

∂λD−(y, 0) = det
(
φ+1 , ..., φ

+
kp−1,W

+
kp
, φ−kp+1, ..., φ

−
n+1, ∂λφ

−
n+2 − ∂λφ

+
1

)

|λ=0

.

(47)
Recall that W+

kp
, φ±j satisfy

ΘWx = A(x, λ)W, (48)

where W = (u, q, p) and

Θ =

(
A

I2

)
.

Thus, ∂λφ
+
1 (x, λ) satisfies

Θ(∂λφ
+
1 )x = A(x, 0)∂λφ

+
1 (x, 0) + ∂λA(x, 0)φ

+
1 (x, 0),

which directly gives
(a∂λu

+
1 )x = −L(∂λq

+
1 )x − ūx. (49)

Likewise, ∂λφ
−
n+2(x, λ) = (∂λu

−
n+2, ∂λq

−
n+2, ∂λp

−
n+2) satisfies

(a∂λu
−
n+2)x = −L(∂λq

−
n+2)x − ūx. (50)

Integrating equations (49) and (50) from +∞ and −∞, respectively, with
use of boundary conditions ∂λφ

+
1 (+∞) = ∂λφ

−
n+2(−∞) = 0, we obtain

A∂λu
+
1 = −L∂λq

+
1 − ū+ u+

A∂λu
−
n+2 = −L∂λq

−
n+2 − ū+ u−.

(51)
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and thus
A(∂λu

−
n+2 − ∂λu

+
1 ) = −L(∂λq

−
n+2 − ∂λq

+
1 )− [u]. (52)

In addition, we note thatW+
kp
, φ±j satisfy the equation (48) and thus (Au)′ =

−Lq′ with W+
kp
(+∞) = φ+1 (+∞) = 0, φ−n+2(−∞) = 0, q±j (±∞) = 0, and

u+j (+∞) = (A+)
−1r+j , j = 2, ..., kp − 1

u−j (−∞) = (A−)
−1r−j , j = kp + 1, ..., n+ 1.

Thus, we integrate the equation (Au)′ = −Lq′, yielding

Au+j = −Lq+j , for j = 1, kp,

Au+j = −Lq+j + r+j , for j = 2, ..., kp − 1,

Au−j = −Lq−j + r−j , for j = kp + 1, ..., n+ 1

Au−j = −Lq−j , for j = n+ 2.

(53)

Using estimates (53) and (52), we can now compute the λ-derivative (47) of D±

at λ = 0 as

∂λD−(y, 0) = det



u+1 · · · u+j · · · u+kp

· · · u−j · · · ∂λu
−
n+2 − ∂λu

+
1

q+1 · · · q+j · · · q+kp
· · · q−j · · · ∂λq

−
n+2 − ∂λq

+
1

p+1 · · · p+j · · · p+kp
· · · p−j · · · ∂λp

−
n+2 − ∂λp

+
1




= (detA)−1 det




0 · · · r+j · · · 0 · · · r−j · · · −[u]

q+1 · · · q+j · · · q+kp
· · · q−j · · · ∂λq

−
n+2 − ∂λq

+
1

p+1 · · · p+j · · · p+kp
· · · p−j · · · ∂λp

−
n+2 − ∂λp

+
1





= (detA)−1 det

(
q+1 q+kp

p+1 p+kp

)
det
(
r+2 · · · r+kp−1 r−kp+1 · · · r−n+1 −[u]

)

(54)
which proves (44). The proof for D+ follows similarly.

Lemma 2.6. Defining the Evans functions

D±(λ) := D±(±1, λ), (55)

we then have
D+(λ) = mD−(λ) +O(|λ|2) (56)

where m is some nonzero factor.

Proof. Proposition 2.4 gives

w±
kp
(x) =



ũ±kp

q̃±kp

p̃±kp


 = O(|x|α0 ), (57)
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as x → 0, where α0 is defined as in Proposition 2.4, which guarantees an exis-
tence of positive constants ǫ1, ǫ2 near zero such that

w+
kp
(−ǫ1) = w−

kp
(+ǫ2).

Thus, this together with the fact that w±
kp

are solutions of the ODE (48) yields

w+
kp
(−1) = mkp

w−
kp
(+1)

for some nonzero constant mkp
. Putting these estimates into (44) and using

analyticity of D± in λ near zero, we easily obtain the conclusion.

Remark 2.7. Since at both sides of the singularity the Evans functions D± are
constructed by means of a Wronskian of a full set of decaying modes, we are
able to evaluate each function at any point on each side, say, y = ±1; note that
the number of λ-zeroes of D±(·, y) are the same at each side of the singularity,
for any y ≷ 0.

3. Resolvent kernel bounds in low–frequency regions

In this section, we shall derive pointwise bounds on the resolvent kernel
Gλ(x, y) in low-frequency regimes, that is, |λ| → 0. For definiteness, throughout
this section, we consider only the case y < 0. The case y > 0 is completely
analogous by symmetry.

We solve (23) with the jump conditions at x = y:

[Gλ(., y)] =



A(y)−1 0 0

0 1 0
0 0 1


 (58)

where, working on diagonalized coordinates (see (26)), we can assume that A is
of diagonal form as in (25),

A =




A−

1 0
ap

0 A+
2



 ,

with A−
1 ≤ −θ < 0, A+

2 (y) ≥ θ > 0. Meanwhile, we can write Gλ(x, y) in terms
of decaying solutions at ±∞ as follows

Gλ(x, y) =

{
Φ+(x, λ)C+(y, λ) +W+

kp
(x, λ)C+

kp
(y, λ), x > y,

−Φ−(x, λ)C−(y, λ), x < y.
(59)

where C±
j are row vectors. We compute the coefficients C±

j by means of the
transmission conditions (58) at y. Therefore, solving by Cramer’s rule the sys-
tem

(
Φ+ W+

kp
Φ−
)


C+

C+
kp

C−




|(y, λ)

=



A(y)−1 0 0

0 1 0
0 0 1


 , (60)
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we readily obtain,


C+

C+
kp

C−


 (y, λ) = D−(y, λ)

−1
(
Φ+ W+

kp
Φ−
)adj



A(y)−1 0 0

0 1 0
0 0 1


 (61)

where Madj denotes the adjugate matrix of a matrix M . Note that

C±
jp(y, λ) = ap(y)

−1D−(y, λ)
−1
(
Φ+ W+

kp
Φ−
)pj

(y, λ), (62)

C±
jl (y, λ) =

∑

k

D−(y, λ)
−1
(
Φ+ W+

kp
Φ−
)kj

(y, λ)(A(y)−1)kl, l 6= p,

(63)

where ()ij is the determinant of the (i, j) minor, and (A(y)−1)kl, l 6= p, are
bounded in y.

We then easily obtain the following.

Lemma 3.1. For y near zero, we have

C+
1 (y, λ) =

1

λ
v0([u]) +O(1),

C−
n+2(y, λ) = −

1

λ
v0([u]) +O(1),

(64)

where v0([u]) is some constant vector depending only on [u] and

C+
kp
(y, λ) = ap(y)

−1|y|−α0O(1),

C+
j (y, λ) = O(1) 1 < j < kp,

C−
j (y, λ) = O(1) kp < j < n+ 2,

(65)

where kp = n−p+2, α0 is defined as in Proposition 2.4 and O(1) is a uniformly
bounded function, probably depending on y and λ.

Proof. We shall first estimate C−
n+2,p(y, λ). Observe that

(
Φ+ W+

kp
Φ−
)p,n+2

(y, λ) =
(
Φ+ W+

kp
Φ−
)p,n+2

(y, 0) +O(λ)

where by the same way as done in Lemma 2.5 we obtain an estimate

(
Φ+ W+

kp
Φ−
)p,n+2

(y, 0) = ap(detA)
−1γ−(y)∆

p,n+2,

where γ−(y) and ∆ are defined as in (45), and ∆p,n+2 denotes the minor deter-
minant. Thus, recalling (44) and (62), we can estimate C−

n+2,p(y, λ) as

C−
n+2,p(y, λ) = ap(y)

−1D−(y, λ)
−1
(
Φ+ W+

kp
Φ−
)p,n+2

(y, λ)

= −
1

λ
∆−1∆p,n+2 +O(1),
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where O(1) is uniformly bounded since ap(y)D−(y, λ) and normal modes φ±j
are all bounded uniformly in y near zero. Similar computations can be done for
C−

n+2,l(y, λ). Thus, we obtain the bound for C−
n+2 as claimed. The bound for

C+
1 follows similarly, noting that φ−n+2 ≡ φ+1 at λ = 0.

For the estimate on C+
kp
, we first observe that by view of (44), with noting

that det(A) ∼ ap(y) as |y| → 0, and the estimate (39) on w+
kpp

,

|D−(y, λ)| ≥ θ|λ||y|α0 , (66)

for some θ > 0. This together with the fact that φ−n+2 ≡ φ+1 at λ = 0 yields the

estimate for C+
kp

as claimed.

We next estimate C+
j (resp. C−

j ) for 1 < j < kp (resp. kp < j < n+2). We
note that by view of estimate (39) on Wkp

,

(
Φ+ W+

kp
Φ−
)pj

= O(λ)O(|y|α0ap(y))

and for k 6= p, (
Φ+ W+

kp
Φ−
)kj

= O(λ)O(|y|α0 )

These estimates together with (66) and (63),(62) immediately yield estimates
for C±

j as claimed.

Proposition 3.2 (Resolvent kernel bounds as |y| → 0). For y near zero, there
hold

Gλ(x, y) = λ−1W̄xv0([u]) +O(1)
∑

a+

j >0

e−(λ/a+

j +O(λ2))x +O(e−θ|x|) (67)

for y < 0 < x, and

Gλ(x, y) = λ−1W̄xv0([u]) +O(1)
(
1 +

|x|α

ap(y)|y|α

)
(68)

for y < x < 0, and

Gλ(x, y) = λ−1W̄xv0([u]) +O(1)
∑

a−
j <0

e−(λ/a−
j +O(λ2))x +O(e−θ|x|) (69)

for x < y < 0.
Similar bounds can be obtained for the case y > 0.

Proof. For the case y < 0 < x, using (64) and recalling that φ+1 (x) = W̄x +
O(λ)e−θ|x| and W+

kp
(x) ≡ 0, we have

Gλ(x, y) = Φ+(x)C+(y) =

kp−1∑

j=1

φ+j (x)C
+
j (y)

=
(
W̄x +O(λ)e−θ|x|

)( 1
λ
v0([u]) +O(1)

)
+O(1)

kp−1∑

j=2

eµ
+

j x,
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yielding (67); here, we recall that

µ±
j = −λ/a±j +O(λ2)

with a+j > 0 for j = 2, ..., kp − 1 and a−j < 0 for j = kp + 1, ..., n + 1 (a±j are
necessarily eigenvalues of A± ). In the second case y < x < 0, from the formula
(59), we have

Gλ(x, y) = Φ+(x, λ)C+(y, λ) +W+
kp
(x, λ)C+

kp
(y, λ)

where the first term contributes λ−1v0([u])W̄x + O(1) as in the first case, and
the second term is estimated by (65) and (41).

Finally, we estimate the last case x < y < 0 in a same way as done in the
first case, noting that y is still near zero and W−

n+2(x) = W̄x +O(λ)e−θ|x|.

Next, we estimate the kernel Gλ(x, y) for y away from zero. Note however
that the representations (59) and above estimates fail to be useful in the y →
−∞ limit, since we actually need precise decay rates in order to get an estimate
of form

|Gλ(x, y)| ≤ Ce−η|x−y|,

which are unavailable from φ+j in the y → −∞ regime. Thus, we need to express

the (+)-bases in terms of the growing modes ψ−
j at −∞, and the decaying mode

φ−j where ψ−
j , φ

−
j are defined as in Lemma 2.3. Expressing such solutions in the

basis for y < 0, away from zero, there exist analytic coefficients djk(λ), ejk(λ)
such that

φ+j (x, λ) =
∑

djk(λ)φ
−
k (x, λ) +

∑
ejk(λ)ψ

−
k (x, λ)

W+
kp
(x, λ) =

∑
dkpk(λ)φ

−
k (x, λ) +

∑
ekpk(λ)ψ

−
k (x, λ).

(70)

Furthermore, for our convenience, we define the following adjoint normal
modes (

Ψ̃− Φ̃−
)
:=
(
Ψ− Φ−

)−1
Θ−1. (71)

We then obtain the following estimates.

Lemma 3.3. For |λ| sufficiently small and |x| sufficiently large,

ψ̃−
j (x, λ) = O(e−µ−

j (λ)x)Ṽ −
j (λ)(I +O(e−θ|x|)),

φ̃−j (x, λ) = O(e−µ−
j (λ)x)Ṽ −

j (λ)(I +O(e−θ|x|))
(72)

where µ−
j are defined as in Lemma 2.3.

Proof. The proof is clear from the estimates of ψ−
j , φ

−
j in (35).
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Lemma 3.4. We have

C+
j (y, λ) =

∑
c+jk(λ)ψ̃

−
k (y, λ)∗ (73)

C−
j (y, λ) =

∑
c−jk(λ)ψ̃

−
k (y, λ)∗ + φ̃−j (y, λ)

∗, (74)

for meromorphic coefficients c±jk in λ.

Proof. The proof follows by using (70), definition (71), and property of com-
puting determinants.

We then have the following representation for Gλ(x, y), for y large.

Proposition 3.5. Under the assumptions of Theorem 1.4, for |λ| sufficiently
small and |y| sufficiently large, we have

Gλ(x, y) =
∑

j,k

c+jk(λ)φ
+
j (x, λ)ψ̃

−
k (y, λ)∗, (75)

for y < 0 < x, and

Gλ(x, y) =
∑

j,k

d+jk(λ)φ
−
j (x, λ)ψ̃

−
k (y, λ)∗ −

∑

k

ψ−
k (x, λ)ψ̃

−
k (y, λ)∗, (76)

for y < x < 0, and

Gλ(x, y) =
∑

j,k

d−jk(λ)φ
−
j (x, λ)ψ̃

−
k (y, λ)∗ +

∑

k

φ−k (x, λ)φ̃
−
k (y, λ)

∗, (77)

for x < y < 0, where c+jk(λ), d
±
jk(λ) are scalar meromorphic functions satisfying

c+ =
(
−Ikp

0
) (

Φ+ W+
kp

Φ−
)−1

Ψ−

and

d± =
(
0 −In−kp

)(
Φ+ W+

kp
Φ−
)−1

Ψ−.

Proof. Using representation (59) of Gλ(x, y) together with (73) and (74), we
easily obtain the expansions (75) and (77), respectively. For (76), again, using
(73), (70), and (59), we can write

Gλ(x, y) =
∑

j,k

d+jk(λ)φ
−
j (x, λ)ψ̃

−
k (y, λ)∗ +

∑

j,k

e+jkψ
−
j (x, λ)ψ̃

−
k (y, λ)∗

=
(
Ψ− Φ−

)
(x)

(
e+

d+

)
Ψ̃−(y)∗

(78)

Meanwhile, by (59) and (61),

Gλ(x, y) =
(
Φ+ W+

kp
0
)
(x)
(
Φ+ W+

kp
Φ−
)−1

(y)Θ−1(y) (79)
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In view of the definition (71) of Ψ̃−, Φ̃−, (78) and (79) yield

(
e+

d+

)
=
(
Ψ̃− Φ̃−

)
Θ
(
Φ+ W+

kp
0
)(

Φ+ W+
kp

Φ−
)−1

Ψ−

=
(
Ψ− Φ−

)−1
[
I −

(
0 Φ−

) (
Φ+ W+

kp
Φ−
)−1 ]

Ψ−

=

(
Ikp

0

)
−

(
0 0
0 In−kp

)(
Φ+ W+

kp
Φ−
)−1

Ψ−,

which proves the proposition.

Proposition 3.6 (Resolvent kernel bounds as |y| → +∞). Make the assump-
tions of Theorem 1.4. Then, for |y| large, defining

Eλ(x, y) = λ−1
∑

a−
j >0

Ṽ −
j,0e

(λ/a−
j +O(λ2))yW̄x(x),

there hold

Gλ(x, y) = Eλ(x, y)

+O(1)
( ∑

a−
j >0

e(λ/a
−
j +O(λ2))y +O(e−θ|y|)

)( ∑

a−
k
>0

e(−λ/a−
k
+O(λ2))x +O(e−θ|x|)

)

(80)
for y < 0 < x, and

Gλ(x, y) =Eλ(x, y) +O(1)
∑

a−
j >0

e(−λ/a−
j +O(λ2))(x−y)

+O(1)
∑

a−
j >0, a−

k
<0

e(λ/a
−
j +O(λ2))ye(−λ/a−

k
+O(λ2))x +O(e−θ(|x−y|))

(81)
for y < x < 0, and

Gλ(x, y) =Eλ(x, y) +O(1)
∑

a−
j <0

e(−λ/a−
j +O(λ2))(x−y)

+O(1)
∑

a−
j >0, a−

k
<0

e(λ/a
−
j +O(λ2))ye(−λ/a−

k
+O(λ2))x +O(e−θ(|x−y|))

(82)
for x < y < 0.

Similar bounds can be obtained for the case y > 0.

Proof. The proof follows directly from the representations of Gλ(x, y) derived
in Proposition 3.5 and the corresponding estimates on normal modes, noting
that

|c+jk|, |d
±
jk| =

{
O(λ−1) j = 1,
O(1) otherwise.
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Indeed, we recall, for instance, that

c+jk = D−1
−

(
−Ikp

0
) (

Φ+ W+
kp

Φ−
)kj

Ψ−,

where ()kj denotes the determinant of the (k, j) minors. For the case j 6= 1, by
using the fact that we choose φ+1 ≡ φ−n+2 ≡ W̄x at λ = 0, determinant of the
(k, j) minor therefore has the order one in λ, which cancels out the λ−1 term
coming from our spectral stability condition: |D−1

− | ≤ O(λ−1).

4. Pointwise bounds and low-frequency estimates

In this section, using the previous pointwise bounds (Propositions 3.2 and
3.6) for the resolvent kernel in low-frequency regions, we derive pointwise bounds
for the “low-frequency” Green function:

GI(x, t; y) :=
1

2πi

∫

Γ
⋂
{|λ|≤r}

eλtGλ(x, y)dλ (83)

where Γ is any contour near zero, but away from the essential spectrum.

Proposition 4.1. Under the assumptions of Theorem 1.4, defining the effective
diffusion β± := (LpLBRp)± (see (25)), the low-frequency Green distribution
GI(x, t; y) associated with the linearized evolution equations may be decomposed
as

GI(x, t; y) = E + G̃I +R, (84)

where, for y < 0:

E(x, t; y) :=
∑

a−
k
>0

Ūx(x)Ṽ
−
k,0ek(y, t), (85)

ek(y, t) :=

(
errfn

(
y + a−k t√

4β−t

)
− errfn

(
y − a−k t√

4β−t

))
; (86)

|∂γx∂
β
y G̃

I(x, t; y)| ≤ Ct−(|α|+|γ|)/2
( n∑

k=1

t−1/2e−(x−y−a−
k
t)2/Mt

+
∑

a−
k
<0, a−

j >0

χ{|a−
k
t|≥|y|}t

−1/2e−(x−a−
j (t−|y/a−

k
|))2/Mt

)
,

(87)

R(x, t; y) = O(e−η(|x−y|+t)) +O(e−ηt)χ(x, y)
[
1 +

1

ap(y)
(x/y)α

]
, (88)

for some η, C, M > 0, where 0 ≤ |β|, |γ| ≤ 1, α =
LB(0)+a′

p(0)

|a′
p(0)|

and

χ(x, y) =

{
1, −1 < y < x < 0
0, otherwise.

Symmetric bounds hold for y ≥ 0.
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Proof. Having the resolvent kernel estimates in Propositions 3.2 and 3.6, we
can now follow the previous analyses of [42, 23, 24]. Indeed, the claimed bound

for E precisely comes from the λ−1 term. Likewise, estimates of G̃I are due
to bounds in Proposition 3.6 for y away from zero and those in Proposition 3.2
for y near zero but x away from zero. The singularity occurs only in the case
−1 < y < x < 0, as reported in Proposition 3.2. In this case, using the estimate
(68) and moving the contour Γ in (83) into the stable half-plane {Reλ < 0}, we
have ∫

Γ

eλt
(
1 +

|x|α

ap(y)|y|α

)
dλ = O(e−ηt)

(
1 +

|x|α

ap(y)|y|α

)
,

which precisely contributes to the second term in R(x, t; y). The first term in
R(x, t; y) is as usual the fast decaying term.

With the above pointwise estimates on the (low-frequency) Green function,
we have the following from [23, 24].

Lemma 4.2 ([23, 24]). Under the assumptions of Theorem 1.4, G̃I satisfies

∣∣∣
∫ +∞

−∞

∂βy G̃
I(·, t; y)f(y)dy

∣∣∣
Lp

≤ C(1 + t)−
1
2
(1/q−1/p)−|β|/2|f |Lq , (89)

for all t ≥ 0, some C > 0, for any 1 ≤ q ≤ p.

We recall the following fact from [40].

Lemma 4.3 ([40]). The kernel e satisfies

|ey(·, t)|Lp , |et(·, t)|Lp ,≤ Ct−
1
2
(1−1/p),

|eyt(·, t)|Lp ≤ Ct−
1
2
(1−1/p)−1/2.

(90)

for all t > 0, some C > 0, for any p ≥ 1.

Finally, we have the following estimate on R term.

Lemma 4.4. Under the assumptions of Theorem 1.4, R(x, t; y) satisfies

∣∣∣
∫ +∞

−∞

R(·, t; y)f(y)dy
∣∣∣
Lp

≤ Ce−ηt(|f |Lp + |f |L∞), (91)

for all t ≥ 0, some C, η > 0, for any 1 ≤ p ≤ ∞.

Proof. The estimate clearly holds for the fast decaying term e−η(|x−y|+t) in
R. Whereas, to estimate the second term, first notice that it is only nonzero
precisely when −1 < y < x < 0 or 0 < x < y < 1. Thus, for instance, when
−1 < x < 0, we estimate

∣∣∣
∫ +∞

−∞

χ(x, y)
[
1 +

1

ap(y)
(x/y)α

]
f(y)dy

∣∣∣ =
∣∣∣
∫ x

−1

[
1 +

1

ap(y)
(x/y)α

]
f(y)dy

∣∣∣

≤ C|f |L∞

[
1 +

∫ x

−1

1

|ap(y)|
(x/y)αdy

]

≤ C|f |L∞ ,
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where the last integral is bounded by that fact that ap(x) ∼ x as |x| → 0. From
this, we easily obtain

∣∣∣
∫ +∞

−∞

e−ηtχ(x, y)
[
1 +

1

ap(y)
(x/y)α

]
f(y)dy

∣∣∣
Lp(−1,0)

≤ Ce−ηt|f |L∞ ,

which proves the lemma.

Remark 4.5. We note here that the singular term a−1
p (y)(x/y)α appearing

in (68) and (88) contributes in the time-exponential decaying term. This thus
agrees with the resolvent kernel for the scalar convected-damped equation ut +
apux = −LBu, for which we can find explicitly the Green function as a convected
time-exponential decaying delta function similar as in the relaxation or real
viscosity case.

5. Nonlinear damping estimate and high–frequency estimate

In this section, we establish an auxiliary damping energy estimate. We first
recall the nonlinear perturbation equations with (u, q) perturbation variables

ut + (A(u)u)x + Lqx = α̇(Ux + ux),

−qxx + q + (B(u)u)x = 0,
(92)

where we now denote

A(u) := Df(U + u), B(u) := Dg(U + u). (93)

We prove the following:

Proposition 5.1. Under the assumptions of Theorem 1.4, so long as ‖u‖W 2,∞

and |α̇| remain smaller than a small constant ζ and the amplitude |Ux| is suffi-
ciently small, there holds

‖u‖2Hk(t) ≤ Ce−θt‖u‖2Hk(0) + C

∫ t

0

e−θ(t−s)(‖u‖2L2 + |α̇|2)(s)ds, θ > 0,

(94)
for k = 1, ..., 4.

Proof. Let us work for the case α̇ ≡ 0. The general case will be seen as a
straightforward extension. We first observe that

|A0x|, |A0t|, |Ax|, |At|, |Bx|, |Bt| = O(|Ux|+ ζ) (95)

where A,B are defined as in (93) and A0 the symmetrizer matrix as in (S1).
We note that from the second equation of (92) we easily obtain

‖q‖Hk ≤ C‖u‖Hk−1 , (96)
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for k ≥ 1. Meanwhile, from the first equation, we estimate

1

2

d

dt
〈A0u, u〉 = 〈A0ut, u〉+

1

2
〈A0tu, u〉

= −〈A0Axu+A0Aux + Lqx, u〉+
1

2
〈A0tu, u〉

= −〈A0Axu−
1

2
(A0A)xu+ Lqx, u〉+

1

2
〈A0tu, u〉,

which, by (95) and (96), yields

1

2

d

dt
〈A0u, u〉 ≤ C‖u‖2L2. (97)

Now, to obtain the estimates (94) in the case of k = 1, we compute

1

2

d

dt
〈A0ux, ux〉 = 〈(A0ut)x, ux〉+

1

2
〈A0tux, ux〉 − 〈A0xut, ux〉

= −〈(A0Aux +A0Lqx)x, ux〉+
1

2
〈A0tux, ux〉 − 〈A0xut, ux〉

= −〈A0Lqxx, ux〉 − 〈A0Auxx, ux〉,+〈O(|Ux|+ ζ)ux, ux〉+ ‖q‖2H1

= −〈A0Lqxx, ux〉+ 〈O(|Ux|+ ζ)ux, ux〉+O(1)‖u‖2L2

= −〈A0LBux, ux〉+ 〈O(|Ux|+ ζ)ux, ux〉+O(1)‖u‖2L2,
(98)

noting that since A0A is symmetric, we have

−〈A0Auxx, ux〉 =
1

2
〈(A0A)xux, ux〉 = 〈O(|Ux|+ ζ)ux, ux〉.

Likewise, in spirit of Kawashima-type estimates, we compute

1

2

d

dt
〈Ku, ux〉 =

1

2
〈Ktu, ux〉+

1

2
〈Kut, ux〉+

1

2
〈Ku, uxt〉

=
1

2
〈Ktu, ux〉+

1

2
〈Kut, ux〉 −

1

2
〈Kux, ut〉 −

1

2
〈Kxu, ut〉

= 〈Kut, ux〉+
1

2
〈Ktu, ux〉 −

1

2
〈Kxu, ut〉

= −〈KAux +KAxu+KLqx, ux〉+
1

2
〈Ktu, ux〉 −

1

2
〈Kxu, ut〉

= −〈KAux, ux〉+ 〈O(|Ux|+ ζ)ux, ux〉+O(1)‖u‖2L2.
(99)

Adding (98) and (99) together, we obtain

1

2

d

dt

(
〈Ku, ux〉+ 〈A0ux, ux〉

)

= −〈(KA+A0LB)ux, ux〉+ 〈O(|Ux|+ ζ)ux, ux〉+O(1)‖u‖2L2

(100)
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which, by the Kawashima-type condition (6): KA + A0LB ≥ θ and the fact
that O(|Ux|+ ζ) is sufficiently small, yields

1

2

d

dt

(
〈Ku, ux〉+ 〈A0ux, ux〉

)
≤ −

1

2
θ〈ux, ux〉+O(1)‖u‖2L2 (101)

Similarly, for k ≥ 1, paying attention to the leading terms, we can compute

1

2

d

dt
〈A0∂

k
xu, ∂

k
xu〉 = 〈A0∂

k
xut, ∂

k
xu〉+

1

2
〈A0t∂

k
xu, ∂

k
xu〉

= 〈∂kx(A0ut), ∂
k
xu〉+ 〈O(|Ux|+ ζ)∂kxu, ∂

k
xu〉+O(1)‖u‖2Hk−1 ,

where by using the first equation and then the second one, we obtain

〈∂kx(A0ut), ∂
k
xu〉 = −〈∂kx(A0Aux +A0Axu+A0Lqx), ∂

k
xu〉

= −〈A0L∂
k−1
x qxx, ∂

k
xu〉 − 〈A0A∂

k+1
x u, ∂kxu〉+ · · ·

= −〈A0L∂
k
x(Bu), ∂

k
xu〉+

1

2
〈(A0A)x∂

k
xu, ∂

k
xu〉+ · · · .

Thus, we have obtained

1

2

d

dt
〈A0∂

k
xu, ∂

k
xu〉

= −〈A0LB∂
k
xu, ∂

k
xu〉+ 〈O(|Ux|+ ζ)∂kxu, ∂

k
xu〉+O(1)‖u‖2Hk−1 .

(102)

Meanwhile, we have the following kth-order Kawashima-type energy estimate

1

2

d

dt
〈K∂k−1

x u, ∂kxu〉 = 〈K∂k−1
x ut, ∂

k
xu〉+

1

2
〈Kt∂

k−1
x u, ∂kxu〉 −

1

2
〈Kx∂

k−1
x u, ∂k−1

x ut〉

= −〈KA∂kxu, ∂
k
xu〉+ 〈O(|Ux|+ ζ)∂kxu, ∂

k
xu〉+O(1)‖u‖2Hk−1 .

(103)
Hence, as before, adding (102) and (103) together and using the Kawashima-

type condition (6): KA+A0LB ≥ θ and the fact that O(|Ux|+ ζ) is sufficiently
small, we obtain

1

2

d

dt

(
〈K∂k−1

x u, ∂kxu〉+ 〈A0∂
k
xu, ∂

k
xu〉
)
≤ −

1

2
θ〈∂kxu, ∂

k
xu〉+O(1)‖u‖2Hk−1 .

(104)
Now, for δ > 0, let us define

E(t) :=
s∑

k=0

δk
(
〈K∂k−1

x u, ∂kxu〉+ 〈A0∂
k
xu, ∂

k
xu〉
)
.

By applying the standard Cauchy’s inequality on 〈K∂k−1
x u, ∂kxu〉 and using the

positive definiteness of A0, we observe that E(t) ∼ ‖u‖2Hk . We then use the
above estimates (97),(101), (104), and take δ sufficiently small to derive

d

dt
E(t) ≤ −θ3E(t) + C‖u‖2L2(t) (105)

for some θ3 > 0, from which (94) follows by the standard Gronwall’s inequality.
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With the damping nonlinear energy estimates in hands, we immediately
obtain the following estimates for high-frequency part of the solution operator
eLt:

S2(t) =
1

2πi

∫ −θ1+i∞

−θ1−i∞

χ{|Imλ|≥θ2}e
λt(λ− L)−1dλ, (106)

for small positive numbers θ1, θ2; see (18). Here, χ{|Imλ|≥θ2} equals to 1 for
|Imλ| ≥ θ2 and zero otherwise.

Proposition 5.2 (High-frequency estimate). Under the assumptions of Theo-
rem 1.4,

‖S2(t)f‖L2 ≤ Ce−θ1t‖f‖H2 ,

‖∂αxS2(t)f‖L2 ≤ Ce−θ1t‖f‖Hα+2 ,
(107)

for some θ1 > 0.

Proof of the proposition follows exactly in a same way as done in our com-
panion paper [16] for the scalar case. We recall it here for sake of completeness.
The first step is to estimate the solution of the resolvent system

λu + (Au)x + Lqx = ϕ,

−qxx + q + (B u)x = ψ,

where A(x) = Df(U) and B(x) = Dg(U) as before.

Proposition 5.3 (High-frequency bounds). Under the assumptions of Theorem
1.4, for some R,C sufficiently large and γ > 0 sufficiently small, we obtain

|(λ− L)−1(ϕ− L∂x(Kψ))|H1 ≤ C
(
|ϕ|2H1 + |ψ|2L2

)
,

|(λ − L)−1(ϕ− L∂x(Kψ))|L2 ≤
C

|λ|1/2

(
|ϕ|2H1 + |ψ|2L2

)
,

for all |λ| ≥ R and Reλ ≥ −γ, where K := (−∂2x + 1)−1.

Proof. A Laplace transformed version of the nonlinear energy estimates (94) in
Section 5 with k = 1 (see [41], pp. 272–273, proof of Proposition 4.7 for further
details) yields

(
Reλ+

γ1
2

)
|u|2H1 ≤ C

(
|u|2L2 + |ϕ|2H1 + |ψ|2L2

)
. (108)

On the other hand, taking the imaginary part of the L2 inner product of U
against λu = Lu + ∂xLKh + f and applying the Young’s inequality, we also
obtain the standard estimate

|Imλ||u|2L2 ≤ |〈Lu, u〉|+ |〈LKψ, ux〉|+ |〈ϕ, u〉|

≤ C
(
|u|2H1 + |ψ|2L2 + |ϕ|2L2

)
,

(109)
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noting the fact that L is a bounded operator from H1 to L2 and K is bounded
from L2 to H1.

Therefore, taking γ = γ1/4, we obtain from (108) and (109)

|λ||u|2L2 + |u|2H1 ≤ C
(
|u|2L2 + |ψ|2L2 + |ϕ|2H1

)
,

for any Reλ ≥ −γ. Now take R sufficiently large such that |u|2L2 on the right
hand side of the above can be absorbed into the left hand side for |λ| ≥ R, thus
yielding

|λ||u|2L2 + |u|2H1 ≤ C
(
|ψ|2L2 + |ϕ|2H1

)
,

for some large C > 0, which gives the result as claimed.

Next, we have the following

Proposition 5.4 (Mid-frequency bounds). Under the assumptions of Theorem
1.4,

|(λ − L)−1ϕ|L2 ≤ C |ϕ|H1 for R−1 ≤ |λ| ≤ R and Reλ ≥ −γ,

for any R and C = C(R) sufficiently large and γ = γ(R) > 0 sufficiently small.

Proof. Immediate, by compactness of the set of frequency under consideration
together with the fact that the resolvent (λ − L)−1 is analytic with respect to
H1 in λ; see, for instance, [40].

With Propositions 5.3 and 5.4 in hand, we are now ready to give:

Proof of Proposition 5.2. The proof starts with the following resolvent identity,
using analyticity on the resolvent set ρ(L) of the resolvent (λ − L)−1, for all
ϕ ∈ D(L),

(λ− L)−1ϕ = λ−1(λ− L)−1Lϕ+ λ−1ϕ.

Using this identity and (106), we estimate

S2(t)ϕ =
1

2πi

∫ −γ1+i∞

−γ1−i∞

χ
{|Imλ|≥γ2}

eλtλ−1(λ− L)−1Lϕdλ

+
1

2πi

∫ −γ1+i∞

−γ1−i∞

χ
{|Imλ|≥γ2}

eλtλ−1ϕdλ

=: S1 + S2,

where, by Propositions 5.2 and 5.4, we have

|S1|L2 ≤ C

∫ −γ1+i∞

−γ1−i∞

|λ|−1eReλt|(λ− L)−1Lϕ|L2 |dλ|

≤ Ce−γ1t

∫ −γ1+i∞

−γ1−i∞

|λ|−3/2|Lϕ|H1 |dλ|

≤ Ce−γ1t|ϕ|H2
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and

|S2|L2 ≤
1

2π

∣∣∣ϕ
∫ −γ1+i∞

−γ1−i∞

λ−1eλtdλ
∣∣∣
L2

+
1

2π

∣∣∣ϕ
∫ −γ1+ir

−γ1−ir

λ−1eλtdλ
∣∣∣
L2

≤ Ce−γ1t|ϕ|L2 ,

by direct computations, noting that the integral in λ in the first term is iden-
tically zero. This completes the proof of the bound for the term involving ϕ
as stated in the proposition. The estimate involving ψ follows by observing
that L∂xK is bounded from Hs to Hs. Derivative bounds can be obtained
similarly.

Remark 5.5. We note that in our treating the high-frequency terms by energy
estimates (as also done in [15, 31, 16]), we are ignoring the pointwise contribution
there, which would also be convected time-decaying delta functions. To see these
features, a simple exercise is to do the Fourier transform of the equations about
a constant state.

6. Nonlinear analysis

In this section, we shall prove the main nonlinear stability theorem. The
proof follows exactly word by word as in the scalar case [16]. We present its
sketch here for sake of completeness. Define the nonlinear perturbation

(
u
q

)
(x, t) :=

(
ũ
q̃

)
(x + α(t), t)−

(
U
Q

)
(x), (110)

where the shock location α(t) is to be determined later.
Plugging (110) into (1), we obtain the perturbation equation

ut + (Au)x + Lqx = N1(u)x + α̇(t)(ux + Ux),

−qxx + q + (Bu)x = N2(u)x,
(111)

where Nj(u) = O(|u|2) so long as u stays uniformly bounded.
We recall the Green function decomposition

G(x, t; y) = GI(x, t; y) +GII(x, t; y) (112)

where GI(x, t; y) is the low-frequency part. We further define as in Proposition
4.1,

G̃I(x, t; y) = GI(x, t; y)− E(x, t; y)−R(x, t; y)

and
G̃II(x, t; y) = GII(x, t; y) +R(x, t; y).

Then, we immediately obtain the following from Lemmas 4.2, 4.4 and Propo-
sition 5.2:
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Lemma 6.1. We obtain

∣∣∣
∫ +∞

−∞

∂βy G̃
I(·, t; y)f(y)dy

∣∣∣
Lp

≤ C(1 + t)−
1
2
(1/q−1/p)−|β|/2|f |Lq , (113)

for all 1 ≤ q ≤ p, β = 0, 1, and

∣∣∣
∫ +∞

−∞

G̃II(x, t; y)f(y)dy
∣∣∣
Lp

≤ Ce−ηt|f |H3 , (114)

for all 2 ≤ p ≤ ∞.

Proof. (113) is precisely the estimate (89) in Lemma 4.2, recalled here for our
convenience. (114) is a straightforward combination of Lemma 4.4 and Propo-
sition 5.2, followed by a use of the interpolation inequality between L2 and L∞

and an application of the standard Sobolev imbedding.

We next show that by Duhamel’s principle we have:

Lemma 6.2. We obtain the reduced integral representation:

u(x, t) =

∫ +∞

−∞

(G̃I + G̃II)(x, t; y)u0(y)dy

−

∫ t

0

∫ +∞

−∞

G̃I
y(x, t− s; y)

(
∂yLKN2(u) +N1(u) + α̇(t)u

)
(y, s) dy ds

+

∫ t

0

∫ +∞

−∞

G̃II(x, t− s; y)
(
∂yLKN2(u) +N1(u) + α̇(t)u

)

y
(y, s) dy ds,

q(x, t) = (K∂x)(N2(u)−Bu)(x, t),
(115)

and

α(t) =−

∫ +∞

−∞

et(y, t)u0(y)dy

+

∫ t

0

∫ +∞

−∞

ey(y, t− s)
(
∂yLKN2(u) +N1(u) + α̇(t)u

)
(y, s) dy ds.

(116)

α̇(t) =−

∫ +∞

−∞

et(y, t)u0(y)dy

+

∫ t

0

∫ +∞

−∞

eyt(y, t− s)
(
∂yLKN2(u) +N1(u) + α̇(t)u

)
(y, s) dy ds.

(117)

Proof. By Duhamel’s principle and the fact that

∫ +∞

−∞

G(x, t; y)Ux(y)dy = eLtUx(x) = Ux(x),
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we obtain

u(x, t) =

∫ +∞

−∞

G(x, t; y)u0(y)dy

+

∫ t

0

∫ +∞

−∞

G(x, t − s; y)
(
∂yLKN2(u) +N1(u) + α̇(t)u

)

y
(y, s) dy ds

+ α(t)Ux.
(118)

Thus, by defining the instantaneous shock location:

α(t) = −

∫ +∞

−∞

et(y, t)u0(y)dy

+

∫ t

0

∫ +∞

−∞

ey(y, t− s)
(
∂yLKN2(u) +N1(u) + α̇(t)u

)
(y, s) dy ds

and using the Green function decomposition (112), we easily obtain the integral
representation as claimed in the lemma.

With these preparations, we are now ready to prove the main theorem,
following the standard stability analysis of [25, 39, 40]:

Proof of Theorem 1.4. Define

ζ(t) := sup
0≤s≤t,2≤p≤∞

[
|u(s)|Lp(1 + s)

1
2
(1−1/p) + |α(s)| + |α̇(s)|(1 + s)1/2

]
.

(119)
We shall prove here that for all t ≥ 0 for which a solution exists with ζ(t)

uniformly bounded by some fixed, sufficiently small constant, there holds

ζ(t) ≤ C(|u0|L1∩Hs + ζ(t)2). (120)

This bound together with continuity of ζ(t) implies that

ζ(t) ≤ 2C|u0|L1∩Hs (121)

for t ≥ 0, provided that |u0|L1∩Hs < 1/4C2. This would complete the proof of
the bounds as claimed in the theorem, and thus give the main theorem.

By standard short-time theory/local well-posedness in Hs, and the standard
principle of continuation, there exists a solution u ∈ Hs on the open time-
interval for which |u|Hs remains bounded, and on this interval ζ(t) is well-
defined and continuous. Now, let [0, T ) be the maximal interval on which |u|Hs

remains strictly bounded by some fixed, sufficiently small constant δ > 0. By
Proposition 5.1, and the Sobolev embeding inequality |u|W 2,∞ ≤ C|u|Hs , s ≥ 3,
we have

|u(t)|2Hs ≤ Ce−θt|u0|
2
Hs + C

∫ t

0

e−θ(t−τ)
(
|u(τ)|2L2 + |α̇|2

)
dτ

≤ C(|u0|
2
Hs + ζ(t)2)(1 + t)−1/2.

(122)
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and so the solution continues so long as ζ remains small, with bound (121),
yielding existence and the claimed bounds.

Thus, it remains to prove the claim (120). First by representation (115) for
u, for any 2 ≤ p ≤ ∞, we obtain

|u|Lp(t) ≤
∣∣∣
∫ +∞

−∞

(G̃I + G̃II)(x, t; y)u0(y)dy
∣∣∣
Lp

+

∫ t

0

∣∣∣
∫ +∞

−∞

G̃I
y(x, t− s; y)

(
∂yLKN2(u) +N1(u) + α̇(s)u

)
(y, s) dy

∣∣∣
Lp
ds

+

∫ t

0

∣∣∣
∫ +∞

−∞

G̃II(x, t− s; y)
(
∂yLKN2(u) +N1(u) + α̇(t)u

)

y
(y, s) dy

∣∣∣
Lp
ds

=I1 + I2 + I3,
(123)

where estimates (113) and (114) yield

I1 =
∣∣∣
∫ +∞

−∞

(G̃I + G̃II)(x, t; y)u0(y)dy
∣∣∣
Lp

≤ C(1 + t)−
1
2
(1−1/p)|u0|L1 + Ce−ηt|u0|H3

≤ C(1 + t)−
1
2
(1−1/p)|u0|L1∩H3 ,

and, with noting that ∂yLK is bounded from L2 to L2,

I2 =

∫ t

0

∣∣∣
∫ +∞

−∞

G̃I
y(x, t− s; y)

(
∂yLKN2(u) +N1(u) + α̇(t)u

)
(y, s) dy

∣∣∣
Lp
ds

≤ C

∫ t

0

(t− s)−
1
2
(1/2−1/p)−1/2(|u|L∞ + |α̇|)|u|L2(s)ds

≤ Cζ(t)2
∫ t

0

(t− s)−
1
2
(1/2−1/p)−1/2(1 + s)−3/4ds

≤ Cζ(t)2(1 + t)−
1
2
(1−1/p),

and, together with (122), s ≥ 4,

I3 =

∫ t

0

∣∣∣
∫ +∞

−∞

G̃II(x, t− s; y)
(
∂yLKN2(u) +N1(u) + α̇(s)u

)

y
(y, s) dy

∣∣∣
Lp
ds

≤ C

∫ t

0

e−η(t−s)|∂yLKN2(u) +N1(u) + α̇(t)u|H4 (s)ds

≤ C

∫ t

0

e−η(t−s)(|u|Hs + |α̇|)|u|Hs(s)ds

≤ C(|u0|
2
Hs + ζ(t)2)

∫ t

0

e−η(t−s)(1 + s)−1ds

≤ C(|u0|
2
Hs + ζ(t)2)(1 + t)−1.
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Thus, we have proved

|u(t)|Lp(1 + t)
1
2
(1−1/p) ≤ C(|u0|L1∩Hs + ζ(t)2). (124)

Similarly, using representations (116) and (117) and the estimates in Lemma
4.3 on the kernel e(y, t), we can estimate (see, e.g., [25, 40]),

|α̇(t)|(1 + t)1/2 + |α(t)| ≤ C(|u0|L1 + ζ(t)2). (125)

This completes the proof of the claim (120), and thus the result for u as
claimed. To prove the result for q, we observe that K∂x is bounded from Lp →
W 1,p for all 1 ≤ p ≤ ∞, and thus from the representation (115) for q, we
estimate

|q|W 1,p(t) ≤ C(|N2(u)|Lp + |u|Lp)(t)

≤ C|u|Lp(t) ≤ C|u0|L1∩Hs(1 + t)−
1
2
(1−1/p)

(126)

and
|q|Hs+1(t) ≤ C|u|Hs(t) ≤ C|u0|L1∩Hs(1 + t)−1/4, (127)

which complete the proof of the main theorem.

Appendix A. Spectral stability in the small-amplitude regime

In this section we verify the spectral stability condition for small-amplitude
profiles. Denoting A = A(U(x)), B = B(U(x)) we have the associated linearized
spectral problem

λu+ (Au)x + Lqx = 0,

−qxx + q + (Bu)x = 0.
(A.1)

Using the zero-mass conditions

∫
u dx = 0,

∫
q dx = 0,

we recast system (A.1) in terms of the integrated coordinates, which we denote,
again, as u and q. The resulting system reads

λu +Aux + Lqx = 0, (A.2)

−qxx + q +Bux = 0. (A.3)

In what follows we assume that the shocks are weak, that is, u± ∈ N (u∗),
being N a neighborhood of a certain state u∗, for which

0 < max
u∈N

|u− u∗| ≤ ǫ≪ 1,

with ǫ > 0 sufficiently small; clearly,

|u∗ − u±|, |u− − u+| = O(ǫ)
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and the shock profile for U is approximately scalar, satisfying,

Ux = O(ǫ2)e−ηǫ|x|(rp(u∗) +O(ǫ)),

Uxx = O(ǫ3)e−θǫ|x|,
(A.4)

for some θ, η > 0. For the principal characteristic field ap := ap(U(x)) we have

(ap)x = O(Ux) < 0, (monotonicity), (A.5)

(ap)xx = O(Uxx).

We shall make use of the following

Lemma Appendix A.1. Under (S0) - (S2), there exists a scalar function
β = β(u) > 0, such that

(A0L)
⊤ = βB, (A.6)

for all u ∈ U .

Proof. Follows by elementary linear algebra facts, since A0LB is positive semi-
definite with rank one and can be written as z⊗w, for some vectors z and w. It
follows the existence of a scalar β, such that z = βw; it is clearly nonzero and
positive because of positive semi-definiteness of A0LB.

We start by providing some basic Friedrichs-type energy estimates.

Lemma Appendix A.2. Assume u, q and Reλ ≥ 0 solve (A.2) - (A.3). If
ǫ > 0 is sufficiently small, then there hold the estimates

(Reλ)|u|2L2 + |q|2L2 + |qx|
2
L2 ≤ C

∫
|Ux||u|

2 dx (A.7)

|Imλ|

∫
|Ux||u|

2 dx ≤ C

∫
|Ux|

(
δ|u|2 + δ−1|q|2

)
dx (A.8)

for some C > 0 and any δ > 0.

Proof. Multiply (A.2) by A0 := A0(U(x)) and take the complex L2 product
against u; taking its real part and denoting

Ā := (A0A((U(x)), L̄ := A0(U(x))L,

we obtain
(Reλ)〈u,A0u〉+Re 〈u, Āux〉+Re 〈u, L̄qx〉 = 0.

Using symmetry of Ā and integrating by parts we get

(Re λ)〈u,A0u〉 −
1
2Re 〈u, Āxu〉+Re 〈u, L̄qx〉 = 0. (A.9)

Multiply (A.3) by β := β(U(x)), use (A.6), take the L2 product against q,
integrate by parts and take its real part. This yields

c−1|qx|
2
L2 + c−1|q|2L2 +Re 〈q, βxq〉 − Re 〈u, L̄qx〉 − Re 〈L̄xq, u〉 = 0, (A.10)
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because β ≥ c−1 > 0. Since the error terms can be absorbed

βx, L̄x = O(|Ux|) = O(ǫ2),

for ǫ sufficiently small, and since A0 is positive definite, we obtain inequality
(A.7). Inequality (A.8) follows in a similar fashion, with the parameter δ arising
after application of Young’s inequality.

Corollary Appendix A.3. There hold the estimates

0 ≤ Reλ ≤ Cǫ2, (A.11)

|Imλ| ≤ Cǫ, (A.12)

for some C > 0.

Proof. Estimate (A.11) follows immediately from (A.7). Taking δ = ǫ > 0 in
(A.8), and using (A.7) to control |q|2L2 we can easily obtain

(|Imλ| − Cǫ)

∫
|Ux||u|

2 ≤ 0,

yielding (A.12).

Appendix A.1. Kawashima-type estimate

Next we carry out an energy estimate for ux of Kawashima-type (see [8, 27]).

Lemma Appendix A.4. For each Reλ ≥ 0, λ 6= 0, there holds

|ux|
2
L2 ≤ C̄

(
(Reλ)η|u|2L2 +

∫
|Ux||u|

2 dx
)
, (A.13)

for some C̄ > 0 and η > 0 with ǫ2/η sufficiently small.

Proof. Denote K = K(U(x)), and take the real part of the L2 product of Kux
against (A.2). Since K is skew-symmetric, the result is

Re 〈ux,KAux〉 = Re (λ〈Kux, u〉) + Re 〈Kux, Lqx〉. (A.14)

Noticing also that Im 〈Kux, u〉 = − 1
2 〈Kxu, u〉, we obtain the bound

Re (λ〈Kux, u〉) ≤ C(Reλ)
(
η−1|ux|

2
L2 +η|u|2L2

)
+C|Imλ|

∫
|Ux||u|

2 dx, (A.15)

for any η > 0 and some C > 0. We also have the estimate

〈Kux, Lqx〉 ≤ C
(
δ1|ux|

2
L2 + δ−1

1 |qx|
2
L2

)
, (A.16)

for any δ1 > 0, where we have used Young’s inequality in both estimates.
To estimate Re 〈ux,KAux〉, observe that from (6), there holds

Re 〈ux,KAux〉+ 〈ux, L̄Bux〉 ≥ c−1|ux|
2
L2 , (A.17)
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for some c > 0. (Notice that 〈ux, L̄Bux〉 ∈ R because L̄B is symmetric, positive
semi-definite.)

Multiply equation (A.3) by L̄, take the L2 product with ux and integarte by
parts. This yields,

〈ux, L̄Bux〉 = −〈uxx, L̄qx〉 − 〈ux, L̄xqx〉 − 〈ux, L̄q〉. (A.18)

To estimate the first term, take the real part of the L2 product of uxx against
A0 times (A.2), use Ā symmetric, A0 positive definite, and integrate by parts
to obtain

−Re 〈uxx, L̄qx〉 ≤ −Re (λ〈ux, (A0)xu〉) +
1
2 〈ux, Āxux〉 − Re 〈ux, Āxu〉

≤ −(Reλ)Re 〈ux, (A0)xu〉+ (Imλ)Im 〈ux, (A0)xu〉+

+ 1
2 〈ux, Āxux〉 − Re 〈ux, Āxu〉.

(A.19)

Using (A.7) and (A.8), and bounding the error terms (A0)x, Āx = O(|Ux|) =
O(ǫ2), we get

−Re 〈uxx, L̄qx〉 ≤ Cǫ

∫
|Ux||u|

2 dx+ Cǫ|ux|
2
L2 , (A.20)

where the term 〈ux, Āxu〉 has been bounded by
∫

|Ux||u||ux| dx ≤
C

2

(∫
|Ux|

3/2|u|2 dx+

∫
|Ux|

1/2|ux|
2 dx

)

≤
C

2
ǫ

∫
|Ux||u|

2 dx+
C

2
ǫ|ux|

2
L2 .

We also estimate

Re 〈ux, L̄xqx〉 ≤ Cǫ2|ux|
2
L2 + C|qx|

2
L2 , (A.21)

Re 〈ux, L̄q〉 ≤ C
(
δ2|ux|

2
L2 + δ−1

2 |q|2L2

)
, (A.22)

for any δ2 > 0, using Young’s inequality. Putting all together back into (A.18)
we get

〈ux, L̄Bux〉 ≤ Cǫ|ux|
2
L2 + C

∫
|Ux||u|

2 dx, (A.23)

after using (A.7).
Finally, since Reλ = O(ǫ2), taking δ2 = ǫ and ǫ2/η sufficiently small, we can

substitute (A.23), (A.15) and (A.16) back into (A.17), absorb the small terms
into the left hand side to obtain (A.13). This proves the result.

Corollary Appendix A.5. For all ǫ > 0 sufficiently small and Reλ ≥ 0, there
holds the estimate

(Reλ)|u|2L2 + |ux|
2
L2 ≤ C

∫
|Ux||u|

2 dx, (A.24)

for some C > 0.
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Proof. Take C̄ times estimate (A.7) and add to (A.13) to obtain

C̄(Reλ)|u|2L2 + |ux|
2
L2 ≤ C̄(1 + C)

∫
|ux||u|

2 dx+ C̄(Reλ)η|u|2L2 .

Take η sufficiently small, say η = O(ǫ) so that ǫ2/η remains small, and after
absorbing into the left hand side we obtain the result.

Appendix A.2. Goodman-type estimate

Finally, we control the term
∫
|Ux||u|2 by performing a weighted energy

estimate in the spirit of Goodman [4, 5] (see also [8, 27]).

Lemma Appendix A.6. Under (S0) - (S2), (H0) - (H3), for all Reλ ≥ 0
there holds the estimate

Reλ
(
|u|2L2 + |ux|

2
L2

)
+ Ĉ

∫
|Ux||u|

2 dx ≤ Ĉǫ|ux|
2
L2 , (A.25)

for some Ĉ > 0 and all ǫ > 0 sufficiently small.

We first recall that there are matrices Lp, Rp diagonalizing matrix A such
that

Ã := LpARp =




A−

1 0
ap

0 A+
2



 (A.26)

where A±
j are symmetric and positive/negative definite, and ap is scalar satis-

fying (A.5) and ap = O(ǫ). Defining v := Lpu, we rewrite (A.1) as

λv + Ãvx + L̃qx = Ã(Lp)xRpv,

−qxx + q + B̃vx = −B(Rp)xv,
(A.27)

where
Ã = LpARp, L̃ = LpL, B̃ = BRp.

Define

S :=



φ−Ip−1 0

1
0 φ+In−p


 (A.28)

where block diagonal form is in the same way as of (A.26) and φ± are scalar
functions of x ∈ R which are bounded away from zero and satisfying

φ′± = ∓c∗|Ux|φ±, φ±(0) = 1

for some sufficiently large constant c∗ to be determined later. Once again, we
alternatively write ′ or (·)x as derivative with respect to x.

In what follows, we shall use 〈·, ·〉 as a weighted norm defined by

〈f, f〉 := 〈Sf, f〉L2 .
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With this inner product, we note that for any symmetric matrix A,

〈Afx, f〉 = −
1

2
〈(Ax + (Sx/S)A)f, f〉

where Sx/S should be understood as φ′±/φ± or 0 in each corresponding block.
By our choice of S and φ±, we observe that

Ãx + (Sx/S)Ã =



(A−

1 )
′ + (φ′−/φ−)A

−
1 0

a′p
0 (A+

2 )
′ + (φ′+/φ+)A

+
2




≤



−c∗I 0

−θ
0 −c∗I


 |Ux|

(A.29)

Proposition Appendix A.7. Denoting v =: (v−, vp, v+)
⊤, we obtain

(Reλ)〈v, v〉+
1

2
c∗〈|Ux|v±, v±〉+

1

2
θ〈|Ux|vp, vp〉 ≤ −Re 〈L̃qx, v〉. (A.30)

Proof. We take inner product in the weighted norm of the first equation of
(A.27) against v, take the real part of the resulting equation, and make use of
integration by parts, yielding

(Reλ)〈v, v〉 − 〈(Ãx + (Sx/S)Ã)xv, v〉 = −Re 〈L̃qx, v〉+Re 〈Ã(L′
pRpv, v〉.

(A.31)
Noting that L′

pRp = O(|Ux|) and the fact that Ã has the diagonal block (A.26),
we estimate

|〈ÃL′
pRpv, v〉| ≤ C〈|Ux|v±, v±〉+ C〈|ap||Ux|vp, vp〉.

Using this, (A.29) and the fact that |ap| = O(ǫ) is sufficiently small and c∗
is sufficiently large, (A.31) immediately yields (A.30).

Proposition Appendix A.8. We obtain

(Reλ)〈vx, vx〉 − Re 〈L̃qx, v〉 ≤ C〈O(|Ux|
2)v, v〉+ η〈vx, vx〉 (A.32)

for sufficiently small η > 0.

Proof. We now take the inner product of the derivative of the first equation of
(A.27) against vx. We thus obtain

λ〈vx, vx〉+ 〈(Ãvx)x, vx〉+ 〈(L̃qx)x, vx〉 = 〈(ÃL′
pRpv)x, vx〉 (A.33)

where we estimate by integration by parts,

〈(Ãvx)x, vx〉 = 〈Ãxvx, vx〉 −
1

2
〈(Ãx + (Sx/S)Ã)vx, vx〉 = 〈O(|Ux|)vx, vx〉

〈(ÃL′
pRpv)x, vx〉 = 〈O(|Ux|)vx, vx〉+ 〈O(|Ux|)v, vx〉
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and by using the second equation and the semi-definite condition L̃B̃ ≥ 0,

〈(L̃qx)x, vx〉 = 〈L̃qxx, vx〉+ 〈L̃xqx, vx〉

= 〈L̃(q + B̃vx +BR′
pv), vx〉+ 〈L̃xqx, vx〉

= −〈L̃qx, v〉 − 〈(L̃x + (Sx/S)L̃)q, v〉+ 〈L̃B̃vx, vx〉+ 〈L̃BR′
pv, vx〉+ 〈L̃xqx, vx〉

≥ −〈L̃qx, v〉+ 〈L̃BR′
pv, vx〉+ 〈L̃xqx, vx〉 − 〈(L̃x + (Sx/S)L̃)q, v〉.

Thus, (A.33) yields

(Reλ)〈vx, vx〉 − Re 〈L̃qx, v〉

≤ 〈O(|Ux|
2)v, v〉+ η〈vx, vx〉+ 〈L̃xqx, vx〉 − 〈(L̃x + (Sx/S)L̃)q, v〉.

(A.34)
By testing the second equation against q, it is easy to see that

〈qx, qx〉+ 〈q, q〉 ≤ C〈vx, vx〉.

Thus, we have

〈L̃xqx, vx〉−〈(L̃x + (Sx/S)L̃)q, v〉 ≤ C〈vx, vx〉
1/2
(
〈O(|Ux|

2)vx, vx〉+〈O(|Ux|
2)v, v〉

)1/2

Using the standard Young’s inequality and absorbing all necessary terms
into the right hand side of (A.34), we thus obtain from (A.34) the important
estimate, (A.32), which proves the proposition.

Combining Propositions Appendix A.7 and Appendix A.8, we are now ready
to give:

Proof of Lemma Appendix A.6. Adding (A.32) with (A.30), noting that the
“bad” term Re 〈L̃qx, v〉 gets canceled out, and using the fact that |Ux| = O(ǫ)
is sufficiently small, we easily obtain

Reλ(〈v, v〉+ 〈vx, vx〉) + θ〈|Ux|v, v〉 ≤ η〈vx, vx〉 (A.35)

which by changing v to the original coordinate u yields the lemma.

Proof of Theorem 1.6

Add Ĉǫ times (A.24) to (A.25) to get

(Reλ)(1 + Ĉǫ)|u|2L2 + (Ĉ + CĈǫ)

∫
|Ux||u|

2 dx ≤ 0,

which readily implies Reλ < 0, yielding the result.
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Remark Appendix A.9. Theorem 1.6 can be extended to the non-convex
case, that is, when the principal characteristic mode is no longer genuinely non-
linear (hypothesis (H2) does not hold). For that purpose, it is possible to mod-
ify the Goodman-type weighted energy estimate by means of the Matsumura-
Nishihara weight function w [29] (introduced to compensate for the loss of mono-
tonicity), satisfying

− 1
2 (wap + wx) = |Ux|,

which replaces the 1 in the weight matrix function S in (A.28). This procedure
was carried out for the viscous systems case by Fries [2] and it can be done in
the present case as well at the expense of further book-keeping. Note that the
existence result of [17, 18] includes non-convex systems, a feature that might be
useful in applications.

Appendix B. Pointwise reduction lemma

Let us consider the situation of a system of equations of form

Wx = A
ǫ(x, λ)W, (B.1)

for which the coefficient Aǫ does not exhibit uniform exponential decay to its
asymptotic limits, but instead is slowly varying (uniformly on a ǫ-neighborhood
V , being ǫ > 0 a parameter). This case occurs in different contexts for rescaled
equations, such as (36) in the present analysis.

In this situation, it frequently occurs that not only Aǫ but also certain of its
invariant eigenspaces are slowly varying with x, i.e., there exist matrices

L
ǫ =

(
Lǫ
1

Lǫ
2

)
(x), R

ǫ =
(
Rǫ

1 Rǫ
2

)
(x)

for which LǫRǫ(x) ≡ I and |LR′| = |L′R| ≤ Cδǫ(x), uniformly in ǫ, where the
pointwise error bound δǫ = δǫ(x) is small, relative to

M
ǫ := L

ǫ
A

ǫ
R

ǫ(x) =

(
M ǫ

1 0
0 M ǫ

2

)
(x) (B.2)

and “′” as usual denotes ∂/∂x. In this case, making the change of coordinates
W ǫ = RǫZ, we may reduce (B.1) to the approximately block-diagonal equation

Zǫ′ = M
ǫZǫ + δǫΘǫZǫ, (B.3)

where Mǫ is as in (B.2), Θǫ(x) is a uniformly bounded matrix, and δǫ(x) is
(relatively) small. Assume that such a procedure has been successfully carried
out, and, moreover, that there exists an approximate uniform spectral gap in
numerical range, in the strong sense that

min σ(ReM ǫ
1)−max σ(ReM ǫ

2) ≥ ηǫ(x), for all x,
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with pointwise gap ηǫ(x) > η0 > 0 uniformly bounded in x and in ǫ; here
and elsewhere ReN := 1

2 (N + N∗) denotes the “real”, or symmetric part of
an operator N . Then, there holds the following pointwise reduction lemma, a
refinement of the reduction lemma of [24] (see the related “tracking lemma”
given in varying degrees of generality in [3, 23, 32, 42, 39]).

Proposition Appendix B.1. Consider a system (B.3) under the gap assump-
tion (Appendix B), with Θǫ uniformly bounded in ǫ ∈ V and for all x. If, for all
ǫ ∈ V, supx∈R

(δǫ/ηǫ) is sufficiently small (i.e., the ratio of pointwise gap ηǫ(x)
and pointwise error bound δǫ(x) is uniformly small), then there exist (unique)
linear transformations Φǫ

1(x, λ) and Φǫ
2(x, λ), possessing the same regularity with

respect to the various parameters ǫ, x, λ as do coefficients Mǫ and δǫ(x)Θǫ(x),
for which the graphs {(Z1,Φ

ǫ
2(Z1))} and {(Φǫ

1(Z2), Z2)} are invariant under the
flow of (B.3), and satisfying

sup
R

|Φǫ
j | ≤ C sup

R

(δǫ/ηǫ).

Moreover, we have the pointwise bounds

|Φǫ
2(x)| ≤ C

∫ x

−∞

e−
∫

x

y
ηǫ(z)dzδǫ(y)dy, (B.4)

and symmetrically for Φǫ
1.

Proof. By a change of independent coordinates, we may arrange that ηǫ(x) ≡
constant, whereupon the first assertion reduces to the conclusion of the track-
ing/reduction lemma of [24]. Recall that this conclusion was obtained by seeking
Φǫ

2 as the solution of a fixed-point equation

Φǫ
2(x) = T Φǫ

2(x) :=

∫ x

−∞

Fy→xδǫ(y)Q(Φǫ
2)(y)dy.

Observe that in the present context we have allowed δǫ to vary with x, but
otherwise follow the proof of [24] word for word to obtain the conclusion (see
Appendix C of [24], proof of Proposition 3.9). Here, Q(Φǫ

2) = O(1 + |Φǫ
2|

2)
by construction, and |Fy→x| ≤ Ce−η(x−y). Thus, using only the fact that |Φǫ

2|
is bounded, we obtain the bound (B.4) as claimed, in the new coordinates for
which ηǫ is constant. Switching back to the old coordinates, we have instead

|Fy→x| ≤ Ce−
∫

x

y
ηǫ(z)dz, yielding the result in the general case.

Remark Appendix B.2. From Proposition Appendix B.1, we obtain reduced
flows {

Zǫ
1
′ =M ǫ

1Z
ǫ
1 + δǫ(Θ11 +Θǫ

12Φ
ǫ
2)Z

ǫ
1,

Zǫ
2
′ =M ǫ

2Z
ǫ
2 + δǫ(Θ22 +Θǫ

21Φ
ǫ
1)Z

ǫ
2.

on the two invariant manifolds described.
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