Lecture 2

Subspaces

In most applications we will be working with a subset W of a vector space V such that W itself is a vector space.

Question: Do we have to test all the axioms to find out if W is a vector space?

The answer is NO.

Theorem. Let $W \neq \emptyset$ be a subset of a vector space V. Then W, with the same addition and scalar multiplication as V, is a vector space if and only if the following two conditions hold:

1. $u + v \in W$ for all $u, v \in W$ (or $W + W \subseteq W$)
2. $r \cdot u \in W$ for all $r \in \mathbb{R}$ and all $u \in W$ (or $\mathbb{R}W \subseteq W$).

In this case we say that W is a subspace of V.

Proof. Assume that $W + W \subseteq W$ and $\mathbb{R}W \subseteq W$.

To show that W is a vector space we have to show that all the 10 axioms of Definition 1.1 hold for W. But that follows because the axioms hold for V and W is a subset of V:

A1 (Commutativity of addition)

For $u, v \in W$, we have $u + v = v + u$. This is because u, v are also in V and commutativity holds in V.

7
A4 (Existence of additive identity)
Take any vector \(u \in W \). Then by assumption \(0 \cdot u = \vec{0} \in W \). Hence \(\vec{0} \in W \).

A5 (Existence of additive inverse)
If \(u \in W \) then \(-u = (-1) \cdot u \in W \).

One can check that the other axioms follow in the same way.

\[\square \]

2.1 Examples
Usually the situation is that we are given a vector space \(V \) and a subset of vectors \(W \) satisfying some conditions and we need to see if \(W \) is a subspace of \(V \).

\[W = \{ v \in V : \text{some conditions on } v \} \]

We will then have to show that

\[
\begin{align*}
 u, v & \in W \\
 r & \in \mathbb{R}
\end{align*}
\]

\[
\begin{align*}
 u + v \\
 r \cdot u
\end{align*}
\]

Satisfy the same conditions.

2.2 Lines through the origin as subspaces of \(\mathbb{R}^2 \)

Example.

\[
\begin{align*}
 V & = \mathbb{R}^2, \\
 W & = \{(x, y) | y = kx\} \quad \text{for a given } k \\
 & = \text{line through (0, 0) with slope } k.
\end{align*}
\]

To see that \(W \) is in fact a subspace of \(\mathbb{R}^2 \):
Let \(u = (x_1, y_1) \), \(v = (x_2, y_2) \in W \). Then \(y_1 = kx_1 \) and \(y_2 = kx_2 \).
2.3. A SUBSET OF \(\mathbb{R}^2 \) THAT IS NOT A SUBSPACE

and

\[
 u + v = (x_1 + x_2, y_1 + y_2) \\
 = (x_1 + x_2, kx_1 + kx_2) \\
 = (x_1 + x_2, k(x_1 + x_2)) \in W
\]

Similarly, \(r \cdot u = (rx_1, ry_1) = (rx_1, krx_1) \in W \)

So what are the subspaces of \(\mathbb{R}^2 \)?

1. \(\{0\} \)

2. Lines. But only those that contain \((0, 0)\). Why?

3. \(\mathbb{R}^2 \)

Remark (First test). If \(W \) is a subspace, then \(\vec{0} \in W \).

Thus: If \(\vec{0} \not\in W \), then \(W \) is not a subspace.

This is why a line not passing through \((0, 0)\) can not be a subspace of \(\mathbb{R}^2 \).

2.3 A subset of \(\mathbb{R}^2 \) that is not a subspace

Warning. We can not conclude from the fact that \(\vec{0} \in W \), that \(W \) is a subspace.

Example. Lets consider the following subset of \(\mathbb{R}^2 \):

\[
 W = \{(x, y)|x^2 - y^2 = 0\}
\]

Is \(W \) a subspace of \(\mathbb{R}^2 \)? Why?

The answer is NO.

We have \((1, 1) \in W \) but \((1, 1) + (1, -1) = (2, 0) \not\in W \). i.e., \(W \) is not closed under addition.

Notice that \((0, 0) \in W \) and \(W \) is closed under multiplication by scalars.
2.4 Subspaces of \mathbb{R}^3

What are the subspaces of \mathbb{R}^3?

1. \{0\} and \mathbb{R}^3.

2. Planes: A plane $W \subseteq \mathbb{R}^3$ is given by a normal vector (a, b, c) and its distance from $(0, 0, 0)$ or

$$W = \{(x, y, z)\mid ax + by + cz = p\}$$

condition on (x, y, z)

For W to be a subspace, $(0, 0, 0)$ must be in W by the first test. Thus

$$p = a \cdot 0 + b \cdot 0 + c \cdot 0 = 0$$

or

$$p = 0$$

2.4.1 Planes containing the origin

A plane containing $(0, 0, 0)$ is indeed a subspace of \mathbb{R}^3.

Proof. Let (x_1, y_1, z_1) and $(x_2, y_2, z_2) \in W$. Then

$$ax_1 + by_1 + cz_1 = 0$$

$$ax_2 + by_2 + cz_2 = 0$$

Then we have

$$a(x_1 + x_2) + b(y_1 + y_2) + c(z_1 + z_2) = \underbrace{ax_1 + by_1 + cz_1\,}_{0} + \underbrace{ax_2 + by_2 + cz_2\,}_{0} = 0$$

and

$$a(rx_1) + b(ry_1) + c(rz_1) = r(ax_1 + by_1 + cz_1) = 0 \quad \square$$
2.5 Summary of subspaces of \mathbb{R}^3

1. $\{0\}$ and \mathbb{R}^3.

2. Planes containing $(0, 0, 0)$.

3. Lines containing $(0, 0, 0)$.
 (Intersection of two planes containing $(0, 0, 0)$)

2.6 Exercises

Determine whether the given subset of \mathbb{R}^n is a subspace or not (Explain):

a) $W = \{(x, y) \in \mathbb{R}^2 \mid xy = 0\}$.

b) $W = \{(x, y, z) \in \mathbb{R}^3 \mid 3x + 2y^2 + z = 0\}$.

c) $W = \{(x, y, z) \in \mathbb{R}^3 \mid 2x + 3y - z = 0\}$.

d) The set of all vectors (x_1, x_2, x_3) satisfying
 \[2x_3 = x_1 - 10x_2. \]

e) The set of all vectors in \mathbb{R}^4 satisfying the system of linear equations
 \[
 \begin{align*}
 2x_1 + 3x_2 + 5x_4 &= 0 \\
 x_1 + x_2 - 3x_3 &= 0
 \end{align*}
 \]

f) The set of all points $(x_1, x_2, x_3, x_4) \in \mathbb{R}^4$ satisfying
 \[x_1 + 2x_2 + 3x_3 + x_4 = -1. \]