1 Typographical errors in the first edition

Here is a list of typographical errors in *Subsystems of Second Order Arithmetic*, Stephen G. Simpson, Springer-Verlag, 1999, XIV + 445 pages. It contains all errors which were discovered through 2006. All of these errors were corrected in the second edition which was published in 2009.

- Proof of Theorem I.9.1, displayed formula, replace $|c - c_k| < 2^n$ by $|c - c_k| < 2^{-n}$.
- Theorem I.10.3, in item 8, replace “set of sentences” by “consistent set of sentences”.
- Proof of Lemma III.2.5, the subscripts need to be repaired. The proof should be as follows:

 We first consider the case of a finite product $\hat{A} = \prod_{k=1}^{m} \hat{A}_k$. In this case, for each $j \in \mathbb{N}$, let l_j be the smallest l such that $m \cdot 2^{-l} \leq 2^{-j}$. Put $n_j = \prod_{k=1}^{m} (n_{t,k} + 1) - 1$ and let $\langle x_{ij} : i \leq n_{t,j} \rangle$ be an enumeration of $\prod_{k=1}^{m} \{x_{it,k} : i \leq n_{t,k}\}$. Then $\langle \langle x_{ij} : i \leq n_j \rangle : j \in \mathbb{N} \rangle$ attests to the compactness of \hat{A}.

 In the case of a countably infinite product $\hat{A} = \prod_{k \in \mathbb{N}} \hat{A}_k$, for each $j \in \mathbb{N}$ let l_j be smallest l such that $(j+2) \cdot 2^{-l} \leq 2^{-j-1}$. Put $n_j = \prod_{k=0}^{j+1} (n_{t,j} + 1) - 1$ and let $\langle x_{ij} : i \leq n_{j} \rangle$ be an enumeration of $\prod_{k=0}^{j+1} \{x_{it,k} : i \leq n_{t,k}\}$. Again $\langle \langle x_{ij} : i \leq n_j \rangle : j \in \mathbb{N} \rangle$ attests to the compactness of \hat{A}. This completes the proof of the lemma.

- Proof of Theorem III.3.2, main paragraph, replace $h : K \to \mathbb{Q}$ by $g : K \to \overline{\mathbb{Q}}$, and replace $h(a) = b$ by $g(a) = b$. Also, replace all three occurrences of K_1 by M.

- Proof of Theorem III.4.3, last line of third paragraph, replace

 \[
 \forall n \ (q_{2n} \neq 0 \to f(q_{2n+1}/q_{2n}) = n)
 \]

 by

 \[
 \forall n \ (q_{2n} \neq 0 \to f(q_{2n+1}/q_{2n}) = n)
 \]
\[\forall n \left(q_{2n} \neq 0 \rightarrow f(q_{2n+1}/q_{2n}) = n \right) \] and \[\forall n \left(q_{2n} = 0 \rightarrow q_{2n+1} = 0 \right). \]

- Proof of Theorem III.6.5, middle of page 120, replace \(y_{ij} = p_{f(i)z_{i,j}} \) by \(y_{ij} = p_{f(i)z_{i,j}+1} \).

- Proof of Theorem III.6.5, first line of last paragraph on page 120, replace \(h_i : A \rightarrow D, i = 1, 2 \) by \(h_1, h_2 : A \rightarrow D \).

- Proof of Lemma IV.1.4, end of proof, replace \(f^*(\sum_{i=0}^{j-1} f(i) + k) = 1 \) by \(f^*(\sum_{i=0}^{j-1} g(i) + k) = 1 \).

- Exercise IV.2.10, replace “closed set” by “closed set \(C \)”.

- Definition V.4.5, replace \(A \) by \(A \).

- Remark V.10.1, replace \(\Sigma_1^0-\text{AC}_0 \) by \(\Sigma_1^1-\text{AC}_0 \).

- Theorem VI.2.6, replace “Over” by “over”.

- Proof of Sublemma VI.3.3, in the definition of \(C_0 \), replace \(X_1 \oplus X_1 \) by \(X_0 \oplus X_1 \).

- Definition VII.3.2.4, replace \(u - (v - u) \) by \(u - (u - v) \).

- Proof of Theorem VII.3.31, first line, replace \(T \) by \(T \).

- Proof of Theorem VII.6.9, first paragraph, second last sentence, replace “The” by “Then”.

- Remark VIII.1.16, replace “as do \(\text{ACA}_0 \) and \(\Sigma_1^1-\text{AC}_0 \)” by “while \(\text{ACA}_0 \) and \(\Sigma_1^1-\text{AC}_0 \) prove the same \(\Pi_2^1 \) sentences.”

- Proof of Lemma VIII.2.16, first line of page 323, replace \(Y \) by \(Z \).

- Proof of Lemma IX.2.4, second line, replace \(|M| \cup S_M \) by \(|M| \cup S_M \).

- Theorem X.2.9, items 5, 6, and 7, replace \(X \) by \(X^* \).

- Section X.3, just before Definition X.3.1, replace “Ramsey’s theorem” by “Ramsey’s theorem for exponent 3”.

- Definition X.4.1, replace “atomic formula” by “numerical term”.

- Bibliography, item 268, replace “borel” by “Borel”.

- Index, atomic formula, replace “2, 410” by “2”.

- Index, formula, atomic, replace “2, 410” by “2”.

- Index, GKT basis theorem, replace “325–326” by “325–326, 354–356”.

- Index, numerical term, replace “23” by “2, 23, 410”.

- Index, term, numerical, replace “2, 23” by “2, 23, 410”.

- Index, add index entry, weak \(\Sigma_1^1-\text{AC}_0 \), 342–347.

- Index, universal \(\Sigma_1^1 \), replace “333, 356” by “252, 333, 356”.

2
2 Errors in the second edition

- The proof of Theorem IV.8.2 contains two typographical errors. In displayed equation (15), $< 2^{-3(n+2)}$ should be $< -2^{-3(n+2)}$. In line 7 from the bottom of the page, $> -2^{-3(n+2)}$ should be $> 2^{-3(n+2)}$.

- David Madore has pointed out that part 18 of Lemma VII.3.7 is incorrect. The error is not typographical but mathematical. Namely, \mathcal{B}^set_0 does not include the Axiom of Regularity, so for instance it is consistent with \mathcal{B}^set_0 that there are proper-class-many sets x such that $x = \{x\}$, and of course all such sets are hereditarily finite.

 There are two ways to repair this.

 1. Preferred way: Move the Axiom of Regularity from Definition VII.3.8 (the axioms of ATR^set_0) to Definition VII.3.3 (the axioms of \mathcal{B}^set_0).

 2. Another way: Change part 6 of Definition VII.3.6 to read as follows:

 $$\text{Trans}(u) \leftrightarrow u \text{ is transitive, i.e., } \forall x \forall y ((x \in y \wedge y \in u) \rightarrow x \in u) \wedge \forall v ((v \subseteq u \wedge v \neq \emptyset) \rightarrow \exists x (x \in v \wedge \forall y (y \in v \rightarrow y \notin x))$$

 Thus regularity is incorporated into the definitions of transitivity and hereditary finiteness.

Under either 1 or 2, part 7 of Definition VII.3.6 can be simplified by omitting the clause which begins with $\forall v$.

- In line 2 of the proof of Theorem VII.3.9, “Then” should be “The”.

- David Madore has pointed out another mathematical error. Namely, in the Notes for §VII.5 on page 293, the stated characterization of α_{k+2} is correct for $k \geq 1$ but incorrect for $k = 0$.

 A correct characterization of α_2 reads as follows. α_2 is the least admissible ordinal which is the limit of smaller admissible ordinals.

- Andre Kornell has pointed out a typo in Definition VII.4.22. In the displayed formula, $u \subseteq \text{rng}(f)$ should be $u \in \text{rng}(f)$.