Next: About this document ...
Up: Partial Realizations of Hilbert's
Previous: Answers to Some Possible

 1
 P. Bernays, ``Hilbert, David,'' in: Encyclopedia of
Philosophy, vol. 3, edited by P. Edwards, New York, 1967,
pp. 496504.
 2
 D. K. Brown, Functional Analysis in Weak
Subsystems of Second Order Arithmetic, Ph. D. Thesis,
Pennsylvania State University, 1987, vii + 150 pages.
 3
 D. K. Brown and S. G. Simpson, Which set existence axioms
are needed to prove the separable HahnBanach theorem?,
Annals of Pure and Applied Logic, 31, 1986, pp.
123144.
 4
 J. Corcoran, Review of [17], Math. Reviews 1982c,
#03013.
 5
 S. Feferman, Systems of predicative analysis I, II,
Journal of Symbolic Logic, 29, 1964, pp. 130;
33, 1968, pp. 193220.
 6
 H. Friedman, Systems of second order arithmetic with
restricted induction I, II (abstracts), Journal of Symbolic
Logic, 41, 1976, pp. 557559.
 7
 H. Friedman, personal communication to L. Harrington,
1977.
 8
 H. Friedman, S. G. Simpson and R. L. Smith, Countable
algebra and set existence axioms, Annals of Pure and Applied
Logic, 25, 1983, pp. 141181.
 9
 K. Gödel, On formally undecidable propositions of
Principia Mathematica and related systems I, translated by J. van
Heijenoort, in: [27], pp. 596616.
 10
 K. Gödel, Über eine bisher noch nicht benützte
Erweiterung des finiten Standpunktes, Dialectica,
12, 1958, pp. 280287.
 11
 K. Gödel, What is Cantor's Continuum Problem?, in:
Philosophy of Mathematics: Selected Readings, 2nd edition,
edited by P. Benacerraf and H. Putnam, Cambridge University Press,
1983, pp. 470485.
 12
 L. Harrington, personal communication to H. Friedman,
1977.
 13
 D. Hilbert, On the infinite, translated by S.
BauerMengelberg, in: [27], pp. 367392.
 14
 D. Hilbert, The foundations of mathematics, translated by
S. BauerMengelberg and D. Føllesdal, in: [27], pp.
464479.
 15
 D. Hilbert and P. Bernays, Grundlagen der
Mathematik, vols. I and II, 2nd edition, SpringerVerlag, 1968
and 1970, 473 + 571 pages.
 16
 P. Kitcher, Hilbert's epistemology, Philosophy of
Science, 43, 1976, pp. 99115.
 17
 M. Kline, Mathematics: The Loss of Certainty,
Oxford University Press, New York, 1980, vi + 366 pages.
 18
 J. Lear, Aristotelian infinity, Proceedings of the
Aristotelian Society (n.s.), 80, 1980, pp. 187210.
 19
 C. Parsons, On a numbertheoretic choice schema and
its relation to induction, in: Intuitionism and Proof Theory,
edited by J. Myhill, A. Kino, and R. E. Vesley, NorthHolland, 1970,
pp. 459473.
 20
 W. Sieg, Fragments of arithmetic, Annals of Pure
and Applied Logic, 28, 1985, pp. 3371.
 21
 S. G. Simpson, Which set existence axioms are needed to
prove the Cauchy/Peano theorem for ordinary differential equations?,
Journal of Symbolic Logic, 49, 1984, pp. 783802.
 22
 S. G. Simpson, Friedman's research on subsystems of
second order arithmetic, in: Harvey Friedman's Research in the
Foundations of Mathematics, edited by L. Harrington, M. Morley,
A. Scedrov and S. G. Simpson, NorthHolland, 1985, pp.
137159.
 23
 S. G. Simpson, Subsystems of Z_{2} and Reverse
Mathematics, appendix to: G. Takeuti, Proof Theory, 2nd
edition, NorthHolland, 1986, pp. 434448.
 24
 S. G. Simpson, Subsystems of Second Order
Arithmetic, in preparation
 25
 W. W. Tait, Finitism, Journal of Philosophy,
1981, pp. 524546.
 26
 G. Takeuti, Recent topics on proof theory (in Japanese),
Journal of the Japan Association for Philosophy of Science,
17, 1984, pp. 15.
 27
 J. van Heijenoort (editor), From Frege to
Gödel: A Source Book in Mathematical Logic, 18791931, Harvard
University Press, 1967, xii + 660 pages.
 28
 E. P. Wigner, The unreasonable effectiveness of
mathematics in the natural sciences, Communications on Pure
and Applied Mathematics, 13, 1960, pp. 114.
Stephen G Simpson
19981025