next up previous
Next: About this document ... Up: Separable Banach space theory Previous: Proof of the main

Bibliography

1
S. Banach.
Theory of Linear Operators.
North Holland, 1987.
English translation of [2] by F. Jellett.

2
Stefan Banach.
Théorie des Opérations Linéaires.
Subwencji Funduszu Kultury Narodowej, 1932.

3
Andreas R. Blass, Jeffry L. Hirst, and Stephen G. Simpson.
Logical analysis of some theorems of combinatorics and topological dynamics.
In Stephen G. Simpson, editor, Logic and Combinatorics, number 65 in Contemporary Mathematics, pages 125-156. American Mathematical Society, 1987.

4
Douglas K. Brown.
Notions of closed subsets of a complete separable metric space in weak subsystems of second order arithmetic.
In Wilfried Sieg, editor, Logic and Computation, number 106 in Contemporary Mathematics, pages 39-50. American Mathematical Society, 1990.

5
Douglas K. Brown and Stephen G. Simpson.
Which set existence axioms are needed to prove the separable Hahn-Banach theorem?
Annals of Pure and Applied Logic, 31:123-144, 1986.

6
Douglas K. Brown and Stephen G. Simpson.
The Baire category theorem in weak subsytems of second order arithmetic.
Journal of Symbolic Logic, 58:557-578, 1993.

7
Douglas Kenyon Brown.
Functional Analysis in Weak Subsystems of Second Order Arithmetic.
PhD thesis, The Pennsylvania State University, 1987.

8
Georg Cantor.
Contributions to the Founding of the Theory of Transfinite Numbers.
Dover Publications, Inc., 1955.
translated and provided with an introduction and notes by Philip E. B. Jourdain.

9
Joseph W. Dauben.
The trigonometric background to Georg Cantor's theory of sets.
Archive for History of Exact Sciences, (7):181-216, 1971.

10
Joseph Warren Dauben.
Georg Cantor: His Mathematics and Philosophy of the Infinite.
Harvard University Press, 1979.

11
Nelson Dunford and Jacob T. Schwartz.
Linear Operators.
Interscience Publishers, Inc., 1958.

12
Harvey Friedman, Stephen G. Simpson, and Rick Smith.
Countable algebra and set existence axioms.
Annals of Pure and Applied Logic, 25:141-181, 1983.

13
A. S. Kechris and A. Louveau.
Descriptive set theory and harmonic analysis.
Journal of Symbolic Logic, 57(2):413-441, June 1992.

14
Alexander S. Kechris and Alain Louveau.
Descriptive Set Theory and the Structure of Sets of Uniqueness.
Cambridge University Press, 1987.

15
Alberto Marcone.
Foundations of BQO Theory and Subsystems of Second Order Arithmetic.
PhD thesis, The Pennsylvania State University, 1993.

16
Alberto Marcone.
Foundations of BQO theory.
Transactions of the American Mathematical Society, (345):641-660, 1994.

17
S. Mazurkiewicz.
Sur la dérivée faible d'un ensemble de fonctionelles linéaires.
Studia Mathematica, 2:68-71, 1930.

18
O. Carruth McGehee.
A proof of a statement of Banach on the weak-* topology.
Michigan Mathematical Journal, 15:135-140, 1968.

19
Donald Sarason.
Weak-star generators of $H^\infty$.
Pacific Journal of Mathematics, 17:519-528, 1966.

20
Donald Sarason.
On the order of a simply connected domain.
Michigan Mathematical Journal, 15:129-133, 1968.

21
Donald Sarason.
A remark on the weak-star topology of $\ell^\infty$.
Studia Mathematica, 30:355-359, 1968.

22
Naoki Shioji and Kazuyuki Tanaka.
Fixed point theory in weak second-order arithmetic.
Annals of Pure and Applied Logic, 47:167-188, 1990.

23
Stephen G. Simpson.
Subsystems of Second Order Arithmetic.
Perspectives in Mathematical Logic, Springer-Verlag, 1996.
in preparation.

24
J. von Neumann.
Zur Algebra der Funktionaloperationen und Theorie der normalen Operatoren.
Mathematische Annalen, 102:370-427, 1929.



Stephen G Simpson
1998-10-25