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Chapter 1

Sentences and models

1.1 Symbols

1.

We assume the availability of a large supply of nonlogical symbols of the
following kinds:

1. n-ary relation symbols R( , . . . , ), n ≥ 1;

2. n-ary operation symbols o( , . . . , ), n ≥ 1;

3. constant symbols c.

These collections of symbols are assumed to be disjoint.

2.

We make use of the following logical symbols :

1. propositional connectives ¬ (negation), ∧,∨ (conjunction, disjunction),
→,↔ (implication, biimplication);

2. quantifiers ∀, ∃ (universal, existential);

3. equality =;

4. variables v0, v1, . . . , vn, . . . .

Note that = is a logical symbol although syntactically it behaves as a
binary relation symbol.
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8 CHAPTER 1. SENTENCES AND MODELS

1.2 Formulas

1.

The notion of a term is defined inductively as follows. A constant symbol
is a term. A variable is a term. If t1, . . . , tn are terms and o is an n-ary
operation symbol, then o(t1, . . . , tn) is a term.

2.

The notion of atomic formula is defined as follows. If t1 and t2 are terms,
then t1 = t2 is an atomic formula. If t1, . . . , tn are terms and R is an n-ary
relation symbol, then R(t1, . . . , tn) is an atomic formula.

3.

The notion of a formula is defined inductively as follows. An atomic formula
is a formula. If ϕ and ψ are formulas then so are ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ϕ→ ψ,
ϕ↔ ψ. If ϕ is a formula and v is a variable, then ∀vϕ and ∃vϕ are formulas.

We assume familiarity with the concept of a free variable, i.e. one not
bound by a quantifier. We assume unique readability of formulas.

4.

If S is a set of formulas and/or terms, the signature of S is the set of all
nonlogical symbols occurring in it. This is sometimes called in the literature
the similarity type of S. Note that = never bolongs to the signature since it
is a logical symbol. We write sig(S) = signature of S.

5.

A sentence is a formula with no free variables.

Examples: The formula ∀x∃y(x+y = 0) is a sentence. Here + is a binary
operation symbol, 0 is a constant symbol, and = is a logical symbol. The
formula x + y = y + x is not a sentence.

If we write x, y, . . . in the same formula, we tacitly assume that x, y, . . .
are distinct variables.
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Examples, continued: The formula ∀x(∃y(y · y = x)∨∃z(z · z = −x)) is a
sentence. It is “logically equivalent” to the sentence ∀x∃y(y · y = x ∨ y · y =
−x) but these two sentences are not identical. We asume that the student
has some previous acquaintance with the syntactical and semantical notions
of logical equivalence. These notions will be defined later.

1.3 Structures

1.

A structure is an ordered pair A = (|A|, Φ) where |A| is a nonempty set,
called the universe of A, and Φ is a function whose domain is a set of non-
logical symbols. The domain of Φ is called the signature of A. To each n-ary
relation symbol R ∈ sig(A) we assume that Φ assigns an n-ary relation

R ⊆ |A|n = |A| × · · · × |A|︸ ︷︷ ︸
n times

.

To each n-ary operation symbol o ∈ sig(A) we assume that Φ assigns an
n-ary operation

o : |A|n → |A| .

To each constant symbol c ∈ sig(A) we assume that Φ assigns an individual
constant c ∈ |A|.

Example: the structure of the reals

R = (|R|, +,−, ·, 0, 1, <)

where |R| = R. We cannot include ÷ because it is not an operation on |R|
(because not everywhere defined). Here the universe is |R| = R = (−∞,∞);
+, · are binary operations; − is a unary operation; 0, 1 are constants; < is a
binary relation.
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1.4 Truth

1.

Given a structure A and a sentence σ such that sig(σ) ⊆ sig(A), we assume
known the meaning of

A |= σ (A satisfies σ, σ is true in A) .

For example, R |= ∀x∃y(y · y = x ∨ y · y = −x) expresses the fact that
every real number or its negative is a square. Note that the structure

Z = (Z, +, ·,−, 0, 1, <) ,

where |Z| = Z = {. . . ,−2,−1, 0, 1, 2, . . .}, has the same signature as R but
satisfies the negation of the above sentence.

In general, A |= σ means that σ is true in A when the variables are
interpreted as ranging over |A|, the other symbols in σ being given their
obvious interpretation.

Another example:

Z |= ∀x(x > 0→ ∃y1∃y2∃y3∃y4(x = y2
1 + y2

2 + y2
3 + y2

4))

and this expresses the fact that every positive integer is the sum of four
squares.

1.5 Models and theories

1.

Let S be a set of sentences. A model of S is a structureM such thatM |= σ
for all σ ∈ S, and sig(M) = sig(S).

For example, a group can be described as a model G = (|G|, ·,−1 , 1) of the
axioms of group theory :

∀x∀y∀z((x · y) · z = x · (y · z))

∀x(x · 1 = 1 · x = x)

∀x(x · x−1 = x−1 · x = 1)
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2.

The class of all models of S is denoted Mod(S). A sentence τ is said to be a
logical consequence1 of S (written S |= τ) if sig(τ) ⊆ sig(S), andM |= τ for
allM∈ Mod(S).

A theory is a set T of sentences which is consistent and closed under logical
consequence; in other words, T has at least one model, and τ ∈ T whenever
τ is a sentence such that sig(τ) ⊆ sig(T ) andM |= τ for allM∈ Mod(T ).

For example, the theory of groups is the set of all logical consequences
of the axioms of group theory. These axioms have many nonobvious logical
consequences, e.g. the Jacobi identity

((x, y), zx) · ((y, z), xy) · ((z, x), yz) = 1

where we use abbreviations (x, y) = x−1 · y−1 · x · y and xy = y−1 · x · y.

3.

A model class is a nonempty class of structures all having the same signature.
An elementary model class is a model class of the form Mod(S) where S is
a consistent set of sentences. There are lots of nonelementary model classes,
e.g. the class of finite groups.

If K is a model class, we write Th(K) for the theory of K, i.e. the set of
sentences σ such that sig(σ) ⊆ sig(K) andM |= σ for allM ∈ K. Note that
Th(K) is a theory and for any theory T we have T = Th(Mod(T )). There is
a natural 1-1 correspondence between theories and elementary model classes.

4.

If T is a theory and S ⊆ T , we say that S is a set of axioms for T if
T = Th(Mod(S)). If there exists a finite set of axioms for T , we say that T
is finitely axiomatizable.

For example, the theory of groups is finitely axiomatizable (a finite set of
axioms for it is displayed above). We shall see later that the theory of fields
of characteristic 0 is not finitely axiomatizable.

1Note: This definition is somewhat unusual because, for instance, ∀x(x < 0 ∨ x =
0 ∨ x > 0) is not a logical consequence of ∀x∀y(x < y ∨ x = y ∨ x > y), owing to the
restriction on signature.
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Chapter 2

Complete theories

2.1 Definitions and examples

1.

A theory T is complete if for all sentences σ, either σ ∈ T or ¬σ ∈ T ,
provided sig(σ) ⊆ sig(T ).

Examples: The theory of groups is not complete. The theory of fields
of characteristic 0 is not complete (e.g. ∃x(x · x = 1 + 1) is true in R, false
in Q). We shall see later that the theory of algebraically closed fields of
characteristic 0 is complete.

2.

Two structures A and B are elementarily equivalent (written A ≡ B) if they
have the same signature and satisfy the same sentences. In other words,
Th(A) = Th(B).

3.

Proposition. For a theory T the following are equivalent.

1. T is complete;

2. all models of T are elementarily equivalent;

13
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3. T = Th(A) for some structure A.

Proof. Trivial.

4.

Exercise. Prove that the theory of dense linear ordreings without end points
is complete. Use the method of elimination of quantifiers, described below.

axioms for linear orderings:

∀x∀y∀z(x < y ∧ y < z → x < z)

∀x∀y(x < y → ¬y < x)

∀x∀y(x < y ∨ x = y ∨ y < x)

dense : ∀x∀y(x < y → ∃z(x < z < y))

without end points : ∀x∃y∃z(y < x < z) .

5.

We use the following notational convention: ϕ(x1, . . . , xn) denotes a formula
ϕ whose free variables are among x1, . . . , xn.

A theory T is said to admit elimination of quantifiers if for all formulas
ϕ(x1, . . . , xn), n ≥ 1, there exists a quantifier free formula ϕ∗(x1, . . . , xn)
such that

T |= ∀x1 . . .∀xn(ϕ(x1, . . . , xn)↔ ϕ∗(x1, . . . , xn)) .

For the above exercise, show that the theory of dense linear orderings
without end points admits elimination of quantifiers. (Do this by induction
on the number of quantifiers, working from the inside out.) Once this has
been done, completeness follows easily.

Historically, the method of elimination of quantifiers came very early. It
is also the most versatile method for showing that algebraic theories are com-
plete and/or decidable. The drawback is that the method is syntactical. We
shall develop various model-theoretic methods for proving the same results.
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2.2 Vaught’s test

Vaught’s test is another method for establishing completeness of theories. It
is less versatile than quantifier elimination, but much easier to use.

1.

Two structures A and B are said to be isomorphic (written A ∼= B) if
sig(A) = sig(B) and there exists an isomorphic map of A onto B, i.e.
i : |A| → |B| such that

1. i is one-one and onto;

2. RA(a1, . . . , an) if and only if RB(a1, . . . , an);

3. i(oA(a1, ..., an)) = oB(i(a1), . . . , i(an));

4. i(cA) = cB.

Note that isomorphic structures are “essentially identical”. In particular they
satisfy the same sentences, i.e. A ∼= B implies A ≡ B.

2.

The cardinality or power of a structure A is the cardinality of its universe.
For instance, we say that A is countable if and only if |A| is countable, etc.
The power of A is denoted ‖A‖ or card(A).

3.

A theory T is said to be κ-categorical if

(i) T has at least one model of power κ;

(ii) any two such models are isomorphic.
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4.

Theorem (Vaught’s test for completeness). Let T be a countable theory
such that

(i) T has no finite models;

(ii) for some infinite cardinal κ, T is κ-categorical.

Then T is complete.

We shall prove this later as an application of the Löwenheim-Skolem-
Tarski theorem. For now we content ourselves with giving various examples
of how the theorem is used to prove completeness of specific theories.

2.3 Applications of Vaught’s test

1.

We can use Vaught’s test to show that the theory of dense linear orderings
without end points is complete.

Clearly the theory has no finite models. We shall show that the theory is
ℵ0-categorical. Let A = (|A|, <A) and and B = (|B|, <B) be countable dense
linear orderings without end points. To show A ∼= B we use a back-and-forth
argument. Let |A| = {an : n ∈ ω}, |B| = {bn : n ∈ ω}. The construction
of an isomorphism proceeds in stages. At each stage we have constructed a
finite partial isomorphism of A onto B. Stage 2n. Pick the least k so that
ak = a′ is not in the domain of the partial isomorphism so far. Find an
element b′ ∈ |B| satisfying finitely many inequalities so that we can extend
the partial isomorphism by adding to it the ordered pair (a′, b′). Stage 2n+1.
Proceed as in stage 2n replacing a’s by b’s and vice versa. In this way we
build up an isomorphism of A onto B.

2.

We use Vaught’s test to show that the theory of nontrivial torsion free divis-
ible Abelian groups is complete.
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Abelian groups:

∀x∀y∀z((x + y) + z = x + (y + z))

∀x∀y(x + y = y + x)

∀x(x + 0 = x)

∀x(x + (−x) = 0)

An Abelian group is said to be divisible if it satisfies

∀x∃y(ny = x)

for n = 1, 2, 3, . . . . This is an infinite set of axioms. Note that ny is an
abbreviation for

y + · · ·+ y︸ ︷︷ ︸
n times

.

An Abelian group is said to be torsion free if it satisfies

∀x(nx = 0→ x = 0)

for n = 1, 2, . . . . This is again an infinite set of axioms.
An Abelian group is nontrivial if it contains a nonzero element. Clearly

any nontrivial torsion free Abelian group is infinite. Thus our theory has
no finite models. To prove completeness, we shall apply Vaught’s test by
showing that our theory is κ-categorical for any uncountable cardinal κ.

An example of a torsion free divisible Abelian group is the additive group
of the rationals (Q, +,−, 0). More generally, if V is any vector space over
the field of rational numbers, then the additive group of V is torsion free and
divisible.

Fact: Any torsion free divisible Abelian group is of this form.
Proof. Let A = (|A|, +,−, 0) be a torsion free divisible Abelian group.

For a ∈ |A| and r ∈ Q we want to define ra. Let r = m/n, m, n ∈ Z, n > 0.
Define

ra = some b with ma = nb .

We need to show that ra is well defined. So suppose ma = nb1 = nb2. Then
n(b1 − b2) = 0. hence b1 − b2 = 0 by torsion freeness of A. The vector space
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axioms

(r1 + r2)a = r1a + r2a

r(a1 + a2) = ra1 + ra2

1a = a

(−r)a = −ra

are easily verified. Thus A is the additive group of a vector space over Q.

We shall need the following facts from the theory of vector spaces. (1)
Any vector space V over a field F has a basis, i.e. a set U ⊆ V such that
every element of V is uniquely expressible in the form

r1u1 + · · ·+ rnun , ri ∈ F ,

where the ui are distinct elements of U , 1 ≤ i ≤ n. (Proof: use Zorn’s
lemma.) (2) Any two bases of V over F have the same cardinality, the
dimension of V . (3) If V1 and V2 are vector spaces over F of the same
dimension, then they are isomorphic over F .

Let A and B be torsion free divisible Abelian groups of power κ where
κ is uncountable. As vector spaces over Q they have bases UA and UB
respectively. Put λ = card(UA). Since every element of |A| is of the form
r1u1 + · · · + rnun, ri ∈ Q, ui ∈ UA, we have |A| ≤ λ · ℵ0. From this we
easily deduce card(UA) = λ = κ. Similarly card(UB) = κ. So by fact (3),
A ∼= B. This shows that our theory is κ-categorical. Hence by Vaught’s test
it is complete.

A corollary of the result we have just proved is that the Abelian groups
(Q, +,−, 0) and (R, +,−, 0) are elementarily equivalent. Here Q = rationals,
R = reals.

3.

Remark. The theory of nontrivial torsion free divisible Abelian groups is not
ℵ0 categorical, since there are countable vector spaces over Q of dimensions
1, 2, 3, . . . . The theory of dense linear orderings without end points is not
κ-categorical, κ > ℵ0.
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4.

Remark. Let Tp be the theory of algebraically closed fields of characterstic
p, where p is a prime or p = 0. We shall see later that Vaught’s test can be
used to show that Tp is complete. Namely, Tp is κ-categorical for all κ > ℵ0.

The field axioms are as follows:

axioms for a commutative ring:

∀x∀y∀z((x + y) + z = x + (y + z))

∀x∀y(x + y = y + x)

∀x(x + 0 = x)

∀x(x + (−x) = 0)

∀x∀y∀z((x · y) · z = x · (y · z))

∀x∀y(x · y = y · x)

∀x∀y∀z(x · (y + z) = x · y + x · z)

0 6= 1

field axiom: ∀x(x 6= 0→ ∃y(x · y = 1)

If we weaken the last axiom to

∀x∀y((x 6= 0 ∧ y 6= 0)→ x · y 6= 0)

we get the axioms for a domain (usually called integral domain). A field (or
domain) is said to be of characteristic p if p is the least n such that

n = 1 + · · ·+ 1︸ ︷︷ ︸
n times

= 0 .

Here p will have to be a prime number (since m · n = 0 implies m = 0 or
n = 0). If there is no such p, then we say that the field is of characteristic 0.
For example Q, R, C, Z are of characteristic 0.

A field F = (|F|, +,−, 0, ·, 1) is said to be algebraically closed if it satisfies

∀x0∀x1 . . .∀xn(xn 6= 0→ ∃y(xny
n + · · ·+ x1y + x0 = 0))

for n = 1, 2, 3, . . . . For example, the fundamental theorem of algebra asserts
that the complex field C = (C, +,−, 0, ·, 1) is algebraically closed.
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5.

Remark. A difficult theorem of Morley says that if a theory T is countable
and κ-categorical for some uncountable cardinal κ, then it is κ-categorical for
all uncountable cardinals κ. This shows that the class of theories to which
Vaught’s test applies is rather limited. Many important complete theories
are not κ-categorical for any κ. This limitation of Vaught’s test will be partly
overcome by means of saturated models. (See theorem 7.3.6 below.)



Chapter 3

The compactness theorem

In this chapter and in chapter 4 it will be convenient to assume that formulae
have been defined in terms of ¬, ∨, ∃ only; then ∧,→,↔, ∀ can be introduced
by definition as usual.

3.1 Proof of the compactness theorem

1.

A set S of sentences is said to be consistent if it has a model. The following
theorem is due to Gödel 1929 in the countable case and Malcev 1936 in the
uncountable case.

2.

Theorem (compactness theorem). If every finite subset of S is consistent,
then S is consistent.

Proof. We give a proof by transfinite induction in the style of Henkin 1949.
Assume that S is finitely consistent, i.e. every finite subset of S has a model.
Let κ = max(ℵ0, card(S)). Thus κ is a cardinal; we identify cardinals with
initial ordinals. Let {cγ : γ < κ} be new constant symbols, and put W =
sig(S) ∪ {cγ : γ < κ}. Let {σγ : γ < κ} be an enumeration of all sentences σ
with sig(σ) ⊆W . Fix a variable x and let {ϕγ(x) : γ < κ} be an enumeration
of all formulas ϕ with only free variable x and sig(ϕ) ⊆ W . By induction

21
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on γ define finitely consistent sets of sentences Sγ , γ ≤ κ, and a function
h : κ→ κ as follows.

Stage 0: S0 = S.
Stage 2γ + 1: Let h(γ) be the least β such that cβ does not occur in S2γ

or in ϕγ(x). Define

S2γ+1 = S2γ ∪ {(∃xϕγ(x))→ ϕγ(ch(γ))} .

The sentence (∃xϕγ(x)) → ϕγ(ch(γ)) is called a Henkin sentence. We claim
that S2γ+1 is finitely consistent (assuming S2γ was). Let M be a model of
some finite subset of S2γ+1. We want to expand M to a model of those
sentences plus the Henkin sentence. First, interpret in |M| arbitrarily the
nonlogical symbols in ϕγ(x) which are not interpreted inM. Call the result-
ing structureM′. LetM′′ be the result of interpreting the Henkin constant
ch(γ) so as to make the Henkin sentence true.

Stage 2γ + 2: Let S2γ+2 = S2γ+1 ∪ {σγ} if this is finitely consistent;
otherwise S2γ+2 = S2γ+1 ∪ {¬σγ}. If the former is not fintely consistent then
the latter is.

Stage δ ≤ κ, δ limit ordinal: Let Sδ =
⋃
γ<δ Sγ. This is still finitely

consistent.
We now build a modelM directly from Sκ. Let T be the set of all variable

free terms in Sκ. Define an equivalence relation ≈ on T by t1 ≈ t2 if and
only if t1 = t2 ∈ Sκ. Put |M| = T/≈. If [t1], . . . , [tn] ∈ T/≈ and R is an
n-ary relation symbol, put

R([t1], . . . , [tn]) if and only if R(t1, . . . , tn) ∈ Sκ .

If o is an n-ary operation symbol define

o([t1], . . . , [tn]) = [o(t1, . . . , tn)] .

For c a constant symbol put c = [c]. Our modelM = (|M|, Φ) is defined by
|M| = T/≈, Φ(R) = R, Φ(o) = o, Φ(c) = c.

We claim that, for all sentences σ with sig(σ) ⊆ W , M |= σ if and
only if σ ∈ Sκ. We prove this by induction on the number of propositional
connectives in σ. For atomic σ this holds by definition ofM. For σ = σ1∨σ2

or σ = ¬σ1 it is easy to check. Suppose σ = ∃yϕ(y). If M |= σ then
M |= ϕ(t) for some t ∈ T . Hence by induction ϕ(t) ∈ Sκ. Therefore
∃yϕ(y) ∈ Sκ by finite consistency. Conversely, suppose ∃yϕ(y) ∈ Sκ. By
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relabeling variables we may assume that y = x. Also ϕ(x) = ϕγ(x) for some
γ < κ. Hence (∃xϕ(x)) → ϕ(cβ) ∈ Sκ where β = h(γ). Hence ϕ(cβ) ∈ Sκ
by finite consistency. Hence by induction M |= ϕ(cβ), hence M |= ∃yϕ(y).
This completes the proof.

3.2 Some applications to field theory

1.

Theorem (A. Robinson). Suppose σ is a sentence which is true in all fields
of characteristic 0. Then σ is true in all fields of characteristic p, for all but
finitely many primes p (the “exceptional primes”).

Proof. If the conclusion fails, then ¬σ is consistent with the field ax-
ioms plus 1 + · · ·+ 1︸ ︷︷ ︸

p

= 0, for infinitely many primes p. But, for primes p,

1 + · · ·+ 1︸ ︷︷ ︸
p

= 0 implies 1 + · · ·+ 1︸ ︷︷ ︸
n

6= 0 for all n < p. Hence ¬σ is finitely

consistent with the theory of fields of characteristic 0. Hence, by the com-
pactness theorem, ¬σ holds in some field of characteristic 0, contradiction.

2.

Corollary. The theory of fields of characteristic 0 is not finitely axiomatiz-
able.

3.

An affine variety is a set X ⊆ Cn such that

X = {(z1, . . . , zn) : fi(z1, . . . , zn) = 0, 1 ≤ i ≤ k}

where fi, 1 ≤ i ≤ k are polynomials in n variables with coefficients from C.
A mapping G : X → Cn is said to be polynomial if there exist polynomials
gj, 1 ≤ j ≤ n in n variables with coefficients from C, such that for all
(z1, . . . , zn) ∈ X,

G(z1, . . . , zn) = (g1(z1, . . . , zn), . . . , gn(z1, . . . , zn)) .
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Theorem (Ax). Let G : X → X be a polynomial map of an affine variety
in Cn into itself. If G is one-one, then G is onto.

Proof. More generally, we shall prove that the theorem holds for an
arbitrary algebraically closed field in place of C. Besides the compactness
theorem, we shall use completeness of the theory Tp of algebraically closed
fields of characteristic p where p is 0 or a prime.

For prime p let Fp be the algebraic closure of the prime field Fp = Z/pZ.
Note that any finite set of elements in Fp is contained in a finite subfield of
Fp. Hence the theorem holds for Fp.

Observe that the theorem holds for a particular field F if and only if F
satisfies a certain collection of sentences. If one of these sentences σ is false
in C, then by completeness of T0 we have T0 |= ¬σ. Hence Tp |= ¬σ for all
sufficiently large primes p. Hence Fp |= ¬σ. This is a contradiction.

For more applications of the compactness theorem in field theory, see
Robinson’s book and more recent literature. For applications to “local prop-
erties” in group theory, see Malcev’s book.

3.3 The Löwenheim-Skolem-Tarski theorem

1.

Note that the proof of the compactness theorem also established the fol-
lowing result: If S is (finitely) consistent then S has a model of power
≤ max(ℵ0, card(S)).

2.

Theorem (Löwenheim-Skolem-Tarski). Let S be a set of sentences which
has an infinite model. Let κ be a cardinal ≥ max(ℵ0, card(S)). Then S has
a model of power κ.

Proof. Let {cγ : γ < κ} be new constant symbols. Put

S∗ = S ∪ {cβ 6= cγ : β < γ < κ} .

Since S has an infinite model, S∗ is finitely consistent. Hence by the com-
pactness theorem S∗ is consistent. Applying the remark above we find that
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S∗ has a model of power ≤ max(ℵ0, card(S∗)) = κ. This model must have
power exactly κ.

3.

Corollary (Vaught’s test). Let T be a theory which

1. has no finite models

2. is κ-categorical for some κ ≥ card(T ).

Then T is complete.

Proof. Suppose not. Let A,B ∈ Mod(T ) such that A 6≡ B. By the
Löwenheim-Skolem-Tarski theorem find A′, B′ of power κ such that A ≡ A′,
B ≡ B′. Then A′ 6≡ B′. Hence A′ 6∼= B′ so T is not κ-categorical.
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Chapter 4

Decidability

4.1 Recursively axiomatizable theories

1.

Let V be a fixed recursive1 signature. The formulas ϕ with sig(ϕ) ⊆ V can
be Gödel numbered in the usual way. This permits notions from recursion
theory to be introduced. For instance, a set F of formulas is said to be
recursive if its set of Gödel numbers {](ϕ) : ϕ ∈ F} is recursive, etc.

2.

Definition. A theory T is said to be recursively axiomatizable if (i) sig(T )
is recursive, and (ii) T has a recursive set of axioms.

Remark. The notion of recursive axiomatizability is an important general-
ization of that of finite axiomatizability. Most theories which arise in prac-
tice have finite signature and are recursively axiomatizable, e.g. the theory of
groups, the theory of fields of characteristic 0, first order Peano arithmetic,
ZF set theory. Examples of theories which are not recursively axiomatizable
are: the theory of finite groups; Th(Z) where Z = (Z, +,−, ·, 0, 1, <).

1i.e. V is a recursive set, and we can recursively identify the elements of V as n-ary
relation or operation symbols or constant symbols. This is the case if V is finite.

27
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3.

A very important general result about recursively axiomatizable theories is
the following, which is a reformulation of Gödel’s completeness theorem.

Theorem (essentially Gödel 1929). Let T be a recursively axiomatizable
theory. Then T is recursively enumerable.

This theorem would usually be proved, following Gödel, by showing that
T can be generated from its axioms and a certain explicit recursive set of
“logical axioms” by means of a certain explicit recursive set of “logical rules”.
One would then apply Church’s thesis to conclude that T is recursively enu-
merable. Such a proof would give more or less information depending on the
choice of logical axioms and rules. We shall give a “bare bones” proof which
avoids these concepts entirely.

4.

Definition. A sentence τ is logically valid if A |= τ for all structures A with
sig(A) ⊆ sig(τ).

5.

Lemma. Let V be a fixed recursive signature. The set of all logically valid
sentences τ with sig(τ) ⊆ V is recursively enumerable.

Proof. We may safely assume that V contains no operation symbols. We
may also assume that the only logical symbols are ¬,∨, ∃. (Thus we are
dispensing with =.)

Let {cn : n ∈ ω} be a recursive set of new constant symbols and put
W = V ∪ {cn : n ∈ ω}. Let {ϕn(vin) : n ∈ ω} be a recursive enumeration of
all formulas ϕ(vi) with exactly one free variable and with sig(ϕ) ⊆ W . We
can choose2 our enumeration so that

sig(ϕn(vin)) ⊆ V ∪ {c0, . . . , c2n−1} .

We shall work with Henkin sentences (∃vinϕn(vin))→ ϕ(c2n). Let S = {σn :
n ∈ ω} be a recursive enumeration of all sentences σ with sig(σ) ⊆ W .

2This amounts to arranging things so that, in the proof of the compactness theorem
3.1, the function h is given by h(n) = 2n.
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Given a sentence τ with sig(τ) ⊆ V , we have

τ is logically valid

⇔ ¬τ has no model

⇔ ¬τ has no countable model (Löwenheim-Skolem theorem)

⇔ there is no structure A such that |A| = {cn : n ∈ ω} and sig(A) = W
and A |= ¬τ and, for all n, A |= (∃vinϕn(vin))→ ϕn(c2n)

⇔ there is no function f : S → {0, 1} such that for all n, f(¬σn) =
1 − f(σn), and for all m and n, f(σm ∨ σm) = max(f(σm), f(σn)) and
f(∃vinϕn(vin)) = f(ϕn(c2n) ≥ f(ϕn(cm)).

⇔ ∀f : S → {0, 1} ∃nR(f � Sn, τ) where Sn = {σ0, . . . , σn−1} and R is a
fixed primitive recursive relation

⇔ ∃N ∀f : S → {0, 1} (∃n ≤ N) R(f � Sn, τ) (by König’s lemma)

⇔ ∃N P (N, τ) where P is a fixed primitive recursive relation.

This proves the lemma.

Remark. The set of logically valid sentences is not recursively enumerable
(“Church’s theorem”).

6.

Proof of the theorem. Given a recursively axiomatizable theory T , let A =
{τn : n ∈ ω} be a recursive set of axioms for T . Put An = {τ0, . . . , τn−1}. If
σ is a sentence with sig(σ) ⊆ sig(T ), we have

σ ∈ T

⇔ A |= σ

⇔ ∃n An |= σ (compactness theorem)

⇔ ∃n
[∧n−1

i=0 τi → σ is logically valid
]
.

By the lemma, the expression in square brackets is recursively enumerable.
Hence so is T .
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7.

Exercise (Craig). Prove the converse of the above theorem: If a theory T
with sig(T ) recursive is recursively enumerable, then it is recursively axiom-
atizable.

4.2 Decidable theories

1.

Definition. A theory T is decidable if (i) sig(T ) is recursive, (ii) T is recur-
sive.

Remark. Every decidable theory is recursively axiomatizable, but the con-
verse fails, e.g. first order Peano arithmetic. there even exist finitely axiom-
atizable undecidable theories, e.g. Robinson’s Q, the theory of groups, the
theory of fields.

2.

Remark. The first order theories which are important in algebra tend to be
decidable. We make a short table.

Decidable Undecidable

Abelian groups (finite) groups
Boolean algebras (finite) distributive lattices
linear orderings
∗algebraically closed fields fields of characteristic p
∗Th(R) = real closed fields fields of characteristic 0
finite fields ordered fields
∗differentially closed fields of char. 0
ordered Abelian groups
Th(Qp), Qp = p-adic rationals

Note: A ∗ indicates that these decidability results will be proved later.

A useful sufficient condition for decidability is the following:
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3.

Theorem. Let T be a theory which is recursively aximatizable and complete.
Then T is decidable.

Proof. By the previous theorem, T is recursively enumerable. Also its com-
plement

T = {σ : σ is a sentence, sig(σ) ⊆ sig(T ), σ /∈ T}
= {σ : ¬σ ∈ T} (by completeness)

is recursively enumerable. Hence T is recursive.

4.

Examples. We have seen in exercise 2.1.4 that the theory of dense linear or-
derings without end points is complete. It is also recursively (in fact finitely)
axiomatizable. Hence by the previous theorem, it is complete.

Remark. Each of the following theories will be proved complete later: al-
gebraically closed fields of characteristic 0 or a prime p, real closed fields,
differentially closed fields of characteristic 0. Decidability then follows by
the previous theorem.

5.

Remark. The most versatile method for proving that an algebraic theory
T is decidable is quantifier elimination. In order to decide whether σ ∈ T
one constructs an equivalent quantifier-free sentence σ∗. It should be easy to
decide whether σ∗ ∈ T .

4.3 Decidable models

1.

Definition. A countable structure A is decidable if (i) sig(A) is finite; (ii)
there exists an enumeration of the universe of A, |A| = {ak : k ∈ ω}, such
that

{(](ϕ(v1, . . . , vn)), 〈k1, . . . , kn〉) : A |= ϕ(ak1, . . . , akn)}
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is recursive.

2.

Definition. A countable structure A is computable if (i) sig(A) is finite, and
(ii) as above but restricted to atomic formulas ϕ.

For example, the structure Z = (Z, +,−, ·, 0, 1, <) is computable but not
decidable. The structure (Q, <) is computable and hence decidable in view
of the following proposition.

3.

Proposition. Let T be a recursively axiomatizable theory which admits
elimination of quantifiers. If M ∈ Mod(T ) is computable, then it is decid-
able.

Proof. To decide whether M |= ϕ(a1, . . . , an) find a quantifier free ϕ∗ such
that T |= ∀x1 . . .∀xn(ϕ ↔ ϕ∗). Since T is recursively enumerable, we can
find ϕ∗ recursively. SoM |= ϕ(a1, . . . , an) if and only ifM |= ϕ∗(a1, . . . , an).
Since ϕ∗ is a Boolean combination of atomic formulas, we can recursively
decide whether M |= ϕ∗(a1, . . . , an).

Example. It is fairly easy to see that the field Q of algebraic numbers is re-
cursive. However, it is also a model of the theory of algebraically closed fields
of characteristic 0. We shall see later that this theory admits elimination of
quantifiers. Hence Q is decidable. Similarly, all countable algebraically closed
fields are computable and hence decidable.

4.

Theorem. Let T be a decidable theory such that sig(T ) is finite. Then T
has a decidable model.

Proof. We imitate the proof of the compactness theorem 3.1.2. Put V =
sig(T ) and let {cm : m ∈ ω} be a recursive list of new constant symbols.
Put W = V ∪ {cm : m ∈ ω}. Fix a variable x and let {ϕn(x) : n ∈ ω} be
a recursive enumeration of all formulas ϕ(x) with only one free variable x
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and with sig(ϕ) ⊆ W . Let {σn : n ∈ ω} be a recursive enumeration of all
sentences σ with sig(σ) ⊆W . Perform the following recursive construction.

Stage 0: Let S0 = T .
Stage 2n + 1: Let h(n) be the least m such that cm does not occur in

S2n ∪ {ϕn(x)}. Put S2n+1 = S2n ∪ {(∃xϕn(x))→ ϕn(ch(n))}.
State 2n+2: Put S2n+2 = S2n+1∪{σn} if this is consistent; S2n+2 = S2n+1∪

{¬σn} otherwise. To see that we can make this decision recursively, note that
S2n+1 = T ∪ {τ0, . . . , τ2n} for some finitely many sentences τ0, . . . , τ2n. Let
τ̃0, . . . , τ̃2n, σ̃n be the result of replacing the new constant symbols cm by new
variables zm. Then

S2n+1 ∪ {σn} is consistent

⇔ T ∪ ∃z0 . . . zj
(∧2n

i=0 τ̃i ∧ σ̃n
)

is consistent

⇔ ¬∃z0 . . . zj
(∧2n

i=0 τ̃i ∧ σ̃n
)

/∈ T ,

and we can decide this recursively.
At the end of the construction, Sω =

⋃
n∈ω Sn is a complete recursive

theory. As in the proof of 3.1.2 we can build a model M = (|M|, Φ) where
|M| = T/≈, T = {Gödel numbers of variable free terms}, t1 ≈ t2 if and
only if t1 ≈ t2 ∈ Sω, etc. M is decidable because we can identify |M| with
the set of least elements of equivalence classes under ≈, and then M |=
ϕ(t1, . . . , tn)⇔ ϕ(t1, . . . , tn) ∈ Sω.

5.

Remark. There exist examples of recursively (even finitely) axiomatizable
theories with no decidable (even computable) model. For example, we may
take as axioms a finite fragment of Peano arithmetic together with a false Σ0

1

sentence.
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Chapter 5

Elementary extensions

5.1 Definition and examples

1.

Definition. Let A,B be structures with sig(A) = sig(B) and |A| ⊆ |B|.
We say that A ⊆e B if for all formulas ϕ(x1, . . . , xn) with only the free
variables shown, and all a1, . . . , an ∈ |A|, A |= ϕ(a1, . . . , an) if and only if
B |= ϕ(a1, . . . , an). We then say that A is an elementary substructure of B,
or B is an elementary extension of A.

2.

Let A,B be as above. We say that A ⊆ B (A is a substructure of B, B is an
extension of A) if the above condition holds for atomic formulas ϕ.

3.

Example. Algebra is full of examples of substructures. E.g. if A and B are
groups, A ⊆ B if and only if A is a subgroup of B. Similarly for rings, fields,
linear orderings, etc.

4.

Example. Let Q = (Q, +,−, ·, 0, 1, <) and R = (R, +,−, ·, 0, 1, <). Then
clearly Q ⊆ R, but Q 6⊆e R since, for example, R |= ∃x(x · x = 1 + 1) while

35
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Q does not. This example actually shows that Q 6≡ R, i.e. Q and R are not
elementarily equivalent (definition 2.1.2).

5.

Proposition. If A ⊆e B then A ≡ B.

Proof. Obvious.

The converse does not hold, e.g.

6.

Example. Let N = {0, 1, 2, . . .}, P = {1, 2, . . .}. Then (P, <) ⊆ (N, <), and
(P, <) ≡ (N, <) since they are isomorphic. However (P, <) |= ∀x(1 = x∨1 <
x) and (N, <) |= ∃x(x < 1) so (P, <) 6⊆e (N, <) .

However, this phenomenon does not occur in theories which admit elim-
ination of quantifiers:

7.

Proposition. If A,B ∈ Mod(T ) where T admits elimination of quantifiers,
then A ⊆ B implies A ⊆e B.

Proof. Obvious.

8.

Examples. Let X be any densely ordered subset of the real numbers such
that X has no first or last element. E.g. X = (0, 1)∪ (1, 2) or X = (0, 1)∪Q.
Then (X, <) ⊆e (R, <) because the theory of dense linear ordering without
endpoints admits elimination of quantifiers.

9.

Example. The fact that the theory of algebraically closed fields admits
elimination of quantifiers yields the following result:
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Let Q be the field of algebraic numbers. Let

f1(x1, . . . , xn) = · · · = fk(x1, . . . , xn) = 0 6= g(x1, . . . , xn)

be a finite system of equations and inequations with coefficients
in Q. If the system has a solution in some extension field of Q,
then it has one in Q.

Proof. We may assume that the extension field is algebraically closed.
Hence it is an extension of Q, and by quantifier elimination the extension is
elementary. This gives the result immediately if we look at the formula

∃x1 . . .∃xn

[
k∧
i=1

fi(x1, . . . , xn) = 0 ∧ g(x1, . . . , xn) 6= 0

]
.

In other words, if a variety is nonempty, then it has a point with coordinates
in Q. This is closely related to Hilbert’s Nullstellensatz. (See chapter 6.)

9.

Definition (A. Robinson). A theory T is said to be model complete if for all
A,B ∈ Mod(T ), A ⊆ B implies A ⊆e B.

The previous proposition says that if T admints elimination of quan-
tifiers, then T is model complete. The converse is not true, e.g. T =
Th(Z, +,−, 0, 1, <) = Presburger arithmetic. This theory is model com-
plete but does not admint elimination of quantifiers. However, it admits
elimination of quantifiers if we add defined relations ≡m, m ≥ 2.

10.

Example. We shall show later that the theory of algebraically closed fields
is model complete and admits elimination of quantifiers. These concepts
have algebraic meaning: model completeness expresses the Hilbert Nullstel-
lensatz, while quantifier elimination is an abstract formulation of the theory
of resultants.
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5.2 Existence of elementary extensions

1.

Theorem. Any infinite structure A has a proper elementary extension A∗.

Proof. Let A = (|A|, Φ). Introduce new constant symbols a for each
a ∈ |A| and form the elementary diagram of A, i.e. the set of all sen-
tences ϕ(a1, . . . , an), sig(ϕ(x1, . . . , xn)) ⊆ sig(A), a1, . . . , an ∈ |A|, such1

that A |= ϕ(a1, . . . , an). Note that an elementary extension of A is virtually
the same thing as a model of the elementary diagram of A.

Let c be a new constant symbol and let S = (elementary diagram of
A)∪{c 6= a : a ∈ |A|}. Since |A| is infinite, S is finitely consistent. [ Details:
Let S0 be a finite subset of S. Let c0 ∈ |A|, c0 6= a for all a mentioned in S0.
Then A |= S0 if we interpret a as a, c as c0. ] Therefore by the compactness
theorem, S is consistent, i.e. has a model B = (|B|, Ψ). Put A∗ = (|A∗|, Φ∗)
where |A∗| = |B|, Φ∗ = Ψ � sig(A). Clearly A ⊆e A∗ since B |= elementary
diagram of A. Also |A| 6= |A∗| since c = Ψ(c) ∈ |A∗| \ |A|.

2.

Example. Let R = (R, +,−, ·, 0, 1, <, · · · ) where · · · represents other struc-
ture on R. Let R∗ be a proper elementary extension of R. Then R∗ will
contain infinitesimals, i.e. quantities δ such that 0 < δ < r for all r ∈ R,
r > 0. Elements of R∗ are sometimes called hyperreal numbers. They can be
used to give a rigorous development of calculus based on infinitesimals. This
is the beginning of a subject known as nonstandard analysis (A. Robinson).

3.

Exercise. Prove the upward Löwenheim-Skolem-Tarski theorem: Let A be
an infinite structure. Let κ be a cardinal ≥ max(‖A‖, |sig(A)|). Then A has
a proper elementary extension of power κ.

(Hint: Combine the elementary diagram method (used in the proof of the
previous theorem) with the proof of the Löwenheim-Skolem-Tarski theorem
in §3.3.)

1To be precise, instead of A |= ϕ(a1, . . . , an) we should write A|A| |= ϕ(a1, . . . , an)
where A|A| = (|A|,Φ ∪ {(a, a) : a ∈ |A|}).
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In addition to the compactness theorem, another useful method for con-
structing elementary extensions is the method of elementary chains (Tarski/Vaught):

4.

A chain is a collection of structures (Aα)α<δ where δ is a limit ordinal, such
that Aα ⊆ Aβ for all α < β < δ.

5.

Proposition. Given a chain as above, there is one and only one structure
Aδ =

⋃
α<δAα with the following properties:

1. |Aδ| =
⋃
α<δ |Aα|;

2. Aα ⊆ Aδ for all α < δ.

Proof. Obvious. Note that RAδ =
⋃
α<δ RAα , oAδ =

⋃
α<δ oAα, and cAδ = cA0 .

6.

Theorem (Tarski/Vaught elementary chain principle). Given an elementary
chain, i.e. a chain (Aα)α<δ such that Aα ⊆e Aβ for all α < β < δ, put
Aδ =

⋃
α<δAα. Then Aα ⊆e Aδ for all α < δ.

Proof. Show by induction on the length of a formula ϕ(x1, . . . , xn) that,
for all α < δ and a1, . . . , an ∈ |Aα|, Aα |= ϕ(a1, . . . , an) if and only if
Aδ |= ϕ(a1, . . . , an). This is trivial if ϕ is atomic or a Boolean combination of
shorter formulas. Assume that ϕ(x1, . . . , xn) = ∃yψ(x1, . . . , xn, y). If Aα |=
∃yψ(a1, . . . , an, y), let an+1 ∈ |Aα| be such that Aα |= ψ(a1, . . . , an, an+1).
Then Aδ |= ψ(a1, . . . , an, an+1) by induction, so Aδ |= ∃yψ(a1, . . . , an, y).
Conversely, suppose Aδ |= ∃yψ(a1, . . . , an, y). Then Aδ |= ψ(a1, . . . , an, b)
for some b ∈ |Aδ| =

⋃
α<δ |Aα|. Let β < δ be such that b ∈ |Aβ|. Then

Aβ |= ψ(a1, . . . , an, b) by induction. Hence Aβ |= ∃yψ(a1, . . . , an, y). Hence
Aα |= ∃yψ(a1, . . . , an, y) since Aα ⊆e Aβ.

Later we shall use this theorem plus compactness to construct saturated
models.
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5.3 Elementary monomorphisms

1.

Let A,B be structures with sig(A) = sig(B). We say that f : |A| → |B| is
an elementary embedding or elementary monomorphism if f is one-one and,
for all formulae ϕ(x1, . . . , xn) and all a1, . . . , an ∈ |A|, A |= ϕ(a1, . . . , an) ⇔
B |= ϕ(f(a1), . . . , f(an)).

2.

If the above equivalence holds for atomic ϕ, we say that f is an embedding
or monomorphism of A into B, or an isomorphism of A into (not necessarily
onto) B. For example, what is usually called a monomorphism of groups,
rings, etc. is a monomorphism in this sense.

The concepts of monomorphism and elementary monomorphism are es-
sentially just trivial variants of the concepts of extension and elementary
extension.

3.

Theorem. If A ≡ B then there exists a structure C such that both A and
B are elementarily embeddable into C. (The converse is obvious.)

Proof. Let S = (elementary diagram of A) ∪ (elementary diagram of B).
[ We assume that {a : a ∈ |A|} ∩ {b : b ∈ |B|} = ∅. ] Clearly any
model of S yields a C as desired. So by the compactness theorem it suf-
fices to show that S is finitely consistent. Let S0 be a finite subset of S.
Say S0 = {ϕ(a1, . . . , am), ψ(b1, . . . , bn)} where sig(ϕ ∧ ψ) ⊆ sig(A) = sig(B),
a1, . . . , am ∈ |A|, b1, . . . , bn ∈ |B|. Since A |= ∃x1 . . . xmϕ(x1, . . . , xm) and
B |= ∃y1 . . . ynψ(y1, . . . , yn) and A ≡ B, we see that ∃x1 . . . xmϕ(x1, . . . , xm)∧
∃y1 . . . ynψ(y1, . . . , yn) is consistent. Hence S0 is consistent, Q.E.D.

4.

From the above we can derive a criterion for model completeness:

Theorem (Robinson’s test). A theory T is model complete⇔ for any A,B ∈
Mod(T ) and monomorphism A → B, we can find an elementary extension
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A∗ of A and a monomorphism B → A∗ so that the diagram

B

  BBBBBBBB

A

OO

⊆e A∗

commutes.

Proof. ⇒: Since T is model complete, the monomorphism A → B is elemen-
tary, so we may take A∗ = B.
⇐: Given a monomorphism A → B where A,B ∈ Mod(T ). Use the

hypothesis repeatedly to construct a pair of elementary chains

B = B0
//e

!!BBBBBBBB B1
//e

!!BBBBBBBB
· · · //e

!!BBBBBBBB Bn //e

!!BBBBBBBB
· · ·

A =

OO

A0
//e A1

//e

OO

· · · //e An //e

OO

· · ·

where all triangles commute. Hence Aω =
⋃
n∈ωAn ∼=

⋃
n∈ω Bn = Bω so we

have by Tarski/Vaught

Aω ∼= Bω

A

OO
e

// B

OO
e

whence A → B is elementary. So T is model complete.
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Chapter 6

Algebraically closed fields

6.1 Simple field extensions

1.

Let A be any structure. For each a ∈ |A| introduce a new constant symbol
a. The diagram of A is the set of atomic sentences ϕ(a1, . . . , an) which hold
in A. Recall that an extension of A is any structure B ⊇ A. Note that an
extension of A is virtually the same thing as a model of the diagram of A.

2.

Let A be a field. A field extension of A is an extension B ⊇ A such that B
is a field. A field extension of A is thus virtually the same thing as a model
of (field axioms) ∪ (diagram of A).

3.

If A,B are fields, A ⊆ B, and b ∈ |B|, let A[b] be the smallest substructure
of B containing |A| ∪ {b}, i.e. the subring generated by |A| ∪ {b}. Let A(b)
be the smallest subfield of B containing |A| ∪ {b}. A field extension of A is
said to be simple if it is of the form A(b).

We want to survey all possible simple field extensions of A. This survey is
the main piece of algebraic information that we need for our model-theoretic
analysis.

43
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4.

Let A be a field and consider terms t(x) such that sig(t(x)) ⊆ sig(diagram of
A)) and x is the only free variable in t(x). Two such terms t1(x) and t2(x)
are said to be equivalent if

(field axioms) ∪ (diagram of A) |= ∀x(t1(x) = t2(x)) .

The set of equivalence classes is naturally a commutative ring and is denoted
A[x]. We shall see that A[x] is a domain.

5.

A polynomial is a term f(x) as above with either f(x) ≡ 0 or f(x) =
anx

n + · · · + a1x + a0, ai ∈ |A|. Clearly each equivalence class in A[x]
contains a polynomial. We claim that each equivalence class contains only
one polynomial. Thus the polynomials are a system of representatives for
the equivalence classes in A[x].

Obviously the polynomials over A form a domain, since if f(x) = amxm+
· · ·+ a1x + a0, g(x) = bnx

n + · · ·+ b1x + b0, am 6= 0 6= bn, then f(x) · g(x) =
ambnx

m+n + · · · 6= 0. We now use the following fact: any domain is embed-
dable in a field, its field of quotients. In particular, the set of polynomials
over A is embedded in a field extension of A. Hence distinct polynomials
represent distinct equivalence classes in A[x], as claimed above.

6.

It follows that A[x] is a domain. The quotient field of A[x] is denoted A(x).
This is in agreement with our earlier notation for simple extensions. A(x) is
our first example of a simple extension of A.

7.

The degree of a nonzero polynomial f(x) ∈ A[x] is deg(f) = n where f(x) =
anx

n + · · ·+ a1x + a0, an 6= 0. The degree of the zero polynomial, deg(0), is
undefined.

Lemma (division algorithm). If f(x), g(x) ∈ A[x], g 6= 0, there exist
q(x), r(x) ∈ A[x] such that f(x) = g(x) · q(x) + r(x) and either r ≡ 0 or
deg(r) < deg(g).



6.1. SIMPLE FIELD EXTENSIONS 45

Proof. As usual.

In the above lemma, if r ≡ 0 we say that g divides f .

8.

Definition. For f(x) ∈ A[x] we say that f(x) is nonconstant if deg(f) > 0.
We say that f(x) is irreducible if f is nonconstant and there is no nonconstant
g(x) ∈ A[x] of lower degree than f(x) such that g(x) divides f(x).

9.

Let f(x) ∈ A[x] be nonconstant. For g1, g2 ∈ A[x] say g1 = g2 mod f if
f divides g1 − g2. Let A[x]/(f(x)) be the set of equivalence classes mod
f . Clearly A[x]/(f(x)) has the structure of a commutative ring with A
as a subfield. Clearly each equivalence class mod f contains one and only
one polynomial g(x) ∈ A[x] such that deg(g) < deg(f) or g ≡ 0. Thus
A[x]/(f(x)) may be viewed as a vector space of dimension deg(f) over A.

10.

Lemma. If f(x) is irreducible then A[x]/(f(x)) is a field.

Proof. Given g ∈ A[x], deg(g) < deg(f), g 6= 0 mod f , to find an inverse
mod f . Put

I = {sf + tg : s, t ∈ A[x]} .

Let h ∈ I, h 6≡ 0 be of least possible degree. Apply the division algorithm
to get f(x) = g(x) · q(x) + r(x). Note that r ∈ I, hence deg(r) < deg(h) is
impossible. Hence r ≡ 0, i.e. h divides f . Also deg(h) ≤ deg(g) < deg(f).
Since f is irreducible it follows that h is a constant. h 6= 0 since f 6= 0. We
now have sf + tg = h ∈ |A|, so h−1tg = 1 mod f , so h−1t is the desired
inverse, Q.E.D.

11.

In the above lemma, let b be the equivalence class of x in A[x]/(f(x)). Then
A(b) = A[x]/(f(x)) is a simple field extension of A. Note also that A[b] =
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A(b) in this case, so the dimension of A(b) over A as a vector space is finite,
being just deg(f).

We now have two kinds of examples of simple field extensions of A. The
next theorem says that there are no others.

12.

Theorem. Let A(b) be any simple field extension of A. Then either

1. A(b) ∼= A[x]/(f(x)) for some irreducible f ∈ A[x], or

2. A(b) ∼= A(x).

In both cases the isomorphism is the identity on A and sends b to x.

Proof. Case 1: b is algebraic over A, i.e. f(b) = 0 for some nonzero f ∈ A[x].
Let f be of least degree such that this holds. Clearly f is irreducible.

We claim that g(b) = 0 if and only if f divides g. One direction is
obvious. For the other direction, suppose g(b) = 0. The division algorithm
gives g(x) = f(x) · q(x) + r(x). Hence r(b) = f(b) · q(b) + r(b) = g(b) = 0.
Hence we cannot have deg(r) < deg(f). Hence r ≡ 0, i.e. f divides g. This
proves the claim.

It follows that g1(b) = g2(b) if and only if f divides g1− g2. This matches
the definition of A[x]/f , so we have A[b] ∼= A[x]/f . But by lemma 10 the
latter is a field, hence so is the former, i.e. A[b] = A(b).

Case 2: not case 1, i.e. b is transcendental over A. Thus g1(b) = g2(b)
if and only if g1(x) ≡ g2(x). Thus A[b] ∼= A[x] as rings. Hence the quotient
fields are also isomorphic, i.e. A(b) ∼= A(x).

13.

Corollary. Let A(b1) and A(b2) be two simple extensions of A. If f(b1) =
f(b2) = 0 for some ireducible f ∈ A[x], then A(b1) ∼= A(b2).

14.

Corollary. b is algebraic over A if and only if A(b) is finite dimensional over
A.



6.2. ALGEBRAIC CLOSURE 47

6.2 Algebraic closure

1.

A field extension B ⊇ A is algebraic over A if each b ∈ |B| is algebraic over
A.

Lemma. If A ⊆alg B ⊆alg C then A ⊆alg C.

Proof. Given c ∈ |C|, to show that |A(c) : A| (the dimension of A(c) over A
as a vector space) is finite. Let g ∈ B[x] be nonzero such that g(c) = 0. Put
B0 = A(b0)(b1) · · · (bn) where g(x) = bnx

n + · · ·+ b1x + b0. Hence |B0(c) : A|
is finite. Hence |A(c) : A| is finite.

B //finite B(c)

A

OO

//
finite
A(c)

OO

2.

Definition. A field B is algebraically closed if every nonconstant g(x) ∈ B[x]
has a root in B, i.e. g(b) = 0 for some b ∈ |B|. For any field A, an algebraic
closure of A is a field extension B ⊇ A such that (i) B is algebraic over A,
and (ii) B is algebraically closed.

3.

Proposition. Every field A has an algebraic closure.

Proof. Note first that for any nonconstant g(x) ∈ A[x] we can adjoin a root,
i.e. we can find a simple algebraic field extension A(b) such that g(b) = 0.
(Just factor g(x) into irreducibles and apply the construction of Lemma 6.1.10
to one of these irreducible factors.)

Now let gα(x), α < β be an enumeration of all the nonconstant g(x) ∈
A[x]. Put A0 = A, Aα+1 = Aα(bα) where gα(bα) = 0, and Aδ =

⋃
α<δAα for

limit ordinals δ ≤ β. Finally put B1 = Aβ. By Lemma 6.2.1 B1 is algebraic
over A, and by construction every nonconstant g(x) ∈ A[x] has a root in B1.
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Repeating this construction ω times, we get

A = B0 ⊆alg B1 ⊆alg · · · ⊆alg Bn ⊆alg · · · ,

n ∈ ω, such that each nonconstant g(x) ∈ Bn[x] has a root in Bn+1. Thus
B =

⋃
n∈ω Bn is an algebraic closure of A.

4.

Lemma. If A is algebraically closed and A ⊆alg B, then A = B.

Proof. Since A is algebraically closed, the only irreducible polynomials in
A[x] are linear, i.e. of degree 1. Hence by Theorem 6.1.12 every element of
an algebraic extension of A actually belongs to A.

5.

Proposition. Any two algebraic closures of a field A are isomorphic over
A.

Proof. Let B1 and B2 be two algebraic closures of A.

B1 B2

A

``AAAAAAA

>>}}}}}}}

If A is algebraically closed, then B1 = B2 = A by the previous lemma.
By Zorn’s lemma or transfinite induction, it suffices to find bi ∈ |Bi| \ |A|,
i = 1, 2, such that A(b1) ∼= A(b2) over A. Since A is not algebraically closed,
let f ∈ A[x] be nonconstant with no root in A. We may assume that f is
irreducible. Take bi ∈ |Bi| so that f(bi) = 0, i = 1, 2. Then A(b1) ∼= A(b2)
over A by Corollary 6.1.13. This completes the proof.

By the above proposition we are justified in writing A = the algebraic
closure of A (unique up to isomorphism over A). By the proof of Proposition
6.2.3 we have ‖A‖ = max(‖A‖,ℵ0).
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6.

Corollary. If B ⊇ A is algebraically closed, then A is isomorphic over A to
a subfield of B.

B

A ⊇

==|
|

|
|

A

OO

Proof. Let C be the subfield of B with |C| = {b ∈ |B| : b is algebraic over A}.
By Lemma 6.2.4 C is algebraically closed. Hence C is an algebraic closure of
A. Hence by Proposition 6.2.5 we have that A is isomorphic to C over A.

6.3 Completeness and model completeness

In this section we show that the theory Tp of algebraically closed fields of
characteristic p (p = 0 or prime) is complete and model complete.

1.

Lemma. Let A be a field and let B1,B2 be algebraically closed extensions
of A such that ‖B1‖ = ‖B2‖ = κ > max(ℵ0, ‖A‖). Then B1 and B2 are
isomorphic over A.

B1 B2

A

``AAAAAAA

>>}}}}}}}

Proof. We use a back-and-forth argument. Let |Bi| = {bγi : γ < κ}, i = 1, 2.
At stage γ of our construction we will have a partial isomorphism iγ : Aγ1 ∼=
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Aγ2 where A ⊆ Aγi ⊆ Bi, ‖A
γ
i ‖ < κ, i = 1, 2.

B1 B2

iγ : Aγ1

OO

∼= Aγ2

OO

A

``AAAAAAA

>>}}}}}}}

Stage 0: A0
1 = A0

2 = A, i0 = identity.
Stage 2γ + 1: If bγ1 is algebraic over A2γ

1 , let f ∈ A2γ
1 [x] be irreducible

such that f(bγ1) = 0, and take b ∈ |B2| such that i2γ(f)(b) = 0. If bγ1 is

transcendental over A2γ
1 , take b ∈ |B2| \

∣∣∣A2γ

2

∣∣∣; this is possible since
∥∥∥A2γ

2

∥∥∥ <

κ, and b is then transcendental over A2γ
2 by Lemma 6.2.4. In either case, by

Theorem 6.1.12 and Corollary 6.1.13 we can define an isomorphism

i2γ+1 : A2γ+1
1 = A2γ

1 (bγ1)
∼= A2γ

2 (b) = A2γ+1
2

by i2γ+1 ⊇ i2γ , i2γ+1(b
γ
1) = b.

Stage 2γ + 2: Same as stage 2γ +1 except reverse the roles of B1 and B2.
Stage limit δ ≤ κ: Aδi =

⋃
γ<δA

γ
i , i = 1, 2, iδ =

⋃
γ<δ iγ . Finally we have

iκ : B1 = Aκ1 ∼= Aκ2 = B2, Q.E.D.

2.

Theorem. Tp is κ-categorical for all κ > ℵ0.

Proof. LetA be the smallest field of characteristic p, i.e.A = Q = (Q, +,−, ·, 0, 1)
if p = 0, A = Z/p if p is prime. Note that A is a subfield of any field of
characteristic p. Let B1,B2 ∈ Mod(Tp), ‖B1‖ = ‖B2‖ = κ. Then we have
that B1

∼= B2 over A by Lemma 6.3.1.

3.

Corollary. Tp is complete.

Proof. Immediate by Vaught’s test 2.2.4.
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4.

Corollary. Tp is decidable.

Proof. Immediate from theorem 4.2.3.

5.

Exercise. Prove that the theory of algebraically closed fields (of all charac-
teristics) is decidable.

6.

Theorem (A. Robinson). Tp is model complete.

Proof. Given a monomorphism A → B where A,B are algebraically closed,
we want to show that this monomorphism is elementary. Let κ be a cardinal
> ‖B‖. By Exercise 5.2 we can get elementary extensions A∗ of A and B∗
of B such that ‖A∗‖ = ‖B∗‖ = κ. Then A∗ ∼= B∗ over A by Lemma 6.3.1.

A∗ ∼= B∗

A

OO
e

// B

OO
e

Since the diagram commutes, the monomorphism A → B is elementary,
Q.E.D.

7.

Corollary (Hilbert). Let A be a field and let A be its algebraic closure. Let

g1(x1, . . . , xn) = · · · = gm(x1, . . . , xn) = 0

f(x1, . . . , xn) 6= 0

}
(∗)

be a finite system of polynomial equations and inequations with coefficients
in A. If (∗) has a solution in some field extension of A, then it has a solution
in A.

(Algebraic reformulation: The algebraic points on a variety are dense with
respect to the Zariski topology on that variety.)
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Proof. This is immediate from model completeness of the theory of alge-
braically closed fields. Consider the sentence

σ = ∃x1 · · ·xn

(
m∧
i=0

gi = 0 ∧ f 6= 0

)
.

If A ⊆ B |= σ then B |= σ. By Corollary 6.2.6 we have A ⊆ A ⊆ B. Hence
A |= σ by model completeness.

6.4 Hilbert’s Nullstellensatz

1.

Let A be a field and let R = A[x1, . . . , xn] be the ring of polynomials in n
variables x1, . . . , xn over A. A zero of f ∈ R is an n-tuple b1, . . . , bn ∈ |B|,
where B is a field extension of A, such that f(b1, . . . , bn) = 0. An algebraic
zero of f is a zero whose coordinates b1, . . . , bn lie in A, the algebraic closure
of A.

2.

Theorem (Nullstellensatz). Suppose f, g1, . . . , gm ∈ R such that every com-
mon algebraic zero of g1, . . . , gm is a zero of f . Then there exists a nonnega-
tive integer k such that

fk =
m∑
i=1

pigi

where p1, . . . , pm ∈ R. (The converse holds trivially.)

Proof. Let I be the set of f ∈ R for which the conclusion holds. Suppose
the conclusion fails, i.e. f /∈ I. then we claim that I is an ideal in R, i.e.

(i) g, h ∈ I ⇒ g + h ∈ I;

(ii) g ∈ I, h ∈ R ⇒ g · h ∈ I;

(iii) 0 ∈ I and 1 /∈ I.
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To prove (i), suppose g, h ∈ I, say gk =
∑

pigi and hl =
∑

qigi. Then

(g + h)k+l =
∑

i+j=k+l

(
k + l

i

)
gihj .

Since i + j = k + l, we must have either i ≥ k or j ≥ l. Therefore each term
on the right hand side contains gk or hl. Therefore each term is of the form∑

rigi. So (g + h)k+l is also of this form. So g + h ∈ I. To prove (ii) just
note that if gk =

∑
pigi then (g · h)k =

∑
hkpigi so g · h ∈ I. Part (iii) is

obvious since f /∈ I.
Thus I is an ideal containing no power of f . By Zorn’s lemma let J ⊇ I

be an ideal containing no power of f and maximal with this property.
We claim that J is a prime ideal1, i.e. g /∈ J, h /∈ J ⇒ g · h /∈ J . If g /∈ J

then the ideal generated by J ∪{g} is properly larger than J , so some power
of f belongs to it, say fk = sg + u where s ∈ R, u ∈ J . Similarly, if h /∈ J
then f l = th + v where t ∈ R, v ∈ J . Hence

fk+l = (sg + u) · (th + v) = stgh + sgv + thu + uv︸ ︷︷ ︸
∈ J

.

If gh ∈ J then fk+l ∈ J , contradiction. This proves the claim.
Put R1 = R/J = the quotient ring of R by J . Since J is prime, R1 is a

domain. Let B be the quotient field of R1. We claim that A is canonically
isomorphic to a subfield of B. This is clear since |A| ∩ J = {0} (since
|A| ∩ J 6= {0} implies 1 ∈ J).

Let b1, . . . , bn ∈ |B| correspond to x1, . . . , xn ∈ R, i.e. bi = [xi]J . Then
for any g ∈ R, g(b1, . . . , bn) = 0 if and only if g ∈ J .

In particular, g1(b1, . . . , bn) = · · · = gm(b1, . . . , bn) = 0 and f(b1, . . . , bn) 6=
0. Hence by model completeness (Corollary 6.3.7) we can find a1, . . . , an ∈
|A| such that g1(a1, . . . , an) = · · · = gm(a1, . . . , an) = 0 and f(a1, . . . , an) 6=
0. Q.E.D.

3.

Given the statement of Hilbert’s Nullstellensatz, it is natural to ask whether a
bound on the exponent k can be computed. We can use Gödel’s completeness
theorem 4.1.3 to show that this is the case:

1The Nullstellensatz actually implies that J is a maximal ideal, i.e. R/J is a field.
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Theorem (effective bounds for Hilbert’s Nullstellensatz). We can find a
recursive function K : ω3 → ω with the following property:

Let A be a field and let f, g1, . . . , gm ∈ R = A[x1, . . . , xn] be
such that every common algebraic zero of g1, . . . , gm is a zero of
f . If f, g1, . . . , gm are of degree ≤ d, then fk =

∑
pigi for some

k ≤ K(m, n, d) and some pi ∈ R of degree ≤ K(m, n, d).

Proof. Let T be the theory of algebraically closed fields with a distinguished
subfield. Let σmndk be a sentence in the language of T asserting that, for
all polynomials f, g1, . . . , gm of degree ≤ d in n variables x1, . . . , xn with
coefficients in the distinguished subfield, if all common zeros of g1, . . . , gm
are zeros of f , then there exists polynomials p1, . . . , pm of degree ≤ k in
variables x1, . . . , xn with coefficients in the distinguished subfield, such that
f l =

∑
pigi for some l ≤ k.

We claim that ∀m, n, d ∃k σmndk ∈ T . To see this, assume the contrary for
some fixed m, n, d and consider a theory T ′ ⊇ T with new constant symbols
intended to denote the coefficients of f, g1, . . . , gm. Let T ′ say that for all k,
σmndk fails for this choice of f, g1, . . . , gm. By the compactness theorem, T ′

is consistent. But any model of T ′ would give a counterexample to Hilbert’s
Nullstellensatz.

Let R(m, n, d, k) ⇔ σmndk ∈ T . By Gödel’s completeness theorem, T
is recursively enumerable. Hence so is R. Hence we can find a recursive
function K : ω3 → ω such that R(m, n, d, K(m, n, d)) for all m, n, d. This
completes the proof.

4.

One could actually show that the bounding function K can be taken to
be primitive recursive. This would be done by giving an explicit quantifier
elimination procedure for the theory of algebraically closed fields.



Chapter 7

Saturated models

7.1 Element types

1.

Given a theory T and a nonnegative integer n, let Fn(T ) be the set of all
formulas ϕ(v1, . . . , vn) with no free variables other than v1, . . . , vn, such that
sig(ϕ) ⊆ sig(T ). We say that Y ⊆ Fn(T ) is consistent over T if there exist
A ∈ Mod(T ) and a1, . . . , an ∈ |A| such that A |= ϕ(a1, . . . , an) for all ϕ ∈ Y .
Note that by compactness, if each finite subset of Y is consistent over T then
so is Y .

2.

A realization of Y ⊆ Fn(T ) is an n-tuple a1, . . . , an ∈ |A|, A ∈ Mod(T ), such
that A |= ϕ(a1, . . . , an) for all ϕ ∈ Y . We then say that Y is realized in the
model A.

We say that ψ ∈ Fn(T ) is a logical consequence of Y ⊆ Fn(T ) over T if
every realization of Y is a realization of ψ.

3.

Definition. An n-type over T is a set p ⊆ Fn(T ) which is consistent over T
and closed under logical consequence over T .

55
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4.

Definition. An n-type p over T is said to be complete if, for all ϕ ∈ Fn(T ),
either ϕ ∈ p or ¬ϕ ∈ p. The set of all complete n-types over T is denoted
Sn(T ).

5.

Remark. Let us say that ϕ, ψ ∈ Fn(T ) are equivalent over T if

T |= ∀v1 · · · ∀vn(ϕ↔ ψ) .

The equivalence classes form a Boolean algebra Bn(T ) where the Boolean
operations are given by

[ϕ] · [ψ] = [ϕ ∧ ψ]

[ϕ] + [ψ] = [ϕ ∨ ψ]

−[ϕ] = [¬ϕ]

1 = [v1 = v1] , 0 = [v1 6= v1]

(For n = 0 this Boolean algebra is sometimes known as the Lindenbaum
algebra of T .) A complete n-type over T is essentially the same thing as an
ultrafilter on Bn(T ). Thus Sn(T ) is just the Stone space of Bn(T ).

6.

Example. Suppose T admits elimination of quantifiers. Then an n-type
over T is determined by the quantifier-free formulas in it (at least for n ≥ 1).
For example, let T be the theory of dense linear order without end points. A
complete n-type over T is determined by specifying the order relations among
v1, . . . , vn. Thus |Sn(T )| =

∑n
k=1 kn. For example |S1(T )| = 1, |S2(T )| = 3,

|S3(T )| = 13, etc.

We shall see later that a theory T is ℵ0-categorical if and only if ∀n(Sn(T )
is finite). Here T is assumed to be countable and complete and to have an
infinite model.
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7.

Remark. Let T be a complete theory and let p be a complete n-type over
T , n ≥ 1. It is easy to see that every finite subset of p is realized in every
model of T . (Consider sentences of the form ∃v1 · · · ∃vn(ϕ1 ∧ · · · ∧ϕk) where
ϕ1, . . . , ϕk ∈ p.) However, p itself need not be realized in a given model of
T . For example, let T = T0 = the theory of algebraically closed fields of
characteristic zero. Let p ∈ S1(T ) be a 1-type saying that v1 is transcenden-
tal, i.e. anv

n
1 + · · · + a1v1 + a0 6= 0 for ai ∈ Z, an 6= 0. Clearly every finite

subset of p is realized in every algebraically closed field of characteristic 0.
But p itself is not realized in Q = the algebraic closure of the rational field
Q = (Q, +,−, ·, 0, 1).

8.

Proposition. Let A be an infinite model of a complete theory T and assume
|T | ≤ ‖A‖.

(i) Given p ∈ Sn(T ) we can find an elementary extension of A of the same
power as A in which p is realized.

(ii) A has an elementary extension of power max(‖A‖, |Sn(T )|) in which
every p ∈ Sn(T ) is realized.

Proof. (i) Let c1, . . . , cn, a (a ∈ |A|) be new constant symbols. Since each
finite subset of p is realized n A, we have that

(elementary diagram of A) ∪ {ϕ(c1, . . . , cn) : ϕ ∈ p}

is finitely consistent. Hence by the compactness and Löwenheim-Skolem
theorems, this has a model of cardinality max(‖A‖, |p|) = ‖A‖. This is an
elementary extension of A and the interpretation of c1, . . . , cn realizes p.

(ii) We use an elementary chain argument. Let Sn(T ) = {pα : α < κ}
where κ = |Sn(T )|. Put A0 = A, Aα+1 = an elementary extension of Aα
of the same power as Aα in which pα is realized; Aδ =

⋃
α<δAα for limit

δ ≤ κ; finally B = Aκ. We can show by induction on α ≤ κ that ‖Aα‖ ≤
max(‖A‖, |α|). Hence ‖B‖ ≤ max(‖A‖, κ). If need be, use the upward
Löwenheim-Skolem theorem to raise the cardinality of B to max(‖A‖, κ).
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7.2 Saturated models

1.

Given a structure B = (|B|, Φ) and a set X ⊆ |B|, introduce new constant
symbols a (a ∈ X) and let BX = (|B|, ΦX) where ΦX = Φ ∪ {(a, a) : a ∈
X}. Thus BX is just like B but with its signature expanded to include
constant symbols denoting the elements of X. Th(BX) is just the set of
all sentences ϕ(a1, . . . , an) with a1, . . . , an ∈ X, sig(ϕ) ⊆ sig(B), such that
B |= ϕ(a1, . . . , an).

2.

Definition. Let κ be an infinite cardinal. We say that B is κ-saturated if
for all X ⊆ |B| of cardinality less than κ, every complete 1-type over X is
realized in B.

(To be precise we should say: every complete 1-type over Th(BX) is
realized in BX .)

3.

Exercise. Show that if B is κ-saturated, then for all X ⊆ |B| of cardinality
< κ and all n-types p over X (n ≥ 1), p is realized in B.

4.

Example. Let B = (|B|, <) be a linear ordering, and let κ be an infinite
cardinal. We say that B is κ-dense if for every pair of sets X0, X1 ⊆ |B|
of cardinality < κ, if X0 < X1 we can find b ∈ |B| so that X0 < b < X1.
For example, (Q, <) is ℵ0-dense (in our previous terminology, dense without
endpoints). Also, (R, <) is not ℵ1-dense, as may be seen by taking X0 = {0},
X1 = {1/2, 1/4, 1/8, . . .}.

Proposition. Let B be a dense linear ordering without end points. B is
κ-dense if and only if B is κ-saturated.

Proof. This is easy using the fact that the theory of dense linear orderings
without end points admits elimination of quantifiers.
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5.

We note that a finite structure is κ-saturated for all infinite κ. If an infinite
structure B is κ-saturated, then ‖B‖ ≥ κ.

6.

Definition. A structure B is saturated if it is ‖B‖-saturated.

For example, (Q, <) is ℵ0-saturated, hence saturated.

7.

Proposition. (i) every uncountable algebraically closed field is saturated.
(ii) Q and Fp are not saturated. (iii) There exist countable saturated alge-
braically closed fields of every characteristic.

Proof. Let X ⊆ |B| where B is an algebraically closed field. A complete 1-
type over X is virtually the same thing as a simple extension of the subfield
A generated by X. We may therefore apply our classification of simple field
extensions (see §6.1). The details are left to the reader.

8.

Theorem (uniqueness of saturated models). Let A and B be saturated
models of the same power. If A and B are elementarily equivalent, then they
are isomorphic.

Proof. We use a back-and-forth argument. Let ‖A‖ = ‖B‖ = κ and fix
well orderings of |A| and |B| of order type κ. We shall define enumerations
|A| = {aγ : γ < κ} and |B| = {bγ : γ < κ} in such a way that (A, aγ)γ<κ ≡
(B, bγ)γ<κ.

Stage γ < κ, γ even: We have inductively (A, aα)α<γ ≡ (B, bα)α<γ. Let aγ
be the least element of |A| (with respect to the fixed well ordering) different
from aα, α < γ. Let

pγ ∈ S1(Th((A, aα)α<γ)) = S1(Th((B, bα)α<γ))
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be the complete 1-type over {aα : α < γ} realized by aγ . Since B is κ-
saturated we can find bγ ∈ |B| realizing pγ over {bα : α < γ}. Thus

(A, aα)α≤γ ≡ (B, bα)α≤γ .

Stage γ < κ, γ odd: Reverse the roles of A,B.
Finally (A, aγ)γ<κ ≡ (B, bγ)γ<κ and these enumerations exhaust the uni-

verses of |A| and |B| respectively since the elements were chosen by means
of fixed well orderings of order type κ.

Thus aγ 7→ bγ is an isomorphism of A onto B.

9.

Theorem (universality of saturated models). Let B be a κ-saturated model
and A ≡ B, ‖A‖ ≤ κ. Then there exists an elementary monomorphism of A
into B.

Proof. Similar to the previous proof.

10.

Example. For algebraically closed fields, theorems 8 and 9 have the fol-
lowing significance. Let p = 0 or a prime. There is exactly one countable
saturated algebraically closed field. Every countable algebraically closed field
of characteristic p is embeddable into this one.

7.3 Existence of saturated models

1.

We begin with an existence theorem for countable saturated models.

Theorem (Vaught). Let T be a complete countable theory. The following
are equivalent.

(1) T has a countable saturated model;

(2) |Sn(T )| ≤ ℵ0 for all n.
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Proof. (1)⇒ (2): Easy. Let A be the countable saturated model of T . Then
each p ∈ Sn(T ) is realized in A. Hence Sn(T ) is countable.

(2) ⇒ (1): Note first that (2) implies

(3) for all finite X ⊆ |B|, B ∈ Mod(T ), one has |S1(X)| ≤ X0.

We shall prove (3) ⇒ (1) by an elementary chain argument.
Stage 0. Let A0 be any countable model of T .
Stage n + 1. We have a countable An ∈ Mod(T ). Let {X i

n : i ∈ ω}
be an enumeration of the finite subsets of |An|. Put A0

n = An, Ai+1
n =

a countable elementary extension of Ain in which all complete 1-types over
X i
n are realized. (Ai+1

n exists because S1(X
i
n) is countable.) Finally put

An+1 =
⋃
i∈ωAin. This completes stage n.

Finally put B =
⋃
n∈ωAn. We claim that B is ℵ0-saturated. Let X ⊆ B

be finite. Then X ⊆ |An| for some n. Hence X = X i
n for some i. Hence

every 1-type over X is realized in Ai+1
n . This is an elementary submodel of

B, so these types are realized in B, Q.E.D.

2.

Example. We give an example of a countable complete theory T with no
countable saturated model. Let T = Th(QQ) where Q = (Q, <). Then
|S1(T )| = 2ℵ0 because each Dedekind cut in (Q, <) gives rise to a different
complete 1-type over T . (There are other complete 1-types over T which do
not correspond to Dedekind cuts.)

3.

The basic theorem on the existence of uncountable saturated models is the
following:

Theorem (Morley and Vaught). Let A be an infinite model and let κ be an
infinite cardinal such that κ ≥ sig(A). ThenA has a κ+-saturated elementary
extension of power ‖A‖κ.

Proof. We use an elementary chain argument as in the proof of the previous
theorem. Put λ = ‖A‖κ and note that λκ = λ. We construct an elementary
chain in which each model has power λ.

Stage 0: Let A ⊆e A0 where ‖A0‖ = λ.
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Stage γ + 1, γ < κ+: We have Aγ of power λ. Let {Xα
γ : α < λ} be an

enumeration of all X ⊆ |Aγ| of cardinality ≤ κ. Stage γ +1 has λ substages:
Put A0

γ = Aγ; Aα+1
γ an elementary extension of Aαγ realizing all 1-types over

Xα
γ (we can do this because |S1(X

α
γ )| ≤ 2κ ≤ λ); and Aβγ =

⋃
α<β Aαγ for

limit β ≤ λ. Finally put Aγ+1 = Aλγ .
Stage δ ≤ κ+, δ limit: Put Aδ =

⋃
γ<δAγ.

Finally put B = Aκ+. Clearly A ⊆e B and ‖B‖ = λ. We claim B is
κ+-saturated. Suppose X ⊆ |B|, |X| ≤ κ. Since κ+ is a regular cardinal,
X ⊆ Aγ for some γ < κ+. Hence X = Xα

γ for some α < λ. So every 1-type
over X is realized in Aα+1

γ ⊆e B. This completes the proof.

4.

Corollary. Let T be a complete theory of cardinality ≤ κ, and suppose that
T has an infinite model. Then T has a κ+-saturated model of power 2κ.

Proof. By Löwenheim-Skolem let A be a model of T of power κ. Apply
the previous theorem to get a κ+-saturated elementary extension of power
κκ = 2κ.

5.

Corollary. Assume the Generalized Continuum Hypothesis. Let T be a
complete theory of cardinality ≤ κ. Then T has a saturated model of power
κ+. This model is unique up to isomorphism.

Proof. The G.C.H. tells us that 2κ = κ+. Apply the previous corollary and
the uniqueness result for saturated models (§7.2).

6.

The previous corollary may be applied to give the following useful variant of
Vaught’s test. Unlike Vaught’s test itself, the following provides a necessary
and sufficient condition for completeness.

Theorem. Assume 2ℵ0 = ℵ1. Let T be a countable complete theory with
no finite models. T is complete ⇔ any two saturated models of T of power
ℵ1 are isomorphic.

Proof. Immediate from the previous corollary.
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7.

Remark. The G.C.H. is needed for the above results. For example, let T
be the complete theory of dense linear ordering without end points. Then
any ℵ1-saturated model of T has cardinality ≥ 2ℵ0. Thus we do not get
satisfactory results unless we assume 2ℵ0 = ℵ1.

However, the G.C.H. can be eliminated from most applications of satu-
rated models, by observing that the conclusions are usually absolute. Thus,
if we are trying to prove that a certain theory T is complete, we may as-
sume G.C.H., apply the variant of Vaught’s test referred to above, and then
eliminate G.C.H. by noting that completeness is an absolute property of T .

Actually, there are several ways to avoid the need to assume the G.C.H.

(1) Assume G.C.H. and then eliminate it by absoluteness arguments.

(2) Assume the existence of inaccessible cardinals (some people might con-
sider this assumption more reasonable than G.C.H.).

(3) Use “special” models (Morley-Vaught).

(4) Use “recursively saturated” models (Barwise-Schlipf).

We shall simply assume the G.C.H. when needed.

7.4 Preservation theorems

In this section we present a typical application of saturated models, namely
to the proofs of “preservation theorems”. Preservation theorems relate model
theoretic properties of T to syntactic properties of axioms for T .

1.

The following syntactical classification of formulas is occasionally useful.

Definition. A formula ψ(y) is Σk if it is of the form

ψ(y) = ∃x1∀x2 · · ·xk ϕ(x1, x2, . . . , xk, y)

where ϕ is quantifier free and xi = xi1 . . . xini . Thus a Σk formula consists of
k alternating blocks of quantifiers followed by a quantifier free matrix, and
the first block is existential. The class of Πk formulas is defined similarly
except that the first block is universal.
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2.

Let Γ be a class of formulas (e.g. Γ = Σk or Πk). A Γ-theory is a theory T

such that T ∩ Γ is a set of axioms for T . We write A +3Γ B to mean that
sig(A) = sig(B) and Th(A) ∩ Γ ⊆ Th(B) ∩ Γ.

3.

Lemma (localization lemma). Let Γ be a class of formulas which is closed
under disjunction. Let T be a theory such that Mod(T ) is closed under

+3Γ
, i.e. A ∈ Mod(T ), A +3Γ B implies B ∈ Mod(T ). Then T is a

Γ-theory.

Proof. Let B |= T ∩Γ, sig(B) = sig(T ). We must show that B |= T . Suppose
not. Let ∆ = {σ ∈ Γ : B |= ¬σ}. Then for each A ∈ Mod(T ) there exists
σ ∈ ∆ such that A |= σ. Hence by compactness T |=

∨k
i=1 σi for some

σ1, . . . , σk ∈ ∆. Hence
∨k
i=1 σi ∈ T ∩ Γ. Hence B |=

∨k
i=1 σi, a contradiction.

4.

If sig(A) = sig(B), we write f : A //Γ B (f is a Γ-morphism of A into B)
to mean that f : |A| → |B| and f preserves satisfaction of Γ formulas, i.e. for
all Γ formulas ϕ(x1, . . . , xn) and a1, . . . , an ∈ |A|, if A |= ϕ(a1, . . . , an) then
B |= ϕ(f(a1), . . . , f(an)).

Examples:

(1) If Γ = Π0 = Σ0 = {quantifier free formulas}, then f : A //Γ B means
that f is a monomorphism of A into B.

(2) If Γ = {atomic formulas}, then f : A //Γ B means that f is a homo-
morphism of A into B. (We have not previously defined the concept
of homomorphism, so this may be taken as the definition. If A and B
are groups or rings, this coincides with the usual definition of homo-
morphism.)

(3) If Γ = {all formulas} then f : A //Γ B means of course that f is an
elementary embedding of A into B.
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5.

We now present our first preservation theorem.

Theorem (Tarski). Suppose that T is preserved under substructures, i.e.
every substructure of a model of T is a model of T . Then T is a universal
(i.e. Π1-) theory.

Proof. By the localization lemma, it suffices to prove that if B ∈ Mod(T ),

B +3Π1 A , then A ∈ Mod(T ). Let B ≡ B∗ where B∗ is κ-saturated, κ =

‖A‖. We have A +3Σ1 B , hence A +3Σ1 B∗ .
Claim: There exists a monomorphism of A into B∗. To see this, let

|A| = {aγ : γ < κ}. As in the proof of Theorem 7.2.9 we choose bγ ∈ |B∗|,
γ < κ, so that the embedding aγ 7→ bγ is a Σ1-morphism. Stage γ < κ: Let
Yγ be the set of Σ1 formulas ψ(aα1

, . . . , aαn , v1), α1 < · · · < αn < γ, such
that A |= ψ(a1, . . . , an, aγ). By inductive hypothesis we have

(A, aα)α<γ +3Σ1
(B∗, bα)α<γ .

Hence B∗ |= ∃v1ψ(bα1 , . . . , bαn , v1) for each ψ(aα1
, . . . , aαn , v1) ∈ Yγ. Hence

by κ-saturation there exists bγ ∈ |B∗| such that B∗ |= ψ(bα1 , . . . , bαn , bγ) for
all ψ(aα1

, . . . , aαn , v1) ∈ Yγ.
[ Details: To show that Yγ is realized in (B∗, bα)α<γ it suffices to show

that each finite subset is, i.e. (B∗, bα)α<γ |= ∃v
∧k
i=1 ψi(bα1 , . . . , bαn , v) for all

ψ1, . . . , ψk ∈ Yγ. But this is a Σ1 sentence, true in (A, aα)α<γ , hence true in
(B∗, bα)α<γ . ]

Now clearly

(A, aα)α≤γ +3Σ1
(B∗, bα)α≤γ

so the induction hypothesis is preserved.
Finally

(A, aγ)γ<κ +3Σ1
(B∗, bγ)γ<κ

so in particular aγ 7→ bγ is a monomorphism of A into B∗. This proves the
claim.

Now B∗ ∈ Mod(T ), hence A ∈ Mod(T ) since Mod(T ) is closed under
substructure. This completes the proof.
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6.

The above argument actually established the following result.

Lemma (embedding lemma). Let Γ be a class of formulas which is closed

under ∧ and ∃ (e.g. Γ = Σk, k ≥ 1). If A +3Γ B and B is κ-saturated,

κ ≥ ‖A‖, then ∃f : A //Γ B .

We can use this lemma for Γ = Σ2 to prove the following preservation
theorem.

7.

Theorem (Chang- Los-Susko). Let T be a theory such that Mod(T ) is closed
under unions of ω-chains, i.e. A0 ⊆ · · · ⊆ An ⊆ · · · (n ∈ ω), An ∈ Mod(T )
implies

⋃
n∈ωAn ∈ Mod(T ). Then T is a Π2-theory. (The converse is obvi-

ous.)

Proof. By the localization lemma, in order to show that T is a Π2-theory, it

suffices to show that if A ∈ Mod(T ) and A +3Π2 B then B ∈ Mod(T ).

We have B +3Σ2 A ∈ Mod(T ). Let A ≡ A1 where A1 is ‖B‖-saturated.

Then by the embedding lemma we can find a Σ2 embedding f : B //Σ2 A1 .
Let B ⊆e B1, B1 ‖A1‖-saturated. Then

(A1, f(b))b∈|B| +3Π2 (B1, b)b∈|B|

so by the embedding lemma again we can find an embedding g : A1
//Σ1 B1

such that the following diagram commutes:

A1

��
Σ1

B

??
Σ2

~~~~~~~~
⊆e B1

Repeating ω times we get

A1

��
Σ1

A2

��
Σ1

An+1

��
Σ1

B = B0

>>
Σ2

}}}}}}}}
⊆e B1

>>
Σ2

||||||||
⊆e B2 ⊆e · · · ⊆e Bn

<<
Σ2

yyyyyyyy
⊆e Bn+1 ⊆e · · · .
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So finally Bω =
⋃
n∈ω Bn =

⋃
n∈ωAn. Since An ∈ Mod(T ) we have by

assumption
⋃
n∈ωAn ∈ Mod(T ). Since B ⊆e Bω, it follows that B ∈ Mod(T ).

This completes the proof.

8.

Corollary (Robinson). If T is model complete then T is a Π2-theory.

Proof. If T is model complete, then any chain of models of T is an elementary
chain. Hence Mod(T ) is closed under unions of chains, so we apply the
theorem.

For example, the theory of algebraically closed fields is model complete,
and the given axioms for this theory are Π2.

9.

We now prove Lyndon’s preservation theorem for positive sentences. A for-
mula is said to be positive if it is built up from atomic formulas using only
∀, ∃, ∧, ∨ (and not using ¬, →, ↔). A positive theory is a theory with a set
of positive sentences as axioms.

Theorem (Lyndon). Let T be a theory which is preserved under homomor-
phic images, i.e. any homomorphic image of a model of T is a model of T .
Then T is a positive theory. (The converse is easy.)

For example, the theory of groups is positive, and each homomorphic
image of a group is a group. The theory of commutative rings is not positive
because of the presence of the axiom 0 6= 1. If we drop this axiom, the theory
becomes positive, and every homomorphic image of a commutative ring is a
commutative ring.

Proof. By the localization lemma, it suffices to show that if A ∈ Mod(T ),

A +3pos
B , then B ∈ Mod(T ). Let A ≡ A∗, B ≡ B∗ where ‖A∗‖ = ‖B∗‖ =

κ and A∗,B∗ are κ-saturated. (We use the Generalized Continuum Hypoth-
esis to obtain saturated models. By absoluteness, the use of G.C.H. can be
eliminated.)
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We have A∗ +3pos
B∗ . We claim that B∗ is a homomorphic image of A∗.

The proof is similar to that of the embedding lemma (7.4.6), except we need
a back-and-forth argument.

[ Details: Choose well orderings of |A∗| and |B∗| of order type κ. We
construct enumerations |A∗| = {aγ : γ < κ}, |B∗| = {bγ : γ < κ}.

Stage γ, γ even: We have

(A∗, aα)α<γ +3pos
(B∗, bα)α<γ .

Let aγ be the least element of |A∗| not among {aα : α < γ}. Let Yγ be the set
of positive formulas ϕ(aα1

, . . . , aαn , v) such thatA∗ |= ϕ(aα1 , . . . , aαn, aγ). As

in the proof of the embedding lemma, we haveA∗ |= ∃v
∧k
i=1 ϕi(aα1 , . . . , aαn , v),

hence B∗ |= ∃v
∧k
i=1 ϕi(bα1 , . . . , bαn , v) for each finite set of formulas ϕ1, . . . , ϕk ∈

Yγ. Hence by saturation of B∗ it follows that Yγ is realized in (B∗, bα)α<γ,
i.e. there exists bγ ∈ |B∗| such that

(A∗, aα)α≤γ +3pos
(B∗, bα)α≤γ .

Stage γ, γ odd: We have

(A∗, aα)α<γ +3pos
(B∗, bα)α<γ ,

hence

(B∗, bα)α<γ +3neg
(A∗, aα)α<γ ,

where a negative formula is defined to be the negation of a positive one.
Let bγ be the least element of |B∗| not among {bα : α < γ}. According to
the DeMorgan laws, the class of negative formulas is closed under ∃ and ∧.
Hence we can apply the same argument as before to find aγ ∈ |A∗| such that

(B∗, bα)α≤γ +3neg
(A∗, aα)α≤γ ,

i.e.

(A∗, aα)α≤γ +3pos
(B∗, bα)α≤γ .

Note that aγ 6= aα, α < γ, since v 6= aα is a negative formula.
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Finally we get enumerations |A∗| = {aγ : γ < κ} and |B∗| = {bγ : γ < κ}
such that α < γ < κ⇒ aα 6= aγ and

(A∗, aγ)γ<κ +3pos
(B∗, bγ)γ<κ .

Hence in particular the mapping aγ 7→ bγ is a homomorphism of A∗ onto
B∗. ]

Since A ≡ A∗ ∈ Mod(T ), it follows by hypothesis that B∗ ∈ Mod(T ).
Hence B ∈ Mod(T ), Q.E.D.

For more on preservation theorems, see Chang and Keisler, Model Theory.
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Chapter 8

Elimination of quantifiers

8.1 The model completion of a theory

1.

Definition (Robinson). Let T and T∗ be theories with the same signature.
We say that T∗ is a model completion of T if

(i) T ⊆ T∗;

(ii) every model of T can be extended to a model of T∗;

(iii) for any A ∈ Mod(T ), T∗ ∪ (diagram of A) is complete.

(Recall that the diagram of A is the set of all quantifier free sentences
ϕ(a1, . . . , an), sig(ϕ) ⊆ sig(A), a1, . . . , an ∈ |A|, A |= ϕ(a1, . . . , an).)

Condition (iii) is equivalent to

(iii) if A ∈ Mod(T ), A ⊆ Bi ∈ Mod(T∗), i = 1, 2, then B1 and B2 are
“elementarily equivalent over A.”

B1 ≡ B2

A

``AAAAAAA

>>}}}}}}}

71
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2.

Example. The theory of algebraically closed fields is a model completion of
the theory of fields.

Proof. (i) is trivial, and (ii) holds since every field can be extended to an
algebraically closed field (Proposition 6.2.3). For (iii), let A be a field and
let B1 and B2 be two algebraically closed fields extending A. We want to
show that B1 ≡ B2 over A. By the upward Löwenheim-Skolem theorem let
Bi ⊆e B∗i , i = 1, 2, where ‖B∗1 ‖ = ‖B∗2 ‖ = κ and κ > max(ℵ0, ‖A‖). By
Lemma 6.3.1 we have that B∗1 ∼= B∗2 over A. Hence B1 ≡ B2 over A.

B∗1 ∼= B∗2

B1

OO
e

B2

OO
e

A

``AAAAAAAA

>>}}}}}}}}

3.

Remarks. The following facts about model completions are obvious.

(a) If T∗ is a model completion of T then T∗ is model complete.

(b) T is model complete if and only if T is its own model completion.

4.

Theorem (Robinson). Let T0, T1 be model completions of T . Then T0 = T1.

Proof. Given A ∈ Mod(T0), we shall show that A ∈ Mod(T1). We use an
elementary chain argument. Let A = A0 ∈ Mod(T0). By (i) and (ii) of the
definition, we can find A1 ∈ Mod(T1), A0 ⊆ A1. More generally, given A2n ∈
Mod(T0) let A2n ⊆ A2n+1 ∈ Mod(T1) and A2n+1 ⊆ A2n+2 ∈ Mod(T0). Put
B =

⋃
n∈ωAn. Since T0 is model complete, we have A2n ⊆e A2n+2 so by the

elementary chain principle, A = A0 ⊆e B. But since T1 is model complete,
we also have A2n+1 ⊆e A2n+3 so B ∈ Mod(T1). Hence A ∈ Mod(T1), Q.E.D.

Thus the model completion of T is unique if it exists.
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4.

Another example. The theory of dense linear order without end points is the
model completion of the theory of linear order. (This is an easy consequence
of quantifier elimination.)

8.2 Substructure completeness

1.

Definition. A theory T is substructure complete if T ∪ (diagram of A) is
complete whenever A is a substructure of a model of T .

2.

Definition. T admits elimination of quantifiers if for all n ≥ 1 and all
ϕ ∈ Fn(T ), there exists a quantifier free formula ϕ∗ ∈ Fn(T ) such that
T |= ∀v1 . . .∀vn[ϕ(v1, . . . , vn)↔ ϕ∗(v1, . . . , vn)].

3.

Theorem. Let T be a theory. The following are equivalent.

(i) T is the model completion of a universal (i.e. Π1) theory.

(ii) T is substructure complete.

(iii) T admits elimination of quantifiers.

Proof. (i) ⇒ (ii). Let T be the model completion of a universal theory U .
Let A ⊆ B ∈ Mod(T ). Then A ∈ Mod(U) since U is universal. Hence
T ∪ (diagram of A) is complete, by the definition of model completion.

(ii) ⇒ (iii). Assume that T is substructure complete. Given ϕ ∈ Fn(T ),
to find a quantifier free ϕ∗ ∈ Fn(T ) such that T∗ |= ϕ↔ ϕ∗. We proceed as
in the proof of the localization lemma 7.4.3. Let Y be the set of quantifier
free ψ ∈ Fn(T ) such that T |= ϕ → ψ. If ϕ∗ does not exist, then by
compactness we can find B ∈ Mod(T ) and a1, . . . , an ∈ |B| so that B |=
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¬ϕ(a1, . . . , an)∧ψ(a1, . . . , an) for all ψ ∈ Y . Let A be the substructure of B
generated by a1, . . . , an. By substructure completeness we have

T ∪ (diagram of A) |= ¬ϕ(a1, . . . , an) .

Hence there exists a quantifier free formula θ ∈ Fn(T ) such that θ(a1, . . . , an) ∈
diagram of A and

T |= ∀v1 . . . vn [θ(v1, . . . , vn)→ ¬ϕ(v1, . . . , vn)] ,

i.e. T |= ∀v1 . . . vn[ϕ→ ¬θ]. Hence ¬θ ∈ Y . Hence B |= ¬θ(a1, . . . , an). This
is a contradiction.

(iii) ⇒ (i). Suppose T admits elimination of quantifiers. Let U be the
theory whose axioms are the universal sentences of T . We claim that T is
a the model completion of U . If A ∈ Mod(U) then an easy compactness
argument shows that T ∪(diagram of A) is consistent. Hence A is extendible
to a model of T . The last part of the definition of model completion is
immediate from elimination of quantifiers.

(Note: Mod(U) is just the class of substructures of models of T .)

4.

Example. The theory of dense linear ordering without end points is the
model completion of the theory of linear orderings. the latter theory is uni-
versal so we conclude:

Theorem. The theory of dense linear ordering without endpoints admits
elimination of quantifiers.

(This can also be proved by a direct syntactical argument. See Exercise
2.1.4.)

5.

Example. We have seen that the theory T of algebraically closed fields is the
model completion of the theory of fields. Unfortunately, the theory of fields
is not universal. (The key axiom is ∀x(x 6= 0→ ∃y(x · y = 1)).) However, T
is also the model completion of the theory of domains, and the latter theory
is universal. (The key axiom is ∀x∀y((x 6= 0 ∧ y 6= 0)→ x · y 6= 0).)
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(To see that T is the model completion of the theory of domains, just
note that any field containing a domain also contains its fraction field, and
apply Example 8.1.2. See also Example 8.3.3 below.)

Hence we have:

Theorem (Tarski). The theory of algebraically closed fields admits elimina-
tion of quantifiers. (In the language of +, ·,−, 0, 1.)

6.

This theorm has algebraic applications; e.g.

Corollary (elimination theory). Let S be a finite system of equations and
inequations in n unknowns (variables) x1, . . . , xn with coefficients (constants)
c1, . . . , cN . Then we can effectively find a finite set S1, . . . , Sk of systems of
equations and inequations in c1, . . . , cN alone, such that for any c1, . . . , cN
in an algebraically closed field, S is solvable if and only if one of S1, . . . , Sk
holds.

Proof. Regard c1, . . . , cN as variables and effectively eliminate quantifiers
from the formula ∃x1 · · · ∃xn S. Put the resulting quantifier free formula into
disjunctive normal form.

Special cases of the above result are known classically. For example, in
van der Waerden (vol. 1, §27) one finds the following result. Let S be a
system of two equations

a0x
m + a1x

m−1 + · · ·+ am = 0

b0x
n + b1x

n−1 + · · ·+ bn = 0 .

These two polynomials have a common root if and only if the determinant∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 . . . am
a0 a1 . . . am

a0 a1 . . . am
b0 b1 . . . bn

b0 b1 . . . bn
b0 b1 . . . bn

∣∣∣∣∣∣∣∣∣∣∣∣
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vanishes. This (m + n)× (m + n) determinant is called the resultant of the
system S. In general, the theory of “resultants” or “elimination theory” is a
branch of classical algebra concerned with explicit determination of S1, . . . , Sk
given S as in the corollary.

7.

Recall that a variety X ⊆ Cn is the solution set of a system of equations in
n unknowns with complex coefficients.

Corollary (Tarski). Let X ⊆ Cn be a variety. Let Y ⊆ Ck be the image of
X under the projection (x1, . . . , xn) 7→ (x1, . . . , xk), 1 ≤ k ≤ n. Then Y is a
Boolean combination of varieties.

(This is already nontrivial for k = 2, n = 3.)

8.3 The role of simple extensions

In this section we discuss the role of simple extensions in quantifier elimina-
tion.

1.

Definition. Let U be a universal theory. Let A ⊆ B ∈ Mod(U). Given
b ∈ |B|, we write A[b] for the substructure of B generated by |A| ∪ {b}. This
is called a simple extension of A.

2.

Theorem (L. Blum). Let U be a universal theory and let T be a theory
with sig(T ) = sig(U), U ⊆ T , such that every model of U is extendible to a
model of T . The following are equivalent.

(i) T is the model completion of U .

(ii) Suppose A ⊆ B ∈ Mod(T ), B κ+-saturated, where κ = max(ℵ0, ‖A‖).
Then up to isomorphism over A, B contains every simple extension of
A.
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(iii) Suppose A ⊆ Bi ∈ Mod(T ), i = 1, 2. If B2 is κ-saturated, κ ≥ ‖B1‖,
then there exists an embedding of B1 into B2 such that the following
diagram commutes.

B1
//_______ B2

A

`ÀAAAAAA

>>}}}}}}}

Proof. (i) ⇒ (ii). Immediate from the definitions.
(ii) ⇒ (iii). Let |B1| = {bα : α < κ} and define a tower of simple

extensions A0 = A, Aα+1 = Aα[bα], Aβ =
⋃
α<β Aα for limit β ≤ κ. Apply

(ii) κ times to get an embedding of B1 into B2.
(iii) ⇒ (i). Given A ⊆ Bi ∈ Mod(T ), i = 1, 2. To show B1 ≡ B2 over A.

We use an elementary chain argument.

B1
//e

��000000000000000 B′1 //e

��000000000000000
B′′1 //e · · ·

A

??~~~~~~~~

��@@@@@@@@

B2
//e

FF���������������
B′2 //e

FF���������������
B′′2 //e · · ·

First choose B′2 ⊇e B2 sufficiently saturated, and apply (ii) to get B1 → B′2
over A. Then choose B′1 ⊇e B1 sufficiently saturated and apply (ii) to get
B2 → B′1 over A. Etc. Finally we get

B1
//e B∗1 =

⋃
n∈ω B

(n)
1

A

??��������

��>>>>>>>>
∼=

B2
//e B∗2 =

⋃
n∈ω B

(n)
2

and the diagram gives an isomorphism of B∗1 onto B∗2 over A. Hence B1 ≡ B2

over A.
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3.

Example. We can use the above criterion to prove (using a minimum of
algebra) that the theory of algebraically closed fields is the model completion
of the theory of domains. Suppose A ⊆ B, B algebraically closed and κ+-
saturated, where κ ≥ max(ℵ0, ‖A‖). We must show that B contains every
simple extension A[b] of the domain A. All such extensions are contained
in simple field extensions of the quotient field of A. Using our classification
of simple field extensions (§6.1) we see immediately that B contains all such
extensions.

In the next chapter we shall use this criterion to show that the theory of
real closed ordered fields is the model completion of the theory of ordered
fields.



Chapter 9

Real closed ordered fields

9.1 Ordered fields

1.

The axioms for ordered fields are as follows:

(a) the field axioms (as in example 2.3.4)

(b) the axioms for linear order:

∀x∀y∀z((x < y ∧ y < z)→ x < z)

∀x∀y(x < y → x 6= y)

∀x∀y(x < y ∨ x = y ∨ y < x)

(c) special axioms:

∀x∀y∀z(x < y → x + z < y + z)

∀x∀y((0 < x ∧ 0 < y)→ 0 < x · y)

An ordered field is a model of these axioms. An ordered domain is defined
similarly.

2.

Examples.
Q = (Q, +,−, ·, 0, 1, <) = the ordered field of rationals.

79
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R = (R, +,−, ·, 0, 1, <) = the ordered field of real numbers.
Z = (Z, +,−, ·, 0, 1, <) = the ordered field of rationals.

3.

The following facts are easily proved.

(a) In an ordered domain, we have

x < y ↔ y − x > 0

x > 0↔ −x < 0

x 6= 0→ x2 > 0

(x < y ∧ z > 0)→ x · z < y · z

(b) Any ordered field (or ordered domain) has characteristic 0. (Because
1 + 1 + · · ·+ 1︸ ︷︷ ︸

n

> 0.)

(c) The ordering of an ordered field is dense (because x < y implies x <
(x + y)/2 < y).

(d) Any ordered field contains Q as an ordered subfield. Any ordered
domain contains Z as an ordered subdomain.

4.

Proposition. Let A be an ordered domain and let A1 be its field of quo-
tients. Then there is one and only one way to order A1 so that it becomes
an ordered field with A as an ordered subdomain.

Proof. We are forced to order A1 by

x

y
> 0 ⇔ x · y =

x

y
· y2 > 0 .

It is easy to check that this makes A1 an ordered field, etc.
For example, there is only one way to order the rational field so as to

make it an ordered field.
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5.

Definition. Let F be an ordered field and let f ∈ F [x]. We say that
F has the intermediate value property (IVP) for f if a, b ∈ |A|, a < b,
f(a) < 0 < f(b) imply f(c) = 0 for some c ∈ |F|, a < c < b.

We say that F is real closed if it has the IVP for all f ∈ F [x].

6.

Examples. The rational field Q does not have the IVP for f(x) = x2 − 2.
The real field R does have IVP for x2 − 2. The real field R is in fact real
closed. The complex field C is not real closed, indeed it cannot be ordered
(since i2 = −1).

7.

The property of being real closed is first order, so we may speak of the theory
of real closed ordered fields, RCOF. The axioms of RCOF are those for ordered
fields plus the following, for each n ≥ 1:

∀w0 · · ·wnxy [(x < y ∧ wnx
n + · · ·+ w0 < 0 < wny

n + · · ·+ w0)

→ ∃z (x < z < y ∧ wnz
n + · · ·+ w0 = 0)] .

8.

Our main goal is to show that RCOF is the model completion of the theory
of ordered fields, and hence of ordered domains. From this it will follow
that RCOF admits elimination of quantifiers, and is complete and decidable
(Tarski).

9.

Lemma. Let F be an ordered field which is not real closed. Then there is
an ordered field F1 % F such that F1 is algebraic over F .

Proof. Pick f ∈ F [x] such that the IVP fails for f but holds for all g ∈ F [x] of
smaller degree. Let a, b ∈ F [x] be such that a < b, f(a) < 0 < f(b), f(c) 6= 0
for all c ∈ [a, b] = {c ∈ |F| : a ≤ c ≤ b}. We employ a sort of “Dedekind
cut” construction. Put A = {a′ ∈ [a, b] : f(c) < 0 for all c ∈ [a, a′]} and



82 CHAPTER 9. REAL CLOSED ORDERED FIELDS

B = [a, b] \A. Obviously A, B 6= ∅, [a, b] = A∪B, and a′ < b′ for all a′ ∈ A,
b′ ∈ B.

Claim: A has no greatest element and B has no least element.
Proof: This is clear since f is “continuous” (by an ε-δ-argument).
Claim: For every g ∈ F [x] of degree < deg(f) we can find a′ ∈ A, b′ ∈ B

so that g has constant sign (positive, negative, or zero) on the interval [a′, b′].
Proof: If g ≡ 0 there is nothing to prove. Otherwise g has only finitely

many roots in |F|. Find a′ ∈ A, b′ ∈ B such that [a′, b′] does not contain any
of these roots. By the IVP for g, we conclude that g does not change sign
on [a′, b′].

Claim: f is irreducible. For suppose f = f1 ·f2, deg(fi) < deg(f), i = 1, 2.
We must have fi(a)fi(b) < 0 for at least one i. Then by the IVP for fi we
must have fi(c) = 0 for some c ∈ [a′, b′]. Hence f(c) = 0, contradiction.

Let F1 = F(α) = F [x]/f where f(α) = 0. (See Lemma 6.1.10.) To define
the order relation on F(α), recall that a typical element of F(α) is of the
form g(α) where deg(g) < deg(f). Put g(α) > 0 if g > 0 on some interval
[a′, b′], a′ ∈ A, b′ ∈ B; g(α) < 0 if g < 0 on some interval [a′, b′], a′ ∈ A,
b′ ∈ B; g(α) = 0 if g ≡ 0.

Claim: this makes F(α) an ordered field. The only nontrivial axiom to
be checked is the product rule: the product of positive elements is positive.
Suppose gi(α) > 0, deg(gi) < deg(f), i = 1, 2. Let g1(α) · g2(α) = g3(α),
deg(g3) < deg(f). We must show g3(α) > 0. We have

g1(x) · g2(x)− g3(x) = f(x) · h(x) .

Put m = deg(f). The left side has degree ≤ 2m−2. Hence so does the right
side, so deg(h) ≤ m− 2. Let a′ ∈ A, b′ ∈ B be such that g1, g2, g3, h all have
constant sign on [a′, b′].

Case 1: h > 0 on [a′, b′]. Let c ∈ [a′, b′] be such that f(c) < 0. then
g3(c) > 0 since

g1(c) · g2(c)︸ ︷︷ ︸
pos

= g3(c) + f(c) · h(c)︸ ︷︷ ︸
neg

,

hence g3 > 0 on [a′, b′]. Hence g3(α) > 0.
Case 2: h < 0 on [a′, b′]. Take c ∈ [a′, b′] so that f(c) > 0. Then by an

argument similar to the above, g3(c) > 0, so g3(α) > 0.
Case 3: h = 0 on [a′, b′]. Hence h ≡ 0 so g3 = g1 · g2 > 0 on [a′, b′], hence

g3(α) > 0. This completes the proof.
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10.

Definition. Let F be an ordered field. A real closure of F is an ordered
field G ⊇ F so that (1) G is algebraic over F ; (2) G is real closed.

11.

Proposition. Any ordered field F has a real closure.

Proof. This is an easy consequence of the previous lemma plus Zorn’s lemma
(or transfinite induction). Let B be the algebraic closure of F regarded as
a field. Form a transfinite sequence of extensions F = F0, Fα+1 = proper
ordered extension of Fα, Fβ =

⋃
α<β Fβ for limit β, all within B. The process

must eventually stop, so by lemma 9.1.9 we then have a real closure of F .

9.2 Uniqueness of real closure

The purpose of this section is to prove that the real closure of an ordered field
F is unique up to isomorphism over F . The usual proofs of this result use
either Galois theory or Sturm’s test. We give a more elementary argument
based on Rolle’s theorem.

1.

Lemma (Rolle’s theorem). Let G be a real closed ordered field, g ∈ G[x].
Between any two distinct roots of g lies at least one root of g′.

(Here g′ is the formal derivative of g. If g(x) = anx
n + · · · + a1x + a0 then

g′(x) = nanx
n−1 + · · ·+ a1.)

Proof. Given a < b, g(a) = g(b) = 0. Say g(x) = (x− a)k(x− b)lp(x) where
p ∈ G[x] and p(a) 6= 0, p(b) 6= 0. We may safely assume that g(c) 6= 0 for
a < c < b. Hence p(c) 6= 0 for c ∈ [a, b]. Hence p has constant sign on [a, b].
We have

g(x) = (x− a)k−1(x− b)l−1q(x)

where

q(x) = [k(x− b) + l(x− a)]p(x) + (x− a)(x− b)p′(x) .
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We have q(a) = k(a−b)p(a), q(b) = l(b−a)p(b) so q(a) and q(b) have opposite
sign, hence q(c) = 0 for some a < c < b. Hence g′(c) = 0.

2.

Lemma (maximum principle). Let G be a real closed ordered field, g ∈ G[x],
a, b ∈ G, a < b. Then g takes on a maximum value in the interval [a, b], say
at γ. If a < γ < b then g′(γ) = 0.

Proof. If g is a linear function there is nothing to prove. Otherwise g′ has
only finitely many roots in the interval [a, b]. Let

a = c0 < c1 < · · · < ck < ck+1 = b

be the set consisting of a, b, and all the roots of g′ in [a, b]. We claim that
g takes on a maximum value at one of these ci’s. Suppose not. Then there
exists d ∈ [a, b] such that g(d) > g(ci) for all i. Then ci < d < ci+1 for some
i ≤ k. Hence by Rolle’s theorem there must exist e such that ci < e < ci+1

and g′(e) = 0. This is a contradiction.

3.

Lemma. Let F be an ordered field. Let g ∈ F [x] be a nonconstant poly-
nomial such that F satisfies the IVP for all polynomials of degree ≤ deg(g).
Suppose g(α) = 0 where α lies in some ordered field extension of F . Then
actually α ∈ |F|.

Proof. We prove the lemma by induction on n = deg(g). Assume that the
conclusion fails, i.e. α /∈ |F|. It follows that g is irreducible. (Otherwise we
could apply the induction hypothesis to the factors and get a contradiction.)
In particular g has no roots in |F|, so by the IVP g has constant sign on |F|.
Without loss of generality, assume that g < 0 on |F|.

Since g(α) = 0, an easy calculation shows that |α| < 1+ |a1|+ · · ·+ |an| =
M where g(x) = xn+a1x

n−1 + · · ·+an. Thus we have g(−M) < 0, g(α) = 0,
g(M) < 0, and −M < α < M . Let G be a RCOF extending F (by proposition
9.1.11). By the maximum principle we must have g(γ) ≥ 0, g′(γ) = 0 for
some γ ∈ |G| with −M < γ < M . By the induction hypothesis, g′(γ) = 0
gives γ ∈ |F|. But then g(γ) ≥ 0 contradicts the fact that g < 0 on |F|.
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4.

Proposition. If G is a RCOF and G1 is an ordered field extension of G which
is algebraic over G, then G1 = G.

Proof. Immediate from the previous lemma.

5.

Proposition. Let F be an ordered field. Then any two real closures of F
are isomorphic over F .

Proof. Let G1 and G2 be real closures of F . If F is real closed, then G1 = G2 =
F by the previous proposition. Therefore, by Zorn’s lemma or transfinite
induction, it suffices to show that if F is not real closed, then we can find
αi ∈ |Gi| \ |F|, i = 1, 2, such that F(α1) ∼= F(α2) over F as ordered fields.

In order to find α1, α2 we imitate the proof of lemma 9.1.9. Let f ∈ F [x]
be such that the IVP fails for f but holds for all g of lower degree. Let
a, b, A, B be as in the proof of lemma 9.1.9. Since G1 is real closed, |G1| \ |F|
contains α1 such that f(α1) = 0 and a′ < α1 < b′ for all a′ ∈ A, b′ ∈ B.
We claim that these facts determine the structure of F(α1) as an ordered
field. First of all, the field structure of F(α1) is determined by the fact that
F(α1) ∼= F [x]/f since f is irreducible. Let g ∈ F [x] be of lower degree than
f such that g > 0 on some interval [a′, b′] in F where a′ ∈ A, b′ ∈ B. By
the previous lemma we know that any root of g lying in |G1| already lies in
|F|. Hence g > 0 on [a′, b′] in G1. Hence in particular g(α1) > 0. Since every
element of F(α1) is of the form g(α1), g ∈ F [x], deg(g) < deg(f), our claim
is proved. Similarly we can find α2 ∈ |G2| \ |F| such that f(α2) = 0 and
a′ < α2 < b′ for all a′ ∈ A, b′ ∈ B, and we then have F(α1) ∼= F(α2) over F
as ordered fields. This completes the proof.

6.

Definition. If F is an ordered field, we denote its real closure by F . (The
previous result shows that F is unique up to isomorphism over F .)
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7.

Corollary. Let F be an ordered field and let G be a RCOF extending F .
Then G contains (an isomorphic copy of) F .

Proof. Let F1 be the algebraic closure of F within G. Clearly F1 is a real
closure of F . By the previous result it follows that F is isomorphic to F1

over F .

9.3 Quantifier elimination for RCOF

1.

Lemma. Let G be an RCOF and let G(α) be a simple ordered field extension
of G, α /∈ |G|. Then α is transcendental over G, and the ordering of G is
completely determined by the sets A = {a ∈ |G| : a < α} and B = {b ∈ |G| :
α < b}.

Proof. The fact that α is transcendental over G follows immediately from
the uniqueness of the real closure of G. The ordering of G(α) is completely
determined by that of G[α] which is completely determined by the following
claim.

Claim: Let g ∈ G[x].

(i) If A = ∅ (respectively B = ∅) then the sign of g(−α) (respectively
g(α)) is the same as that of the leading coefficient of g.

(ii) If A 6= ∅ 6= B, then g(α) > 0 if and only if there exist a ∈ A, b ∈ B
such that g(c) > 0 for all c ∈ |G|, a < c < b.

Part (i) is obvious, and part (ii) is an easy consequence of lemma 9.2.3. (One
may compare the proof of lemma 9.1.9, but note that in the present situation
it is possible that A has a greatest element.)

2.

Theorem. The theory of real closed ordered fields is the model completion
of the theory of ordered fields.
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Proof. It suffices to show that if F ⊆ F1 are ordered fields and if F ⊆ G where
G is a real closed ordered field and G is κ-saturated, κ = ‖F1‖, then F1 is
embeddable into G over F . (Cf. theorem 8.3.2.) By transfinite induction we
may safely assume that either (1) F1 is algebraic over F , or (2) F1 = F(α),
α transcendental over F , α /∈ |F|, and F is real closed.

In case (1), we have F1 ⊆ F and by corollary 9.2.7 F is embeddable into
G over F . In case (2), put A = {a ∈ |F| : a < α} and B = {b ∈ |F| : α < b}.
Consider the set of formulas

{a < v : a ∈ A} ∪ {v < b : b ∈ B} ∪ {f(v) 6= 0 : f ∈ F [x], f 6≡ 0} .

This set of formulas is finitely realizable in F . Hence by saturation it is
realized in G, say by β ∈ |G|. By the previous lemma it follows that F(α) is
order isomorphic to F(β) over F . This completes the proof.

3.

Corollary (Tarski). The theory of real closed ordered fields is complete and
decidable.

Proof. Any RCOF has an ordered subfield isomorphic to

Q = (Q, +,−, ·, 0, 1, <) .

By the previous theorem, any two RCOFs are elementary equivalent over Q.
In particular any two RCOFs are elementarily equivalent, so the theory RCOF
is complete. Decidability follows by theorem 4.2.3.

(Tarski actually gave a decision procedure based on a specific explicit
quantifier elimination procedure.)

4.

Corollary (Tarski’s transfer principle). Any first order sentence which is
true in the real field R = (R, +,−, ·, 0, 1, <) is true in any real closed ordered
field.

5.

Examples. (1) The fact that the complex field C is algebraically closed
(i.e. the fundamental theorem of algebra) is expressible as a set of first order
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sentences in the theory of RCOF. (We identify a±b
√
−1 ∈ C with an ordered

pair (a, b) ∈ R2.) It follows by Tarski’s principle that, if G is any RCOF, then
G(
√
−1) = G[x]/(x2 + 1) is algebraically closed.

(2) Bott and Milnor have used homotopy theory to prove that the only
finite dimensional nonassociative algebras over R are those of dimensions
1, 2, 4, and 8 respectively (i.e. R, C, quaternions, octonians). By Tarski’s
transfer principle, the same holds for any RCOF.

6.

Corollary (Tarski). The first order theory of the real field

R = (R, +,−, ·, 0, 1, <)

is decidable.

(In other words, there is a decision procedure for “high school mathematics”,
including plane and solid geometry since the latter can be interpreted into
the first order theory of R using Cartesian coordinates.)

7.

Corollary (Tarksi). Given a finite system S of equations and inequalities
in n variables with rational coefficients, we can decide recursively whether S
has a solution in reals.

8.

Theorem (Tarksi). The theory of real closed ordered fields admits elimina-
tion of quantifiers.

Proof. From proposition 9.1.4 and theorem 9.3.3 it follows that RCOF is
the model completion of the theory of ordered domains. The latter theory
is universal so by theorem 8.2.3 it follows that RCOF admits elimination of
quantifiers.

9.

Corollary (Tarski). The theory of real closed ordered fields is model com-
plete.
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10.

Corollary (Artin). Let S be a finite system of equations and inequalities
in n unknowns with coefficients in an ordered field F . If S has a solution
in some ordered field extension of F , then S has a solution in F , the real
closure of F .

Proof. Immediate from model completeness plus corollary 9.2.7.

In the next section we shall apply this result to obtain Artin’s solution of
Hilbert’s 17th problem.

9.4 The solution of Hilbert’s 17th problem

1.

Let F be an ordered field, F its real closure. Put B = F(x1, . . . , xn) = the
field of rational functions over F in n variables x1, . . . , xn. Hilbert’s 17th
problem is concerned with the representation of rational functions as sums
of squares.

Theorem (Artin). Let f ∈ |B|, f 6≡ 0. Suppose that f(a1, . . . , an) ≥ 0 for
all a1, . . . , an ∈ |F| such that f(a1, . . . , an) is defined. Then there exists a
positive integer k such that

f =

k∑
i=1

cig
2
i

where ci ∈ |F|, ci > 0, gi ∈ |B|, gi 6≡ 0.

Proof. Let I ⊂ |B| be the set of all f of this form. We have

(i) g2 ∈ I for all g ∈ |B|, g 6≡ 0

(ii) g, h ∈ I implies g + h, g · h ∈ I

(iii) 0 /∈ I.
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A set I ⊂ |B| satisfying (i), (ii) and (iii) is called an order ideal.
The following lemma holds for any order ideal in any field B.

Lemma. Let I be an order ideal, f /∈ I, f 6≡ 0. Then there exists an order
ideal J ⊇ I such that −f ∈ J .

Proof of lemma. Assume f 6= 0. Let J be the set of elements of |B| of the
form

p(−f) = (−f)m1 · g1 + · · ·+ (−f)ml · gl

where l ≥ 1, gi ∈ I, mi ≥ 0. Clearly −f ∈ J and J satisfies (i) and (ii).
Suppose (iii) fails for J , say p(−f) = 0. We then have

p(−f) = q(f 2)− f · r(f 2) = 0

where q(f 2) and r(f 2) ∈ I or = 0. If r(f 2) = 0 then q(f 2) = 0 so both are 0.
This is impossible since l ≥ 1. Hence r(f 2) 6= 0. Hence

f =
q(f 2)

r(f 2)
= q(f 2) · r(f 2) ·

(
1

r(f 2)

)2

∈ I

since f 6= 0. This proves the lemma.

Now to prove the theorem, suppose f /∈ I, f 6= 0. By the lemma, get an
order ideal J ⊇ I containing −f . By Zorn’s lemma let K ⊇ J be a maximal
order ideal. Then K satisfies (i), (ii), (iii) and also

(iv) for all g 6= 0 either g ∈ K or −g ∈ K.

This is immediate from the lemma, by maximality of K.
For g, h ∈ |B| define g < h if and only if h − g ∈ K. It is easy to check

that this definition makes B an ordered field. Furthermore, if c ∈ |F| is
positive in F , then it is positive in B. So B is an ordered field extension of
F .

We see now that there exist b1 . . . , bn lying in an ordered field extension of
F , such that f(b1, . . . , bn) < 0 (namely bi = xi lying in B). Hence by model
completeness of RCOF (see also corollary 9.3.10), it follows that there exist
a1, . . . , an ∈ |F| such that f(a1, . . . , an) < 0. Q.E.D.
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2.

Corollary (Artin’s solution of Hilbert’s 17th problem). Let F be either the
real field R or the rational field Q. Suppose f(x1, . . . , xn) ∈ F(x1, . . . , xn)
is definite over F , i.e. f(a1, . . . , an) ≥ 0 for all a1, . . . , an ∈ |F| such that
f(a1, . . . , an) is defined. Then there exist g1, . . . , gk in F(x1, . . . , xn) such
that

f =
k∑
i=1

g2
i .

Proof. For the reals this is immediate from the previous theorem. For the
rationals, it is immediate from the theorem plus the following two observa-
tions: (1) Q is dense in R; (2) every positive element of Q is the sum of 4
squares in Q.

3.

Remark. An ordered field F is said to be Hilbertian if (1) F is dense in
F , (2) every positive element of F is a sum of squares in F . For example,
F = reals, F = rationals, F = any RCOF are Hilbertian. Clearly the above
corollary holds for any Hilbertian ordered field. McKenna1 has proved the
converse: If the corollary holds for F , then F is Hilbertian.

4.

We now derive a corollary concerning effective bounds, analogous to theorem
6.4.3.

Corollary. We can find a recursive function K : ω2 → ω with the following
property:

Let F be an ordered field, and let f ∈ F(x1, . . . , xn) be such that
f(a1, . . . , an) ≥ 0 for all a1, . . . , an ∈ F such that this is defined.
If f is of degree ≤ d then f =

∑k
i=1 cig

2
i for some k ≤ K(n, d),

ci ∈ F , ci ≥ 0, gi ∈ F(x1, . . . , xn) of degree ≤ K(n, d).

1SLNM 498, pp. 220-230.
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Proof. Let T be the theory of real closed ordered fields with a distinguished
subfield, F . Let σndm be the sentence asserting that the desired conclusion
holds with K(n, d) replaced by m. We have ∀n ∀d ∃m σndm ∈ T (otherwise
we could use compactness to construct a counterexample to theorem 9.4.1).
So put K(n, d) = least m such that σndm ∈ T . This is recursive since T is
decidable.

5.

Remark. Ax (unpublished) and Pfister (1967)2 have shown that for real
closed F we can always get k ≤ 2n (but apparently with no bound on the
degrees). There are some open problems in this area.

6.

Exercise. Prove the following result which is known as the Nullstellensatz
for ordered fields.

Theorem (Dubois3). Let f, h1, . . . , hm ∈ F [x1, . . . , xn] be polynomials in
n variables over an ordered field F . Suppose that every common zero of
h1, . . . , hm in F , the real closure of F , is a zero of f . Then there exist
nonnegative integers r and k such that

f 2r +

k∑
i=1

cig
2
i =

m∑
j=1

pjhj

where ci ∈ |F|, ci ≥ 0, gi, pj ∈ F [x1, . . . , xn].

Deduce a version with effective bounds.

2Proc. Symp. Pure Math. 28, pp. 483-491.
3Ark. Mat. 8 (1969), pp. 111-114. See also Prestel’s monograph.



Chapter 10

Prime models (countable case)

10.1 The omitting types theorem

1.

Definition. Let p be an n-type over a theory T . A model A of T is said to
omit p if there is no n-tuple a1, . . . , an ∈ |A| which realizes p.

We have already seen how to use the compactness theorem to construct a
model which realizes p. It is somewhat more difficult to construct a model
which omits p. Indeed, such a model may not even exist. The omitting types
theorem gives a sufficient condition for the existence of a model of T which
omits p. (If T is complete, this sufficient condition is also necessary.)

2.

Definition. We say that p is principal over T if it is generated by a single
formula, i.e. there exists ϕ ∈ Fn(T ) such that p = {ψ ∈ Fn(T ) : T |=
∀v1 · · · vn(ϕ(v1, . . . , vn)→ ψ(v1, . . . , vn)). Such a ϕ is called a generator of p.

We say that p is essentially nonprincipal over T if p is not included in any
principal n-type over T .

3.

Theorem (the omitting types theorem). Let T be a countable theory and
let p be an n-type over T . Suppose that p is essentially nonprincipal over T .

93
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Then there exists a model of T which omits p.

Proof. We go back to the Henkin proof of the completeness theorem. Let
C = {ci : i ∈ ω} be a countable set of new constant symbols. Let {σs :
s ∈ ω} be an enumeration of all sentences σ with sig(σ) ⊆ sig(T ) ∪ C. Let
{ϕS(v) : s ∈ ω} be an enumeration of all formulas ϕ(v) with no free variables
other than v, such that sig(ϕ(v)) ⊆ sig(T ) ∪C. Let {〈cs1, . . . , csn〉 : s ∈ ω} be
an enumeration of all n-tuples of constant symbols from C.

Stage 0: T0 = T .
Stage 3s + 1: Put T3s+1 = T3s ∪ {σs} if this is consistent, otherwise

T3s+1 = T3s ∪ {¬σs}.
Stage 3s + 2: Let h(s) be the least i such that ci does not appear in

T3s+1 ∪ {ϕs(v)}. Put T3s+2 = T3s+1 ∪ {(∃vϕs(v))→ ϕs(ch(s))}.
Stage 3s + 3: Let q be the set of all ψ ∈ Fn(T ) such that T3s+2 ∪

{¬ψ(cs1, . . . , c
s
n)} is inconsistent. Clearly q is a principal n-type over T .

Hence q does not include p. Pick a formula ϕ ∈ p \ q and put T3s+3 =
T3s+2 ∪ {¬ϕ(cs1, . . . , c

s
n)}.

Finally put T∞ =
⋃
s∈ω Ts. Define a Henkin model M as in the proof of

theorem 3.1.2. Each n-tuple of elements of |M| is denoted by an n-tuple of
Henkin constants cs1, . . . , c

s
n. Thus M omits p.

4.

Remark. The hypothesis that T is countable cannot be omitted from the
omitting types theorem.

5.

We digress to present a typical application of the omitting types theorem.

Theorem. Let A = (|A|,∈A) be a countable model of ZF set theory. Then
A has a proper elementary extension B such that ωA = ωB, i.e. A and B
have the same natural numbers.

Proof. Let T be the theory generated by

(elementary diagram of A) ∪ {rank(c) > rank(a) : a ∈ |A|}

where c is a new constant symbol. T is consistent by the compacttness
theorem, and every model of T gives rise to a proper elementary extension
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of A. Let p be the 1-type over T generated by {v1 ∈ ω}∪{v1 6= n : n ∈ ωA}.
To prove the theorem, it suffices to find a model of T which omits p.

Suppose this were not possible. By the omitting types theorem, p is
included in a principal 1-type over T . Let ϕ ∈ Fn(T ) be a generator of
such a principal 1-type. In particular T |= ¬ϕ(n) for all n ∈ ωA. Let
ϕ(v) = ψ(c, v) where sig(ψ) ⊆ sig(elementary diagram of A). Then for each
n ∈ ωA we have T |= ¬ψ(c, n). Hence by compactness, for each n ∈ ωA there
exists a ∈ |A| such that the elementary diagram of A contains

∀x (rank(x) > rank(a)→ ¬ψ(x, n)) .

Hence

A |= ∀n ∈ ω ∃y ∀x (rank(x) > rank(y)→ ¬ψ(x, n)) .

By the replacement axiom in A it follows that

A |= ∃y ∀n ∈ ω ∀x (rank(x) > rank(y)→ ¬ψ(x, n)) .

Let a ∈ |A| be such that

A |= ∀n ∈ ω ∀x (rank(x) > rank(a)→ ¬ψ(x, n)) .

Since T |= rank(c) > rank(a) it follows that T |= ∀n ∈ ω ¬ψ(c, n). In other
words, T |= ∀v1 (ϕ(v1)→ v1 /∈ ω). This contradicts the assumption that the
principal 1-type generated by ϕ includes p.

6.

The omitting types theorem can be generalized as follows:

Theorem. Let T be a countable theory. For each i ∈ ω, let pi be an
essentially nonprincipal ni-type over T . Then T has a model which omits pi
for each i ∈ ω.

The proof is a straightforward generalization of the proof of the omitting
types theorem.
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7.

Exercise. Use the above generalization of the omitting types theorem to
prove the following result, which generalizes theorem 10.1.4 above.

Theorem (Keisler and Morley). Let A be a countable model of ZF set the-
ory. Then A has a proper elementary end extension, i.e. a proper elementary
extension B such that rank(a) < rank(b) for all a ∈ |A|, b ∈ |B| \ |A|.

In the next section, the omitting types theorem will be used to study
prime models.

10.2 Prime models

1.

Definition. Let T be a complete theory. A model A of T is said to be prime
if every model of T has an elementary submodel which is isomorphic to A.

2.

Examples.

1. Let T = ACF(0). This theory has a prime model Q = the algebraic
closure of the rational field Q = (Q, +,−, ·, 0, 1).

2. Similarly for T = ACF(p), the theory of algebraically closed fields of
prime characteristic p. The prime model is the algebraic closure of
Fp = (Fp, +,−, ·, 0, 1).

3. Generalizing examples 1 and 2, let A be any field and let T = ACF ∪
(diagram of A). We know that T is complete because ACF admits
elimination of quantifiers. The prime model of T is A, the algebraic
closure of A.

4. T = RCOF. The prime model is Q = the real closure of the ordered
field Q = (Q, +,−, ·, 0, 1, <).

5. T = RCOF ∪ (diagram of F) where F is any ordered field. The prime
model is F , the real closure of F .
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6. T = theory of dense linear ordering without end points. The prime
model is (Q, <).

7. We give an example of a complete countable theory with no prime
model. Let T have 1-place relations Si(x), i ∈ ω, and axioms saying
that the Si’s are independent, i.e. any nontrivial Boolean combination of
them is nonempty. The completeness of T can be proved by quantifier
elimination. It is easy to see that no model of T is prime.

3.

Remark. It is clear from the definition of prime model that any elementary
submodel of a prime model is prime. Example 6 shows that a prime model
may have proper elementary submodels.

4.

The purpose of this section is to establish necessary and sufficient conditions
for a complete theory T to have a prime model, and to establish the unique-
ness of prime models when they exist. Throughout this chapter we deal with
countable theories T ; for the uncountable case, see chapter 13.

5.

The following lemma is just a restatement of the omitting types theorem in
the special case when T and p are complete.

Lemma. Let T be a countable complete theory, and let p ∈ Sn(T ) be a
complete n-type over T . The following are equivalent.

(i) p is principal over T .

(ii) p is realized in every model of T .

Proof. Assume that p is principal, say generated by ϕ ∈ Fn(T ). In particular
T ∪ {∃v1 · · · vn ϕ(v1, . . . , vn)} is consistent. Since we are assuming that T is
complete, it follows that T |= ∃v1 · · · vn ϕ(v1, . . . , vn). Let A be any model of
T . Since A |= ∃v1 · · · vn ϕ(v1, . . . , vn), there exist a1, . . . , an ∈ |A| such that
A |= ϕ(a1, . . . , an). Then clearly the n-tuple a1, . . . , an realizes p.
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Conversely, suppose that p is nonprincipal over T . Since p is complete,
it follows that p is essentially nonprincipal over T . Hence by the omitting
types theorem, there exists a model of T which omits p.

6.

Definition. A structure A is atomic if for every a1, . . . , an ∈ |A| the com-
plete n-type realized by a1, . . . , an is principal over Th(A).

7.

Theorem (Vaught). Let T be a countable complete theory. The following
are equivalent for A ∈ Mod(T ).

(i) A is prime.

(ii) A is countable and atomic.

Proof. (i)⇒ (ii). Assume A is prime. Since T has a countable model B andA
is isomorphic to an elementary submodel of B, it follows that A is countable.
To show that A is atomic, let a1, . . . , an ∈ |A| and let p be the complete
n-type over T realized by a1, . . . , an. Since A is prime, p is realized in every
model of T . Hence by the previous lemma it follows that p is principal. Thus
A is atomic.

(ii) ⇒ (i). Assume that A is countable and atomic. Let |A| = {an :
n ∈ ω} be an enumeration of |A|. Let B be a model of T . We want to
construct an elementary embedding of A into B. Assume inductively that
we have chosen b0, . . . , bn−1 ∈ |B| so that (A, ai)i<n ≡ (B, bi)i<n. Since A is
atomic, so is (A, ai)i<n. [ For, let c1, . . . , ck ∈ |A|. The complete (n + k)-
type realized by 〈a0, . . . , an−1, c1, . . . , ck〉 is principal over T , say generated by
θ(u0, . . . , un−1, w1, . . . , wk). Put ψ(w1, . . . , wk) ≡ θ(a0, . . . , an−1, w1, . . . , wk).
Then ψ generates the complete k-type realized by c1, . . . , ck over Th((A, ai)i<n). ]

Let pn ∈ S1((A, ai)i<n) be the complete 1-type realized by an. Since pn
is principal, it follows by the previous lemma that pn is realized in (B, bi)i<n,
say by bn ∈ |B|. Then (A, ai)i≤n ≡ (B, bi)i≤n. Finally (A, ai)i∈ω ≡ (B, bi)i∈ω.
Thus ai 7→ bi gives an elementary embedding of A into B.



10.2. PRIME MODELS 99

8.

Theorem (Vaught). Let T be a countable complete theory. If T has a prime
model, it is unique up to isomorphism.

Proof. By the previous theorem it suffices to show that any two countable
atomic models of T are isomorphic. We use a back-and-forth argument. The
inductive step is as in the proof of the previous theorem. The details are
routine.

9.

Theorem (Vaught). Let T be a countable complete theory. The following
are equivalent.

(i) T has a prime model.

(ii) T has an atomic model.

(iii) Every principal n-type over T is included in a complete principal n-type
over T .

10.

Remark. A Boolean algebra B is said to be atomic if for all b ∈ B, b 6= 0,
there exists a ≤ b such that a is an atom, i.e. a 6= 0 and there is no a1

such that 0 < a1 < a. The condition (iii) in the theorem can be restated as
follows: for each n ∈ ω, the Boolean algebra Bn(T ) is atomic.

11.

Proof of theorem 9.
(i) ⇒ (ii). Let A be a prime model of T . By 10.2.7 above, A is atomic.
(ii) ⇒ (iii). Let A be an atomic model. Let q be a principal n-type

over T , say generated by ϕ ∈ Fn(T ). Since T is complete, we have T |=
∃v1 . . . vn ϕ(v1, . . . , vn). Hence q is realized in A, say by a1, . . . , an. Let
p ∈ Sn(T ) be the complete n-type realized by a1, . . . , an. Then p ⊇ q and p
is principal.

(iii) ⇒ (i). Assuming (iii) we construct a countable atomic model of
T . We employ a Henkin construction as in the proof of the omitting types
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theorem 10.1.3. Let {〈cs1, . . . , csns〉 : s ∈ ω} be an enumeration of all finite
sequences of Henkin constants. Stages 0, 3s + 1, and 3s + 2 are as in the
proof of theorem 10.1.3.

Stage 3s + 3: Put n = ns and let q be the set of ψ ∈ Fn(T ) such that
T3s+2 ∪ {¬ψ(cs1, . . . , c

s
n)} is inconsistent. Let p ⊇ q be a principal complete

n-type over T . Let ϕ ∈ Fn(T ) be a generator of p. Put T3s+3 = T3s+2 ∪
{ϕ(cs1, . . . , c

s
n)}. Clearly T3s+3 is consistent.

At the end of the construction we obtain a countable atomic model of T .
This is prime by theorem 10.2.7.

12.

Corollary (Vaught). Let T be a countable complete theory. Suppose Sn(T )
is countable for each n ∈ ω. Then T has a prime model.

Proof. Assuming that Sn(T ) is countable, we shall show that Bn(T ) is atomic,
i.e. every principal n-type q over T is included in a complete principal n-type
over T . Suppose not, i.e. any principal n-type which includes q is incomplete.
We use a splitting argument. For each finite sequence s of 0’s and 1’s we
define a principal n-type qs which includes q. Begin with q∅ = q. Given qs,
we know that qs is incomplete, so let ϕs ∈ Fn(T ) be a formula such that
qs∪{ϕs} and qs∪{¬ϕs} are both consistent. Let qs1 be the n-type generated
by qs ∪ {ϕs} and let qs0 be the n-type generated by qs ∪ {¬ϕs}.

For each f ∈ 2ω let qf =
⋃
{qf�n : n ∈ ω}. Then qf is an n-type over

T , and f 6= g implies qf ∪ qg is inconsistent. Let pf be a complete n-type
over T which includes qf . Then f 6= g implies pf 6= pg. Hence |Sn(T )| = 2ℵ0

contradicting our assumption that Sn(T ) is countable.

13.

Remark. In terms of Boolean algebras, the previous argument shows that
if B is a countable Boolean algebra with S(B) countable, then B is atomic.
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10.3 The number of countable models

1.

Let T be a complete theory and let κ be a cardinal. We write ν(T, κ) = the
number of nonisomorphic models of T of cardinality κ. This function is a
central object of study in pure model theory.

In this section, we study ν(T,ℵ0) where T is complete and countable. We
begin with the case when ν(T,ℵ0) = 1, i.e. T is ℵ0-categorical.

2.

Theorem (Ryll-Nardzewski). Let T be a complete countable theory with
no finite models. The following are equivalent:

(1) T is ℵ0-categorical.

(2) Sn(T ) is finite for each n ∈ ω.

(3) Every countable model of T is prime.

(4) Every countable model of T is saturated.

(The equivalence of (1) and (2) is due to Ryll-Nardzewski.)

Proof. (1) ⇒ (2). Suppose that Sn(T ) is infinite. We claim that there
exists a nonprincipal q ∈ Sn(T ). To see this, for each principal p ∈ Sn(T ) let
ϕp ∈ Fn(T ) be a generator of p. Put Y = {¬ϕp : p ∈ Sn(T ), p non-principal}.
Since Sn(T ) is infinite, it follows by compactness that Y is consistent over
T . Hence Y can be extended to a complete n-type q ∈ Sn(T ). Clearly q is
nonprincipal.

By lemma 10.2.5 there exists a countable model A ∈ Mod(T ) such that
A omits q. Also there exists a countable B ∈ Mod(T ) such that B realizes q.
A and B are nonisomorphic, so T is not ℵ0-categorical.

(2) ⇒ (3). Since Sn(T ) is finite, every p ∈ Sn(T ) is principal. Hence
every model of T is atomic. Hence by theorem 10.2.7 it follows that every
countable model of T is prime.

(2) ⇒ (4). Let A be a countable model of T ., and let X ⊆ |A| be finite.
From (2) it follows that S1(X) is finite. hence each p ∈ S1(X) is principal,
hence realized in AX . This shows that A is saturated.
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(3) ∨ (4) ⇒ (1). This is because of uniqueness of prime models (10.2.8)
or saturated models (7.2.8) respectively.

3.

Remark. In terms of Boolean algebras, the argument for (1) ⇒ (2) above
shows that if B is a Boolean algebra with S(B) infinite (equivalently B is
infinite), then B has a nonprincipal ultrafilter.

4.

Next we consider the situation where 1 < ν(T,ℵ0) < ℵ0. We say that a
countable model A of T is weakly saturated if every p ∈ Sn(T ), n ∈ ω is
realized in A.

5.

Theorem (Rosenstein). Suppose 1 < ν(T,ℵ0) < ℵ0 where T is a countable
complete theory. Then T has a weakly saturated countable model which is
not saturated.

Proof. Suppose not. Let A1, . . . ,Ak be the countable models of T which are
not saturated. By assumption these models are not weakly saturated, so let
pi ∈ Sni(T ) be omitted in Ai, 1 ≤ i ≤ k.

Introduce new constant symbols ci1, . . . , c
i
ni

, 1 ≤ i ≤ k, and let T∗ be a
countable complete theory which includes T ∪ {ϕ(ci1, . . . , c

i
ni

) : ϕ ∈ pi, 1 ≤
i ≤ k}. Let A∗ = (|A∗|, Φ∗) be any countable model of T∗. Then A =
(|A∗|, Φ∗�sig(T )) is a countable model of T . Since each pi is realized in
A, 1 ≤ i ≤ k, it follows that A is saturated. Hence A∗ is saturated. We
have now shown that any countable model of T∗ is saturated. Hence T∗ is
ℵ0-categorical. Hence by Ryll-Nardzewski’s theorem 10.3.2, it follows that
Sn(T

∗) is finite for all n ∈ ω. Hence Sn(T ) is finite for all n ∈ ω. Hence by
10.3.2 again it follows that T is ℵ0-categorical, i.e. ν(T,ℵ0) = 1, contradicting
the hypothesis of the theorem.
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6.

Theorem (Vaught). Let T be a countable complete theory. Then ν(T,ℵ0) 6=
2.

Proof. Suppose 1 < ν(T,ℵ0) < ℵ0. From ν(T,ℵ0) ≤ ℵ0 it follows that Sn(T )
is countable for each n ∈ ω. Hence among the countable models of T are a
prime one, a saturated one, and a weakly saturated one (corollary 10.2.12 and
theorems 7.3.1 and 10.3.5). These three countable models are nonisomorphic
(theorems 10.2.7 and 10.3.5).

7.

Examples. (1) We give examples of countable complete theories Tk with
ν(T,ℵ0) = k, 1 ≤ k < ℵ0. We may take T1 to be the theory of dense
linear ordering without endpoints (ℵ0-categorical by 2.3.1). By the previous
theorem, T2 does not exist.

We may take T3 to be the theory whose axioms are T1 ∪ {cn < cn+1 : n ∈
ω}. Thus a model of T3 consists of a dense linear ordering without endpoints
together with an increasing sequence of distinguished elements cn, n ∈ ω.
In the three countable models, the cn’s are unbounded, bounded with no
limit, or bounded with a limit. (These three models are respectively prime,
saturated, and weakly saturated.)

For m ≥ 1 we take axioms for T3+m to consist of

T3 ∪ {P 0(cn) : n ∈ ω}
∪ {∀x (P i(x) for exactly one i, 0 ≤ i ≤ m)}
∪ {∀x∀y (x < y → ∃z(P i(z) ∧ x < z < y)) : 0 ≤ i ≤ m} .

Thus a model of T3+m is a model of T3 in which the points are colored with
m + 1 densely shuffled colors Pi, 0 ≤ i ≤ m, and the distinguished points
cn have color P0. In a given model of T3+m we may have cn’s unbounded,
bounded with no limit, or bounded with a limit in Pi, 0 ≤ i ≤ m. This
gives m + 3 distinct countable models. (All except the prime one are weakly
saturated.)

(2) There are plenty of examples of countable complete theories T with
ν(T,ℵ0) = ℵ0 or 2ℵ0 . For instance ν(ACF(0),ℵ0) = ℵ0 and ν(RCOF,ℵ0) =
2ℵ0 .
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8.

We omit the proof of the following theorem.

Theorem (Morley). Let T be a countable complete theory. If ν(T,ℵ0) is
infinite, then it is equal to either ℵ0, ℵ1, or 2ℵ0 .

9.

Remark. Vaught has conjectured that for all countable complete theories
T , if ν(T,ℵ0) > ℵ0 then ν(T,ℵ0) = 2ℵ0 . No counterexample to Vaught’s
conjecture is known. Steel1 has shown that Vaught’s conjecture holds for
theories T whose models are trees. (A tree is a partially ordered set such
that the predecessors of any element are linearly ordered.) Shelah has shown
that Vaught’s conjecture holds for superstable theories. Also, Lachlan2 has
shown that for superstable theories, ν(T,ℵ0) < ℵ0 implies ν(T,ℵ0) = 1.

10.4 Decidable prime models

1.

Let A be a countable model such that sig(A) is finite (or recursive). Recall
that A is said to be decidable if there exists an enumeration |A| = {an : 1 ≤
n < ω} of the elements of A, such that{

ϕ ∈
⋃
n∈ω

Fn(T ) : A |= ϕ(a1, . . . , an)

}
is recursive. (This is easily seen to be equivalent to definition 4.3.1.)

2.

Recall theorem 4.3.4 which said that if T is a decidable theory, then T has
a decidable model. However, it is not in general true that if T is a complete
decidable theory which has a prime model, then T has a decidable prime
model. We now present a theorem which gives a necessary and sufficient
condition for T to have a decidable prime model.

1SLNM 689
2FM 81
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3.

Theorem (Harrington). Let T be a complete decidable theory. The follow-
ing are equivalent.

(a) T has a decidable prime model.

(b) Given n ≥ 1 and ϕ ∈ Fn(T ) such that ϕ is consistent with T , we can
recursively enumerate a complete n-type pϕ ∈ Sn(T ), such that ϕ ∈ pϕ

and pϕ is principal.

Note. We do not assume in (b) that it is possible to pass recursively from ϕ
to a generator of pϕ.

Proof. (a) ⇒ (b). Let A be a decidable prime model of T . Given ϕ ∈ Fn(T )
consistent with T , since T is complete we have T |= ∃v1 · · · vn ϕ so we can
recursively find an n-tuple a1, . . . , an ∈ |A| such that A |= ϕ(a1, . . . , an). We
can then enumerate the complete n-type realized by a1, . . . , an and define pϕ

to be this type. Clearly ϕ ∈ pϕ, and pϕ is principal by theorem 10.2.7.
(b) ⇒ (a). Let T be a complete decidable theory such that (b) holds.

Introduce a recursive set of new constant symbols C = {cn : 1 ≤ n <
ω} and let T0 = T ∪ {Hn(c1, . . . , cn) : 1 ≤ n < ω} where Hn(c1, . . . , cn)
is the nth Henkin sentence (∃xψn(x)) → ψn(cn). Here we assume that
{ψn(x) : 1 ≤ n < ω} is an enumeration of all formulas ψ(x) with one free
variable x such that sig(ψ(x)) ⊆ sig(T )∪C, and we assume that sig(ψn(x)) ⊆
sig(T ) ∪ {c1, . . . , cn}.

We shall construct a complete decidable theory T∞ extending T0 such
that, for each m ≥ 1, there will exist a formula ϕm ∈ Fm(T ) such that
c1, . . . , cm realizes pϕm . This clearly implies that the Henkin model associated
with T (as in the proof of theorem 4.3.4) is decidable and prime.

If it were possible to pass recursively from ϕ to a generator of pϕ, we
could construct T∞ by straightforwardly combining the proofs of theorem
4.3.4 and 10.2.9. It would then be the case that ϕm is a recursive function
of m. Unfortunately this is not possible. We shall have to define ϕm as the
limit of a recursive sequence of approximations ϕsm. We shall use a priority
argument to show that the approximations converge.

We shall construct T∞ recursively in stages T0 ⊆ T1 ⊆ · · · ⊆ Ts ⊆ · · · .
At each stage s ≥ 0, Ts will consist of T0 plus finitely many sentences.
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Let τ s(c1, . . . , cNs) be the conjunction of this finite set of sentences, where
τ s ∈ FNs(T ). Put

τ sm(v1, . . . , vm) ≡ ∃vm+1 · · · vn [ H1(v1) ∧ · · · ∧Hn(v1, . . . , vn) ∧ τ s(v1, . . . , vNs) ]

where n = max(m, Ns). Thus τ sm expresses all the assertions about c1, . . . , cm
to which we are committed at the end of stage s. Note that τ sm ∈ Fm(T ).

At each stage s, there will be a recursive sequence of formulas ϕsm ∈
Fm(T ), 1 ≤ m < ω. Here ϕsm is the stage s approximation of the desired
formula ϕm.

We now present the construction.
Stage 0. Let T0 be as above. Put ϕ0

m(v1, . . . , vm) = τ 0
m(v1, . . . , vm).

Stage s + 1. Let s = (n − 1, k, t) in some fixed recursive enumeration
of ω × ω × ω. Let θ(v1, . . . , vn) be the kth formula in some fixed recur-
sive enumeration of Fn(T ). At this stage we shall consider whether to add
θ(c1, . . . , cn) to our theory.

If θ ∈ pϕ
s
n and T 6|= τ sn → θ and T |= τ sm → ∃vm+1 · · · vn [ τ sn ∧ θ ] for each

m, 1 ≤ m < n, then put

Ts+1 = Ts ∪ {θ(c1, . . . , cn)}

and, for all m ≥ 1,

ϕs+1
m =

{
ϕsm if 1 ≤ m ≤ n ,

τ s+1
m if m > n .

Otherwise do nothing, i.e. Ts+1 = Ts and ϕs+1
m = ϕsm for all m ≥ 1.

It is clear that the construction is recursive and hence produces a recur-
sively axiomatizable theory T∞. We shall now prove a sequence of claims
leading to the conclusion that this theory is complete and gives rise to an
atomic Henkin model.

Claim 1: T |= τ sm → ϕsm.
This is clear by induction on s since ϕ0

m = τ 0
m and ϕs+1

m = either ϕsm or
τ s+1
m .

Claim 2: τ sm ∈ pϕ
s
m .

We prove this by induction on s. For s = 0 it is trivial since τ 0
m =

ϕ0
m ∈ pϕ

0
m. If no action is taken at stage s + 1, the induction step is trivial.

Consider a stage s + 1 at which action is taken. Let n and θ be as in the
construction. For m < n we have τ s+1

m ≡ ∃v1 · · · vn [ τ sn ∧ θ ] so by hypothesis
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T |= τ sm → τ s+1
m . Also ϕs+1

m = ϕsm so by induction τ s+1
m ∈ pϕ

s
m = pϕ

s+1
m . For

m = n, we have τ s+1
n = τ sn ∧ θ and τ sn ∈ pϕ

s
n by induction, and θ ∈ pϕ

s
n by

hypothesis. Hence τ s+1
n ∈ pϕ

s
n = pϕ

s+1
n since ϕs+1

n = ϕsn. Finally, for m > n,

we have τ s+1
m = ϕs+1

m ∈ pϕ
s+1
m .

Claim 3: ∀n ∃s ∀s′ ≥ s ϕs
′
n = ϕsn. (We then define ϕn = lims ϕsn.)

Claim 4: ∀n ∃s (τ sn is a generator of pϕn).
We prove claims 3 and 4 simultaneously by induction on n. Assume that

3 nd 4 hold for all m < n. Let σ be a stage such that for all m < n and all
s ≥ σ, ϕsm = ϕσm and τ sm generates pϕ

s
m .

We first prove 3 for n. Given s ≥ σ, let s = (m− 1, k, t) and let θ be the
kth formula in Fm(T ). If m ≥ n, then ϕs+1

n = ϕsn. If m < n, then θ ∈ pϕ
s
m

implies T |= τ sm → θ, so nothing was done at stage s. Hence again ϕs+1
n = ϕsn.

Thus by induction we have ∀s ≥ σ ϕsn = ϕσn.
Next we prove claim 4 for n. Let θ be a generator of pϕn = pϕ

σ
n . Look

at what happens at a stage s ≥ σ such that s = (n − 1, k, t) where θ is the
kth formula in Fn(T ). We have θ ∈ pϕ

s
n and, by claim 2, τ sn ∈ pϕ

s
n . Hence

τ sn ∧ θ is consistent with T . Hence, for each m < n, since τ sm generates pϕ
s
m ,

it follows that τ sm is an atom in Bm(T ), so

T |= τ sm → ∃vm+1 · · · vn [ τ sn ∧ θ ] .

Thus, unless T |= τ sn → θ already, we have Ts+1 = Ts ∪ {θ(c1, . . . , cn)}. In
any case T |= τ s+1

n → θ so τ s+1
n is a generator of pϕn. This completes the

proof of claims 3 and 4.
From claim 4 it follows that T∞ =

⋃
s∈ω Ts generates a complete decidable

extension of T0 whose asociated Henkin model is atomic. This completes the
proof of the theorem.

4.

Remark. In chapter 11 we shall apply the above theorem to show that
the differential closure of a computable differential field of characteristic 0 is
computable. This was Harrington’s original application.

5.

Exercise. Prove the following theorem of Morley3:

3Israel J. Math. vol. 25 pp. 233-240
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Theorem (Morley). A complete decidable theory T has a decidable sat-
urated model if and only if there is a uniform recursive enumeration of⋃
n∈ω Sn(T ).

For more information on decidable models, see e.g. Millar, Annals of
Math. Logic vol. 13, pp. 45-72.

6.

Exercise. Use theorem 10.4.3 to prove that the algebraic closure of a com-
putable field is computable, and the real closure of a computable ordered
field is computable.



Chapter 11

Differentially closed fields of
characteristic 0

11.1 Simple extensions

1.

The theory of differential fields, DF, has the following set of axioms:

(a) field axioms

(b) ∀x∀y (x + y)′ = x′ + y′

(c) ∀x∀y (x · y)′ = x′ · y + x · y′

Here ′ is a 1-place operation symbol.

A differential field is a model of these axioms. A differential domain is a
model of the axioms for domains plus (b), (c). A differential ring is defined
similarly. The characteristic of a diffrential field is the characteristic of the
underlying field.

2.

Examples. (1) Let A be any field. The polynomial ring A[x] can be made
into a differential ring by interpreting ′ as the formal derivative, i.e. if f =
anx

n + · · ·+ a1x + a0, ai ∈ |A|, then f ′ = nanx
n−1 + · · ·+ a1.

109
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We can extend the derivative to the field of rational functions A(x) =
field of quotients of A[x] in the usual way:(

f

g

)′
=

f ′ · g − f · g′
g2

.

Then A(x) becomes a differential field.

(2) Any field A can be made into a differential field in a trivial way by
putting a′ = 0 for all a ∈ |A|.

Note that this is the only way to make the rational fieldQ = (Q, +,−, ·, 0, 1)
into a differential field. Thus the differential field Q is embedded in every
differential field of characteristic 0.

(3) Let D be a connected open set in the complex z-plane (or more
generally any Riemann surface). LetM be the field of meromorphic functions
on D, i.e. the field of quotients of the ring of holomorphic functions on D.
This can be regarded as a differential field in the obvious way: f ′ = derivative
of f = df/dz.

(4) Let N be the set of all functions which are meromorphic in some open
set containing 0 in the z-plane. (Identify two such functions if they are equal
on some open set containing 0.) This is again a differential field in an obvious
way.

3.

Remark. Ritt and Seidenberg1 have shown that every differential field which
is finitely generated over the reational field is isomorphic to a differential
subfield of N . Thus everything we shall do in this chapter is meaningful for
analysis.

4.

We now study simple extensions of differential fields of characteristic 0.

Lemma. Let D be a differential domain and let F be its field of quotients,
F = {c/d : c, d ∈ |D|, d 6= 0}. Then there is one and only one way to make
F into a differential field extension of D.

1Proc. AMS 9 (1958) 159-164; 23 (1969) 689-691.
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Proof. We must have

c′ =
( c

d
· d
)′

=
( c

d

)′
· d +

c

d
· d′

so ( c

d

)′
=

c′ · d− c · d′
d2

.

It is easy to check that this makes F a differential field, etc.

5.

Lemma. LetA be a differential field of characteristic 0. Let B = A(b0, . . . , bn−1, bn)
be a finitely generated field extension of A such that

(i) for each i < n, bi is transcendental over A(b0, . . . , bi−1),

(ii) bn is algebraic over A(b0, . . . , bn−1).

Then there is one and only one way to make B into a differential field exten-
sion of A subject to the conditions b′i = bi+1, i < n.

6.

Before proving this lemma, we give an example. Let b0 be transcendental
over A and let b1 satisfy b2

1 − b0 = 0. Then A(b0, b1) can be made into a
differential field extension of A in which b0 is a solution of the first order
differential equation (y′)2 − y = 0 and is not the solution of any algebraic
equation over A.

7.

Proof of lemma 5. Consider the ring A[~y] = A[y0, . . . , yn−1, yn]. A typical
element g of A[y0, . . . , yn−1, yn] looks like

g(~y) =
∑
j

aj~y
j

where aj = aj0j1...jn ∈ |A| and ~yj = yj00 · · · y
jn−1

n−1 yjnn . Let us write

g̃(~y) =
∑
j

a′j~y
j
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and ∂g/∂yi = the formal partial derivative of g(y0, . . . , yn−1, yn) with respect
to yi. Given g(b0, . . . , bn−1, bn) ∈ A[b0, . . . , bn−1, bn] we are forced to define

g(b0, . . . , bn−1, bn)
′ = g̃(b0, . . . , bn−1, bn) +

n∑
i=0

∂g

∂yi
(b0, . . . , bn−1, bn) · bi+1

where however bn+1 remains to be determined.
Let f(b0, b1, . . . , bn−1, yn) ∈ A(b0, . . . , bn−1)[yn] be irreducible such that

B ∼= A(b0, . . . , bn−1)[yn]/f (by theorem 6.1.12). Multiplying f by a suitable
element of A[b0, . . . , bn−1], we may safely assume that f(y0, . . . , yn−1, yn) ∈
A[y0, . . . , yn−1, yn]. As in the previous paragraph, we want

0 = f(b0, b1, . . . , bn−1, bn)
′ = f̃(b0, . . . , bn−1, bn) +

n∑
i=0

∂f

∂yi
(b0, . . . , bn−1, bn) · bi+1 .

Since ∂f/∂yn is of lower degree than f in yn, we must have

∂f

∂yn
(b0, . . . , bn−1, bn) 6= 0 .

Hence we are forced to define

bn+1 =
f̃(b0, . . . , bn−1, bn) +

∑n−1
i=0

∂f
∂yi

(b0, . . . , bn−1, bn) · bi+1

− ∂f
∂yn

(b0, . . . , bn−1, bn)
.

We must check that ′ is well defined. We have f(b0, . . . , bn−1, bn) = 0. Also
f(b0, . . . , bn−1, bn)

′ = 0 by choice of bn+1. Suppose g1, g2 ∈ A[y0, . . . , yn−1, yn]
are such that g1(b0, . . . , bn−1, bn) = g2(b0, . . . , bn−1, bn). Then

g1(b0, . . . , bn−1, yn) ≡ g2(b0, . . . , bn−1, yn) mod f(b0, . . . , bn−1, yn)

in the polynomial ring A(b0, . . . , bn−1)[yn]. Hence g1 − g2 = f · h where
h ∈ A(y0, . . . , yn−1)[yn]. Letting h = p/q, we have

q · (g1 − g2) = f · p

where p ∈ A[y0, . . . , yn−1, yn] q ∈ A[y0, . . . , yn−1], q 6≡ 0. Substituting bi for
yi and differentiating both sides we have

q(~b) · (g1(~b)
′ − g2(~b)

′) = f(~b)′ · p(~b) + f(~b · p(~b)′

= 0
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and q(~b) 6= 0, hence g1(b0, . . . , bn−1, bn)
′ = g2(b0, . . . , bn−1, bn)

′. This shows
that ′ is well defined on the ring A[b0, . . . , bn−1, bn]. It is easy to check the sum
and product rules, so we now know that there is one and only one way to make
A[b0, . . . , bn−1, bn] into a differential ring extension of A. By lemma 11.1.4
we get the same conclusion for the field of quotients B = A(b0, . . . , bn−1, bn).
This completes the proof.

8.

Remark. Let A be a differential field. We have considered four different
kinds of “simple extensions” of A, namely:

A[b] = ring generated by |A| ∪ {b},

A(b) = field generated by |A| ∪ {b},

A{b} = differential ring generated by |A| ∪ {b},

A〈b〉 = differential field generated by |A| ∪ {b}.

Our goal is to classify the simple differential field extensions A〈b〉.

9.

Definition. Let A be a differential field. A differential polynomial f(y) =
f(y, y′, . . . , y(n)) is an element of the differential ring

A{y} = A[y, y′, . . . , y(n), . . . ]

where of course y(n) = y
′′···′︸︷︷︸
n times and y is a differential indeterminate. (Alter-

natively, we could define a differential polynomial to be an equivalence class
of terms t(y) in the language of the diagram of A, as in 6.1.4.)

Note that A{y} is a differential domain and A〈y〉, its field of quotients,
is a differential field by lemma 11.1.4.

10.

Definition. If f(y) ∈ A{y} is a nonzero differential polynomial over A, we
define the order of f to be the largest n such that y(n) occurs in f , and the
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degree of f to be the largest k such that (y(n))k occurs in f , where n is the
order of f .

For example, the differential polynomial (y(3))4 + (y′)5 · y(3)− y has order
3 and degree 4.

11.

We now survey all simple differential field extensions A〈b〉 of a differential
field A of characteristic 0.

Case 1: f(b) = 0 for some nonzero f ∈ A{y}. Choose such an f of lowest
possible order n, and then of lowest possible degree k for that order. Note
that ∂f/∂y(n) has lower order or else the same order and lower degree. Hence

∂f

∂y(n)
(b) 6= 0 .

Hence, as in 11.1.7, we have

b(n+1) =
f̃(b) +

∑n−1
i=0

∂f
∂y(i) (b) · b(i+1)

− ∂f
∂y(n) (b)

so in particular b(n+1) ∈ A(b, . . . , b(n−1), b(n)). From this it follows that b(j) ∈
A(b, . . . , b(n−1), b(n)) for all j, and hence the field A(b, . . . , b(n−1), b(n)) is closed
under ′. Hence A〈b〉 = A(b, . . . , b(n−1), b(n)) and its structure is as in lemma
11.1.5. In this case we say that b is differentially algebraic over A.

Case 2: negation of case 1. In this case it is easy to see thatA{b} ∼= A{y},
hence the quotient fields A〈b〉 ∼= A〈y〉 by lemma 11.1.4. In this case we say
that b is differentially transcendental over A.

This completes our survey of the simple differential field extensions of A.

12.

From the above survey of simple extensions we immediately obtain the fol-
lowing result.

Theorem. Let A be a differential field of characteristic 0. Up to isomor-
phism over A, there are exactly ‖A‖ distinct simple differential field exten-
sions A〈b〉.
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11.2 Differentially closed fields

1.

Definition (Blum). Let B be a differential field of characteristic 0. We
say that B is differentially closed if B is algebraically closed and, for all
f, g ∈ B{y} with 0 ≤ order(g) < order(f), there exists b ∈ |B| with f(b) = 0,
g(b) 6= 0.

2.

Lemma. Let A be a differential field of characteristic 0. Then there exists
a differential field B ⊇ A such that (i) B is differentially closed, (ii) B is
differentially algebraic over A, i.e. every b ∈ |B| is differentially algebraic
over A.

Proof. By transfinite induction, it suffices to show:

3.

Sublemma. Given f ∈ A{y} of order > 0, there exists a simple differential
field extension A〈b〉 such that f(b) = 0 and g(b) 6= 0 for all g ∈ A{y} with
0 ≤ order(g) < order(f).

(In this event b is called a generic solution of the differential equation f(y) =
0 over A.)

To prove the sublemma, let n be the order of f and letA∗ = A(b0, . . . , bn−1)
be a field extension of A in which each bi, i < n, is transcendental over
A(b0, . . . , bi−1). Define a polynomial p(x) ∈ A∗[x] by p(x) = f(b0, . . . , bn−1, x)
where f = f(y, . . . , y(n−1), y(n)) ∈ A[y, . . . , y(n−1), y(n)]. Let A∗(c) be a sim-
ple algebraic field extension of A∗ such that p(c) = 0. Put bn = c. By
lemma 11.1.5 we can make A∗(c) = A(b0, . . . , bn−1, bn) into a simple dif-
ferential field extension A〈b〉 of A where b = b0, b′i = bi+1 for i < n. We
then have f(b) = f(b0, . . . , bn−1, bn) = p(bn) = p(c) = 0 and by construc-
tion g(b0, . . . , bn−1) 6= 0 for all nonzero g ∈ A[y0, . . . , yn−1], in other words
g(b) 6= 0 for all g ∈ A{y} of order m, 0 ≤ m < n. This completes the proof.
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4.

Remark. In the statement of the lemma B is not unique. See 11.3.4 below.

5.

Theorem (Robinson, Blum). The theory of differentially closed fields of
characteristic 0 (DCF(0)) is the model completion of the theory of differential
fields of characteristic 0 (DF(0)).

Proof. By the previous lemma plus theorem 8.3.2 it suffices to show the
following:

Let A ⊆ B where A is a DF(0), B a DCF(0), B κ+-saturated
where κ = ‖A‖. Then for any simple differential field extension
A〈c〉 of A, we can find b ∈ |B| such that A〈b〉 ∼= A〈c〉 over A.

To prove this, we consider two cases.

Case 1: c is differential algebraic over A, i.e. f(c) = 0 for some nonzero
f ∈ A{y}. Take f to be of least order, and of least degree for that order.
Let p be the 1-type over A generated by the differential equation f(y) = 0
and the inequations g(y) 6= 0, g ∈ A{y}, 0 ≤ order(g) < order(f). Since
B is differentially closed, every finite subset of p is realized in B. Hence by
saturation p is realized in B, say by b ∈ |B|. We claim that A〈b〉 ∼= A〈c〉 over
A. This is clear from 11.1.5 and 11.1.11.

Case 2: c is differentially transcendental over A. Consider the 1-type p
over A generated by g(y) 6= 0 for all g ∈ A{y}, 0 ≤ order(g). Again, since
B is differentially closed, each finite subset of p is realized in B. Hence p is
realized in B, say by b ∈ |B|. Then b is differentially transcendental over A,
so A〈b〉 ∼= A〈c〉. This completes the proof.

6.

Corollary. DCF(0) is complete and decidable.

Proof. By the previous theorem DCF(0) ∪ (diagram of Q) is complete, but
any DCF(0) has Q as a uniquely embedded differential subfield, so DCF(0) is
complete. Decidability follows by theorem 4.2.3.
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7.

Corollary (Seidenberg). Let S be a system of finitely many algebraic dif-
ferential equations in n unknown functions y1, . . . , yn and their derivatives,
with rational coefficients. Then we can recursively decide whether S has a
solution in some differential field of characteristic 0 (equivalently by 11.1.3
in some field of meromorphic functions).

8.

Corollary. DCF(0) admits elimination of quantifiers.

Proof. From theorem 11.2.5 and lemma 11.1.4 it follows that DCF(0) is the
model completion of the theory of differential domains of characteristic 0.
The latter theory is universal so quantifier elimination follows by theorem
8.2.3.

9.

Corollary (Seidenberg). There exists an elimination theory for finite sys-
tems of algebraic differential equations and inequations (cf. 8.2.6).

11.3 Differential closure (countable case)

1.

Definition. Let A be a DF(0). A differential closure of A is a differential
field B ⊇ A such that (i) B is differentially closed, and (ii) if B1 is any
differentially closed field containing A, then B is embeddable into B1 over A.

In view of theorem 11.2.5 this is equivalent to saying that B is a prime
model of the complete theory generated by DCF(0) ∪ (diagram of A).

2.

Theorem (Blum). Let A be a countable DF(0). Then A has a differential
closure, denoted A. Furthermore A is unique up to isomorphism over A.



118 CHAPTER 11. DIFF. CLOSED FIELDS OF CHAR. 0

(We shall see in chapters 12 and 13 that the hypothesis of countability can
be dropped.)

Proof. Let T be the complete countable theory generated by DCF(0) ∪
(diagram of A). By quantifier elimination, a complete n-type over T is
essentially the same thing as an isomorphism type of an n-fold simple dif-
ferential field extension A〈b1, . . . , bn〉 over A. Hence by theorem 11.1.12 it
follows that Sn(T ) is countable for all n. Hence by Vaught’s theorem 10.2.12
it follows that T has a prime model B = A. Furthermore, the uniqueness
theorem for prime models 10.2.8 implies that A is unique up to isomorphism
over A.

3.

Remark. By lemma 11.2.2 it follows that the differential closure A is dif-
ferentially algebraic over A. However, this fact alone does not suffice to
characterize A among all differentially closed fields B ⊇ A.

For example, let A〈b〉 be a simple extension in which b is a generic solution
of y′ = 0. In other words, b is transcendental over A but b′ = 0. Put
B = A〈b〉. Then B is differentially closed, and differentially algebraic over
A, but we claim that B is not isomorphic to A over A. To see this, let p be
the complete 1-type over T = DCF(0) ∪ (diagram of A) realized by b ∈ |B|.
Clearly p is nonprincipal. Hence by theorem 10.2.7 it follows that p is not
realized in A.

4.

In order to prove our next theorem, we need the following algebraic result
which we state without proof.

Lemma. Let A be a differential field of characteristic 0. Let S be an infinite
set of algebraic differential equations in finitely many unknowns y1, . . . , yn
with coefficients in |A|. Then there exists a finite subset S0 of S such that
every solution of S0 (in some differential field extension of A) is a solution of
S.

This is an immediate corollary of the Ritt basis theorem, i.e. theorem
11.4.4 below. For a proof, see Kaplansky, Introduction to Differential Algebra.
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5.

Theorem (Harrington). Let A be a computable differential field of charac-
teristic 0. Then A, the differential closure of A, is computable.

Proof. A is by definition the prime model of the complete theory T whose
axioms are DCF(0)∪ (diagram of A). Since A is computable, T is recursively
axiomatizable, and hence decidable. But theorem 10.4.3 gives a necessary
and sufficient condition for a complete decidable theory to have a decidable
prime model. Thus, in order to show that A is computable, it suffices to
show that T verifies condition (b) of that theorem.

Given ϕ ∈ Fn(T ) consistent with T , by quantifier elimination we may
safely assume that ϕ(y1, . . . , yn) consists of finitely many algebraic diferential
equations and inequations in n unknowns y1, . . . , yn with coefficients in |A|.
Let {ψk(y1, . . . , yn) : k ∈ ω} be a recursive enumeration of all algebraic
differential equations in n unknowns y1, . . . , yn with coefficients in |A|. Let pϕ

be the n-type over T generated by {ϕk : k ∈ ω} where ϕ0 = ϕ, ϕk+1 = ϕk∧ψk
if this is consistent with T , ϕk+1 = ϕk otherwise. The passage from ϕ to pϕ

is clearly recursive, and by quantifier elimination, pϕ is complete.

It remains to show that pϕ is principal. Let S be the set of all algebraic
differential equations in pϕ. By lemma 11.3.4 there exists a finite set S0 ⊆ S
such that S0 is equivalent to S over T . Let ψk1 , . . . , ψkm be the elements of
S0. Then clearly ϕ∧ψk1 ∧ · · · ∧ψkm is a generator of pϕ. This completes the
proof.

6.

Corollary. The differential closure of the rational field Q is computable.

7.

Remark. An explicit presentation of the differential closure of Q is lacking.
It is unknown whether the following decision problem has a positive solution:

Given a finite system of differential equations and inequations in n
unknowns y1, . . . , yn with rational coefficients, to decide whether
the principal n-type generated by the system is complete.
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In the absence of such a decision procedure, the only known construction of
the differential closure of Q is by means of Harrington’s priority construction
in the proof of theorem 10.4.3.

11.4 Ritt’s Nullstellensatz

1.

Let A be a differential field of characteristic 0. Let R = A{y1, . . . , yn} be the
ring of differential polynomials in n indeterminates y1, . . . , yn over A. Let A
be the differential closure of A.

2.

Theorem (Ritt’s Nullstellensatz). Let f, g1, . . . , gm ∈ R be such that every
common zero of g1, . . . , gm in A is a zero of f . Then there exist positive
integers k and l such that

fk =
m∑
i=1

l∑
j=1

pijg
(j)
i

where pij ∈ R and g
(j)
i is the jth derivative of gi.

Proof. Let I be the set of all f ∈ R for which the conclusion holds. Suppose
f /∈ I. Then we have

(i) g, h ∈ I ⇒ g + h ∈ I

(ii) g ∈ I, h ∈ R ⇒ g · h ∈ I

(iii) 0 ∈ I, 1 /∈ I

(iv) g ∈ I ⇒ g′ ∈ I

i.e. I is a differential ideal. Here (i), (ii), (iii) are proved as in the proof
of Hilbert’s Nullstellensatz 6.4.2. For (iv), suppose g ∈ I, say gk ≡ 0

mod g1, . . . , gm. Differentiate and multiply by 1/k to get

gk−1g′ ≡ 0 mod g1, . . . , gm .
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This is the case i = 1 of the statement

gk−i(g′)2i−1 ≡ 0 mod g1, . . . , gm

which we prove by induction on i, 1 ≤ i ≤ k. Differentiating and multiplying
by g′ we get

(k − i)gk−i−1(g′)2i+1 + (2i− 1)gk−i(g′)2i−1g′′︸ ︷︷ ︸
≡0

≡ 0 .

Multiplying by 1/(k − i) we get

gk−i−1(g′)2i+1 ≡ 0 mod g1, . . . , gm

so the induction step is proved. Finally for i = k we get

(g′)2k−1 ≡ 0 mod g1, . . . , gm

so (iv) is proved.
It is also clear that I is a radical differential ideal, i.e. I satisfies

(v) gk ∈ I ⇒ g ∈ I ,

and f /∈ I. By Zorn’s lemma let J ⊇ I be a radical differential ideal such
that f /∈ J and maximal with this property.

We claim that J is prime, i.e. g /∈ J, h /∈ J imply g · h /∈ J . Suppose not.
Note that g · h ∈ J implies (g′ · h + g · h′) · g′ · h ∈ J whence (g′ · h)2 ∈ J ,
whence g′ · h ∈ J . Similarly g(i) · h(j) ∈ J for all i, j ≥ 0. If g /∈ J then the
radical differential ideal generated by J and g must contain f , say

fk = s +
∑
i

pig
(i)

where s ∈ J , pi ∈ R. Similarly if h /∈ J then

f l = t +
∑
j

qjh
(j)

where t ∈ J , qj ∈ R. Hence

fk+l = s · f l + t · fk +
∑
i

∑
j

piqjg
(i)h(j)

︸ ︷︷ ︸
∈J
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contradicting the fact that J is radical and f /∈ J . This proves the claim.
Now let R1 = R/J = the quotient ring of R mod J . Clearly R1 is

a differential domain. Let B be the field of quotients of R1. Then B is a
differential field extension of A. Furthermore, there exist b1, . . . , bn ∈ |B|
(corresponding to y1, . . . , yn ∈ |R|) such that for all g ∈ R, g(b1, . . . , bn) = 0
if and only if g ∈ J . In particular f(b1, . . . , bn) 6= 0 while g1(b1, . . . , bn) =
· · · = gm(b1, . . . , bn) = 0. Hence by model completeness of DCF(0) we can
find a1, . . . , an ∈ |A| such that f(a1, . . . , an) 6= 0 and g1(a1, . . . , an) = · · · =
gm(a1, . . . , an) = 0. This completes the proof of the theorem.

3.

Remark. As in the case of Hilbert’s Nullstellensatz, we can deduce a version
of Ritt’s Nullstellensatz with effective bounds. We leave to the reader the
formulation and proof of this result. (Compare 6.4.3.)

4.

An interesting theorem related to Ritt’s Nullstellensatz is the following.

Theorem (Ritt’s basis theorem). Let R be as above and let I be a radical
differential ideal in R. Then I has a finite basis, i.e. there exists a finite
set g1, . . . , gr ∈ I such that I is the radical differential ideal generated by
g1, . . . , gr, i.e. the set of all f ∈ R such that

fk =
r∑
i=0

l∑
j=0

pijg
(j)
i

for some k, l ∈ ω and pij ∈ R.

Proof. See Kaplansky, Introduction to Differential Algebra.

5.

Remark. The Ritt Basis Theorem tends to clarify several aspects of the
proof of the Ritt Nullstellensatz. In the first place, the Ritt Basis Theorem
shows that the use of Zorn’s lemma could have been eliminated. In the
second place, since the radical differential ideal J has a finite basis g1, . . . , gr,
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it follows by quantifier elimination that the complete n-type of b1, . . . , bn
over |A| is generated by the differential equations g1(y1, . . . , yn) = · · · =
gr(y1, . . . , yn) = 0 and the single inequation f(y1, . . . , yn) 6= 0. In particular
this n-type is principal2 and hence already realized in A. In other words, the
differential field B = A〈b1, . . . , bn〉 is already embeddable into A. (We could
have used Hilbert’s Basis Theorem to make similar remarks about the proof
of the Hilbert Nullstellensatz.)

2The algebraists express this fact by saying that J is constrained. See Wood, Israel J.
Math. vol. 25, p. 331.
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