Strong Forcing

Stephen G. Simpson

December 11, 2001

This is a streamlined exposition of the basic facts about forcing. It replaces Chapter VII, Section 3, pages 192–204, in Kunen’s book. We follow the exposition in Shoenfield’s paper “Unramified Forcing.”

As usual, M is a countable transitive model of ZFC, P is a partial ordering in M, and M^P is the set of P-names. For any M-generic filter $G \subseteq P$ we have $M[G] = \{ \tau_G : \tau \in M^P \}$ where $\tau_G = \{ \sigma_G : \langle \sigma, p \rangle \in \tau, p \in G \}$.

Lemma 1. For any p there exists an M-generic filter $G \subseteq P$ such that $p \in G$.

Proof. This is easily proved, using countability of M. \Box

Definition 2. The *forcing language* consists of the language of ZFC plus constant symbols τ for all $\tau \in M^P$. If φ is a sentence of the forcing language, $M[G] \models \varphi$ means that φ is true in $M[G]$ interpreting τ as τ_G.

Definition 3. Let $p \in P$, and let φ be a sentence of the forcing language. We define $p \forces \varphi$ (p forces φ) to mean that $M[G] \models \varphi$ for all M-generic filters $G \subseteq P$ such that $p \in G$.

Theorem 4 (definability of forcing). For any formula $\varphi(x_1, \ldots, x_n)$ we have that $\{ \langle p, \tau_1, \ldots, \tau_n \rangle : p \forces \varphi(\tau_1, \ldots, \tau_n) \}$ is definable over M.

Theorem 5 (forcing equals truth). For all M-generic filters $G \subseteq P$, $M[G] \models \varphi$ if and only if $(\exists p \in G)(p \forces \varphi)$.

In order to prove Theorems 4 and 5, we introduce the notion of *strong forcing*. We assume that the forcing language has been set up with \in, $\not\in$, \neg, \lor, \exists as primitives. We define $x \not\in y$ as $\neg(x \in y)$, and $x = y$ as $\neg(x \neq y)$.

Definition 6. We define $p \forces_s \varphi$ (p strongly forces φ) as follows.

1. $p \forces_s \sigma \in \tau$ if and only if, for some $q \geq p$, $\langle \sigma', q \rangle \in \tau$ for some σ' such that $p \forces_s \sigma = \sigma'$.

2. $p \forces_s \tau_1 \neq \tau_2$ if and only if, for some $q \geq p$ and some σ, either $\langle \sigma, q \rangle \in \tau_1$ and $p \forces_s \sigma \not\in \tau_2$, or $\langle \sigma, q \rangle \in \tau_2$ and $p \forces_s \sigma \not\in \tau_1$.

3. $p \forces_s \neg \varphi$ if and only if there does not exist $q \leq p$ such that $q \forces_s \varphi$.

\Box
4. \(p \models_s \varphi \lor \psi \) if and only if \(p \models_s \varphi \) or \(p \models_s \psi \).

5. \(p \models_s \exists x \varphi(x) \) if and only if \(p \models_s \varphi(r) \) for some \(r \).

Note that, for clauses 1 and 2, the definition is by transfinite induction on the ranks of \(\sigma, \tau_1, \) and \(\tau_2 \) as \(P \)-names. For clauses 3, 4, and 5, the definition is by induction on the rank of \(\varphi \) as a sentence of the forcing language.

Lemma 7. If \(p \models_s \varphi \) and \(q \leq p \) then \(q \models_s \varphi \).

Lemma 8 (definability of strong forcing). For any formula \(\varphi(x_1, \ldots, x_n) \) we have that \(\{ (p, \tau_1, \ldots, \tau_n) : p \models_s \varphi(\tau_1, \ldots, \tau_n) \} \) is definable over \(M \).

Lemmas 7 and 8 are easily proved by induction, following the definition of \(\models_s \).

Lemma 9 (strong forcing equals truth). For all \(M \)-generic filters \(G \subseteq P, M[G] \models \varphi \) if and only if \((\exists p \in G) (p \models_s \varphi) \).

Proof. The proof is by induction, following the definition of \(\models_s \).

1. “if”. Suppose \(p \in G \) and \(p \models_s \sigma \in \tau \). By definition there exist \(q \geq p \) and \(\langle \sigma', q \rangle \in \tau \) such that \(p \models_s \sigma = \sigma' \). Then \(q \in G \), hence \(\sigma_G' = \sigma_G \). Also, by inductive hypothesis, \(\sigma_G \in \tau_G \).

 “only if”. Suppose \(\sigma_G \in \tau_G \). By definition there exists \(\langle \sigma', q \rangle \in \tau \) such that \(\sigma_G = \sigma'_G \) and \(q \in G \). By inductive hypothesis, there exists \(r \in G \) such that \(r \models_s \sigma = \sigma' \). Since \(q, r \in G \) there exists \(p \in G \) such that \(p \leq q, r \).

 By Lemma 7 we have that \(p \models_s \sigma = \sigma' \). Thus \(p \models_s \sigma \in \tau \).

2. “if”. Suppose \(p \in G \) and \(p \models_{s} \tau_1 \neq \tau_2 \). Say \(q \geq p \), \(\langle \sigma, q \rangle \in \tau_1 \), \(p \models_s \sigma \notin \tau_2 \). Then \(q \in G \), hence \(\sigma_G \in \tau_{G} \). Also, by inductive hypothesis, \(\sigma_G \notin \tau_{G} \).

 Thus \(\tau_{1G} \neq \tau_{2G} \).

 “only if”. Suppose \(\tau_{1G} \neq \tau_{2G} \). Say \(\langle \sigma, q \rangle \in \tau_1 \), \(q \in G \), \(\sigma_G \notin \tau_{2G} \). By inductive hypothesis, there exists \(r \in G \) such that \(r \models_s \sigma \notin \tau_2 \).

 Since \(q, r \in G \) there exists \(p \in G \) such that \(p \leq q, r \). By Lemma 7 we have that \(p \models_s \sigma \notin \tau_2 \).

 Thus \(p \models_s \tau_1 \neq \tau_2 \).

3. “if”. Suppose \(p \in G \) and \(p \models_s \neg \varphi \). To show \(M[G] \models \neg \varphi \). Suppose \(M[G] \models \varphi \).

 By inductive hypothesis, there exists \(q \in G \) such that \(q \models_s \varphi \).

 Since \(p, q \in G \), they are compatible, so let \(r \leq p, q \). Then, by Lemma 7, \(r \models_s \varphi \), and \(r \leq p \), contradicting \(p \models_s \neg \varphi \).

 “only if”. Suppose \(M[G] \models \neg \varphi \). Put \(D = \{ p : p \models_s \varphi \text{ or } p \models_s \neg \varphi \} \). Using the definition of \(p \models_s \neg \varphi \), it is easy to see that \(D \) is dense. Let \(p \in D \cap G \). If \(p \models_s \varphi \), then by inductive hypothesis, \(M[G] \models \varphi \), a contradiction. Hence \(p \models_s \neg \varphi \).

4. “if”. Suppose \(p \in G \) and \(p \models_s \varphi \lor \psi \). Say \(p \models_s \varphi \). By inductive hypothesis, \(M[G] \models \varphi \).

 Hence \(M[G] \models \varphi \lor \psi \).

 “only if”. Suppose \(M[G] \models \varphi \lor \psi \). Say \(M[G] \models \varphi \). By inductive hypothesis, there exists \(p \in G \) such that \(p \models_s \varphi \).

 Hence \(p \models_s \varphi \lor \psi \).

2
5. “if”. Suppose \(p \in G \) and \(p \vDash_s \exists x \varphi(x) \). Then \(p \vDash_s \varphi(\tau) \) for some \(\tau \). By inductive hypothesis, \(M[G] \models \varphi(\tau) \). Hence \(M[G] \models \exists x \varphi(x) \).

“only if”. Suppose \(M[G] \models \exists x \varphi(x) \). Then \(M[G] \models \varphi(\tau) \) for some \(\tau \). By inductive hypothesis, there exists \(p \in G \) such that \(p \vDash_s \varphi(\tau) \). Then \(p \vDash_s \exists x \varphi(x) \).

This completes the proof.

Lemma 10. \(p \vDash \varphi \) if and only if \(\{ r \leq p : r \vDash_s \varphi \} \) is dense below \(p \).

Proof. “if”. Assume that \(\{ r \leq p : r \vDash_s \varphi \} \) is dense below \(p \). To show \(p \vDash \varphi \). Let \(G \) be generic with \(p \in G \). Then there exists \(r \in G \) such that \(r \vDash_s \varphi \). Hence, by Lemma 9, \(M[G] \models \varphi \).

“only if”. Assume \(p \vDash \varphi \). To show that \(\{ r \leq p : r \vDash_s \varphi \} \) is dense below \(p \). Given \(q \leq p \), by Lemma 1 let \(G \) be generic with \(q \in G \). Then \(p \in G \), hence \(M[G] \models \varphi \). By Lemma 9 there exists \(p' \in G \) such that \(p' \vDash_s \varphi \). Since \(p', q \in G \), they are compatible, so let \(r \leq p', q \). Then, by Lemma 7, \(r \vDash_s \varphi \).

This completes the proof.

Theorems 4 and 5 follow easily from Lemmas 8, 9, and 10.

Corollary 11. 1. If \(p \vDash \varphi \) and \(q \leq p \) then \(q \vDash \varphi \).

2. \(p \vDash \neg \varphi \) if and only if there does not exist \(q \leq p \) such that \(q \vDash \varphi \).

3. If \(p \vDash \varphi \lor \psi \) then there exists \(q \leq p \) such that \(q \vDash \varphi \) or \(q \vDash \psi \).

4. If \(p \vDash \exists x \varphi(x) \) then there exists \(q \leq p \) such that \(q \vDash \varphi(\tau) \) for some \(\tau \).