1. Find a primitive recursive function \(f(x, y) \) such that, for all \(x \) and \(y \),
\[
\varphi_{f(x,y)}^{(1)} = \varphi_{x}^{(1)} \circ \varphi_{y}^{(1)}.
\]
Hint: Use the Parametrization Theorem.

2. A function \(f : \mathbb{N}^k \to \mathbb{N} \) is said to be limit recursive if there exists a recursive function \(g : \mathbb{N}^{k+1} \to \mathbb{N} \) such that, for all \(x_1, \ldots, x_k \),
\[
f(x_1, \ldots, x_k) = \lim_{s \to \infty} g(x_1, \ldots, x_k, s).
\]
Prove that \(f \) is \(\Delta^0_2 \) if and only if \(f \) is limit recursive.

3. Two sets \(A, B \subseteq \mathbb{N} \) are said to be recursively inseparable if there is no recursive set \(X \subseteq \mathbb{N} \) such that \(A \subseteq X \) and \(B \cap X = \emptyset \). Find a disjoint pair of \(\Sigma^0_1 \) sets which are recursively inseparable.
Hint: Let \(A = K_0 \) and \(B = K_1 \), where \(K_n = \{ x \mid \varphi_{n}^{(1)}(x) \simeq n \} \).

4. Show that the following number-theoretic predicates are arithmetically definable, by exhibiting formulas which define them over the structure \((\mathbb{N}, +, \cdot, 0, 1, =)\).
 (a) \(\text{GCD}(x, y) = z \).
 (b) \(\text{LCM}(x, y) = z \).
 (c) \(\text{Quotient}(x, y) = z \).
 (d) \(\text{Remainder}(x, y) = z \).
 (e) \(\beta(x, y, z) = w \).
 (f) \(x \) is the largest prime number less than \(y \).
 (g) \(x \) is the product of all the prime numbers less than \(y \).

5. Which of the following number-theoretic predicates are arithmetically definable? Prove your answers.
(a) x is the sum of all the prime numbers less than y.

(b) $x^y = z$.

(c) $x! = y$.

6. Find a pair of numbers r, a such that $\beta(r, a, 0) = 11$, $\beta(r, a, 1) = 19$, $\beta(r, a, 2) = 30$, $\beta(r, a, 3) = 37$, $\beta(r, a, 4) = 51$.

(Hint: First find an appropriate a by hand. Then write a small computer program to find r by brute force.)

7. Let A and B be subsets of \mathbb{N}. Prove that if A is reducible to B and B is arithmetically definable, then A is arithmetically definable.

8. For each $n \geq 1$ let C_n be a subset of \mathbb{N} which is Σ^0_n complete. Consider the set $B = \{2^n3^x \mid x \in C_n\}$. Prove that B is not arithmetically definable.

9. Prove that the set Fml of all Gödel numbers of formulas is primitive recursive.

10. Prove that the set Snt of all Gödel numbers of sentences is primitive recursive.