1. Find a pair of numbers \(r, a \) such that \(\beta(r, a, 0) = 11, \beta(r, a, 1) = 19, \beta(r, a, 2) = 30, \beta(r, a, 3) = 37, \beta(r, a, 4) = 51. \)

Hint: First find an appropriate \(a \) by hand. Then write a small computer program to find \(r \) by brute force.

2. Recall that \(\mathbb{N} = \{0, 1, 2, \ldots \} \) = the natural numbers,
\(\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots \} \) = the integers, and
\(\mathbb{R} = (-\infty, \infty) \) = the real numbers.
According to Matiyasevich’s Theorem, we can find a polynomial
\[
f(w, x_1, \ldots, x_k)
\]
with integer coefficients, such that the set of \(a \in \mathbb{N} \) for which the equation \(f(a, x_1, \ldots, x_k) = 0 \) has a solution in \(\mathbb{N} \) is noncomputable.

(a) Discuss the analogous question in which “solution in \(\mathbb{N} \)” is replaced by “solution in \(\mathbb{Z} \)”.

(b) Discuss analogous questions in which “solution in \(\mathbb{N} \)” is replaced by “solution in \(\mathbb{R} \)”.

3. Prove König’s Theorem:
Let \(\langle \kappa_i \rangle_{i \in I} \) and \(\langle \lambda_i \rangle_{i \in I} \) be indexed sets of cardinal numbers with the same index set \(I \). If \(\kappa_i < \lambda_i \) for all \(i \in I \), then \(\sum_{i \in I} \kappa_i < \prod_{i \in I} \lambda_i \).