1. Let \(L \) be a language consisting of a binary predicate \(R \) and some additional predicates. Let \(M = (U_M, R_M, \ldots) \) be an \(L \)-structure such that \((U_M, R_M)\) is isomorphic to \((\mathbb{N}, <_\mathbb{N})\). Note that \(M \) contains no infinite \(R \)-descending sequence. Show that there exists an \(L \)-structure \(M' \) such that:

(a) \(M \) and \(M' \) satisfy the same \(L \)-sentences.

(b) \(M' \) contains an infinite \(R \)-descending sequence. In other words, there exist elements \(a'_1, a'_2, \ldots, a'_n, \ldots \in U_M' \) such that \(\langle a'_{n+1}, a'_n \rangle \in R_M' \) for all \(n = 1, 2, \ldots \).

Hint: Use the Compactness Theorem.

2. Let \(A \) be a sentence of the predicate calculus with identity. The spectrum of \(A \) is defined to be the set of positive integers \(n \) such that \(A \) is normally satisfiable in a domain of cardinality \(n \). A spectrum is a set \(X \) of positive integers, such that \(X = \text{spectrum}(A) \) for some \(A \).

The spectrum problem is the problem of characterizing the spectra, among all sets of positive integers. This is a famous and apparently difficult open problem. In particular, it is unknown whether the complement of a spectrum is necessarily a spectrum.

Some easy exercises:

(a) Show that if \(X \) is a finite set of positive integers, then \(X \) and the complement of \(X \) are spectra.

(b) Show that the set of even numbers is a spectrum.

(c) Show that the set of odd numbers is a spectrum.

(d) Show that, if \(r \) and \(m \) are positive integers, then

\[\{ n \geq 1 : n \equiv r \mod m \} \]

is a spectrum.

(e) Show that if \(X \) and \(Y \) are spectra, then \(X \cup Y \) and \(X \cap Y \) are spectra.

3. Let \(A \) be a sentence of the predicate calculus with identity. Assume that \(A \) is normally satisfiable in arbitrarily large finite domains. (In other words, assume that the spectrum of \(A \) is infinite.) Show that \(A \) is normally satisfiable in some infinite domain.

Hint: Use the Compactness Theorem.
4. Let A be a sentence of the predicate calculus with identity. Show that either spectrum(A) or spectrum$(\neg A)$ is cofinite.

5. Let L be the following language:

- $Pxyz$: $x + y = z \mod n$
- $Qxyz$: $x \times y = z \mod n$
- Rxy: $x < y$
- Bx: $x = 1$ (bottom)
- Tx: $x = n$ (top)
- Nxy: $x + 1 = y$
- Ixy: $x = y$ (identity predicate)

Exhibit a sentence Z such that the finite normal L-structures M satisfying Z consist of the integers modulo n for some positive integer n, with their usual ordering. In other words, for all finite normal L-structures M, M satisfies Z if and only if $M \cong Z_n$ for some n, where

$$Z_n = (U_n, P_n, Q_n, L_n, B_n, T_n, N_n, I_n)$$

and

- $U_n = \{1, \ldots, n\}$
- $P_n = \{(i, j, k) \in (U_n)^3 : i + j = k \mod n\}$
- $Q_n = \{(i, j, k) \in (U_n)^3 : i \times j = k \mod n\}$
- $R_n = \{(i, j) \in (U_n)^2 : i < j\}$
- $B_n = \{1\}$
- $T_n = \{n\}$
- $N_n = \{(i, j) \in (U_n)^2 : i + 1 = j\}$
- $I_n = \{(i, j) \in (U_M)^2 : i = j\}$

6. (a) Show that the set of squares $\{1, 4, 9, \ldots\}$ and its complement are spectra.
 (b) Show that the set of prime numbers and its complement are spectra.
 Hint: Use the result of Exercise 5 above.

7. Show that $\{2^n : n = 1, 2, 3, \ldots\}$ and its complement are spectra.

8. Let L and Z_n be as in Exercise 5 above. Show that there exists an infinite normal L-structure $M = Z_\infty$ with the following property: for all L-sentences A, if Z_p satisfies A for all sufficiently large primes p, then Z_∞ satisfies A.
 Hint: Use the Compactness Theorem.