1. Let $K(\tau)$ denote the prefix-free complexity of a bitstring τ. Prove that
 \[K(\tau_1 \natural \tau_2) \leq K(\tau_1) + K(\tau_2) + O(1). \]

2. (a) Give an example of a subset of $\mathbb{N}^\mathbb{N}$ which is Σ^0_2 but not Σ^0_1.0'.
 (b) Can you replace $\mathbb{N}^\mathbb{N}$ by $2^{\mathbb{N}}$ here?

 Note: Recall Post’s Theorem, which says (among other things) that a subset of \mathbb{N} is Σ^0_2 if and only if it is $\Sigma^0_1.0'. The point of (a) is to show that Post’s Theorem does not hold for subsets of $\mathbb{N}^\mathbb{N}$.

 Hint: Recall that a set is open if and only if it is Σ^0_1 relative to an oracle. Therefore, it suffices to find a set which is Σ^0_2 and not open.

3. A real number is said to be left recursively enumerable (respectively right recursively enumerable) if it is the limit of an increasing (respectively decreasing) recursive sequence of rational numbers.
 (a) If A is a recursively enumerable subset of \mathbb{N}, show that the real number $\sum_{n \in A} 1/2^n$ is left recursively enumerable.
 (b) Show that there exist real numbers which are left recursively enumerable but not recursive.
 (c) Show that a real number is recursive if and only if it is both left recursively enumerable and right recursively enumerable.

4. Let P be a Π^0_1 subset of $2^{\mathbb{N}}$. We have seen how to construct a recursive tree $T \subseteq 2^{\leq \mathbb{N}}$ such that $P = \{\text{paths through } T\}$. For each $n = 0, 1, 2, \ldots$ let T_n be the set of strings in T of length n.
 (a) Show that T_n is prefix-free.
(b) Show that the set
\[V_n = \bigcup_{\tau \in T_n} N_\tau \]
is Δ_1^0. (Note that V_n is a subset of 2^N.)
(c) Show that P is the intersection of the V_n’s. In other words,
\[P = \bigcap_{n=0}^{\infty} V_n. \]
(d) Show that the measure of P is given by
\[\mu(P) = \lim_{n \to \infty} \frac{|T_n|}{2^n}. \]
Here $|T_n|$ denotes the number of strings in T_n.
(e) Show that the real number $\mu(P)$ is right recursively enumerable.
(f) Show that $\mu(P)$ is not necessarily a recursive real number.

5. Given a nonempty Π_1^0 set $P \subseteq 2^N$, can we always find a member of P which is recursive?

Hint: Consider a recursively inseparable pair of r.e. sets.

6. Two sets $P, Q \subseteq \mathbb{N}$ are said to be Turing isomorphic if the members of P and Q have the same Turing degrees, i.e.,
\[\{\deg_T(f) \mid f \in P\} = \{\deg_T(g) \mid g \in Q\}. \]
(a) Prove that every Π_2^0 subset of \mathbb{N} is Turing isomorphic to a Π_1^0 subset of \mathbb{N}.
(b) Prove that every Π_2^0 subset of \mathbb{N} is Turing isomorphic to a Π_2^0 subset of $2^\mathbb{N}$.
(c) Is every Π_2^0 subset of $2^\mathbb{N}$ Turing isomorphic to a Π_1^0 subset of $2^\mathbb{N}$?

Justify your answer.

Hints: (a) If $\forall x \exists y R(f, x, y)$ holds, map f to $f \oplus g$ where $g(x) = \mu y R(f, x, y)$.
(b) Map f to the characteristic function of the set $G_f = \{3^x5^y \mid f(x) = y\} = \text{the “graph” of } f.$