Recall that $W_x = \text{dom}(\varphi_x^{(1)})$. Note that W_x, $x = 0, 1, 2, \ldots$, is the standard recursive enumeration of the recursively enumerable subsets of \mathbb{N}.

1. Which many-one reducibility relations hold or do not hold among the following sets and their complements?

 - $K = \{x \mid x \in W_x\}$
 - $H = \{x \mid 0 \in W_x\}$
 - $T = \{x \mid W_x = \mathbb{N}\}$
 - $E = \{x \mid W_x = \emptyset\}$
 - $S = \{x \mid W_x \text{ is infinite}\}$

 Prove your answers.

 Hint: Each of these sets is many-one complete within an appropriate level of the arithmetical hierarchy.

2. A set $P \subseteq \mathbb{N}$ is said to be productive if there exists a total recursive function $h(x)$ such that for all x, if $W_x \subseteq P$ then $h(x) \notin W_x$ and $h(x) \in P$. Such a function is called a productive function for P.

 A creative set is a recursively enumerable set whose complement is productive.

 Prove the following.

 (a) K is creative.

 (b) If A and B are recursively enumerable sets and $A \leq_m B$ and A is creative, then B is creative.

 (c) If B is recursively enumerable and many-one complete, then B is creative.
(d) (Extra Credit) If B is creative, then B is many-one complete.

(e) (Extra Credit) If A and B are creative, then A and B are recursively isomorphic. This means that there exists a recursive permutation of \mathbb{N}, call it g, such that $x \in A$ if and only if $g(x) \in B$, for all x.

3. A set $I \subseteq \mathbb{N}$ is said to be immune if I is infinite yet includes no infinite recursively enumerable set.

A simple set is a recursively enumerable set whose complement is immune.

Prove the following.

(a) If A is simple, then A is not recursive.

(b) If A is simple, then A is not creative.

4. Let $f : \mathbb{N} \rightarrow \mathbb{N}$ be a one-to-one total recursive function such that the range of f is nonrecursive. The deficiency set of f is defined as

$$D_f = \{ x \mid \exists y \; (x < y \land f(x) > f(y)) \}.$$

Prove that D_f is a simple set.

Conclude that there exist recursively enumerable sets which are neither recursive nor many-one complete.

5. (Extra Credit) Generalize Exercises 2, 3, 4 to higher levels of the arithmetical hierarchy. Conclude that for each $n \geq 1$ there exist Σ^0_n sets which are neither Δ^0_n nor many-one complete within the class of Σ^0_n sets.