Origin and Evolution of the Unique Tetra-Domain Hemoglobin from the Hydrothermal Vent Scale Worm Branchipolynoe

J. Projecto-Garcia, 1,2 N. Zorn, 3 D. Jollivet, 1,2 S.W. Schaeffer, 4 F.H. Lallier, 2,5 and S. Hourdez*, 1,2
1Equipe GAME, CNRS UMR 7144, Places Georges Teissier, Roscoff Cedex, France
2Université Pierre et Marie Curie, Laboratoire Adaptation et Diversité en Milieu Marin, Place Georges Teissier, Roscoff Cedex, France
3LDMS2 Institut de Chimie de Strasbourg, UMR 7177 CNRS-UDS, Strasbourg Cedex, France
4Department of Biology and Institute of Molecular Evolutionary Genetics, Pennsylvania State University
5Equipe EIMME, CNRS UMR 7144, Places Georges Teissier Roscoff Cedex, France
*Corresponding author: E-mail: hourdez@sb-roscoff.fr.
Associate editor: Dan Graur

Abstract

Hemoglobin is the most common respiratory pigment in annelids. It can be intra or extracellular, and this latter type can form large multimeric complexes. The hydrothermal vent scale worms Branchipolynoe symmytilida and Branchipolynoe seepensis express an extracellular tetra-domain hemoglobin (Hb) that is unique in annelids. We sequenced the gene for the phylogenetic position of repeated four times in the tetra-domain gene, with no bridge introns or linker sequences between domains. The amino acids, and the tetra-domain gene codes for a mature protein of 552 amino acids. The single-domain gene has single-domain and tetra-domain globins in these two species. The single-domain gene codes for a mature protein of 137 amino acids, and the tetra-domain gene codes for a mature protein of 552 amino acids. The single-domain gene has a typical three exon/two intron structure, with introns located at their typical positions (B12.2 and G7.0). This structure is repeated four times in the tetra-domain gene, with no bridge introns or linker sequences between domains. The phylogenetic position of Branchipolynoe globins among known annelid globins revealed that, although extracellular, they cluster within the annelid intracellular globins clade, suggesting that the extracellular state of these Hbs is the result of convergent evolution. The tetra-domain structure likely resulted from two tandem duplications, domain 1 giving rise to domain 2 and after this the two-domain gene duplicated to produce domains 3 and 4. The high O2 affinity of Branchipolynoe extracellular globins may be explained by the two key residues (B10Y and E7Q) in the heme pocket in each of the domains of the single and tetra-domain globins, which have been shown to be essential in the oxygen-avid Hb from the nematode Ascaris suum. This peculiar globin evolutionary path seems to be very different from other annelid extracellular globins and is most likely the product of evolutionary tinkering associated with the strong selective pressure to adapt to chronic hypoxia that characterizes hydrothermal vents.

Key words: extracellular globins, tetra-domain, tandem duplication, evolution, annelids, Branchipolynoe.

Introduction

Globins produced by invertebrates exhibit considerable heterogeneity in protein sequence and in quaternary structure when compared with vertebrates. Despite this heterogeneity, these proteins fold into the highly conserved globin fold that allows heme binding. The quaternary structure diversity encompasses simple monomers, polymeric subunits made of single-domain and polymeric multi-domain subunits (see Weber and Vinogradov 2001 for a review). Multidomain globins can be intracellular, such as in the bivalve Barbatia (Grinich and Terwilliger 1980; Suzuki and Arita 1995), or extracellular, such as in crustaceans, nematodes, and molluscs (see Weber and Vinogradov 2001 for a review). This type of structure was not known in annelids until its discovery in two closely related hydrothermal vent species of annelids, Branchipolynoe symmytilida and Branchipolynoe seepensis, which possess tetra-domain globins (Hourdez, Lallier, Green, and Toulmond 1999).

The presence of hemoglobin (Hb) in Branchipolynoe spp. may have an adaptive value in their chronically hypoxic environment (Hourdez and Lallier 2007). Branchipolynoe belongs to the Polynoidae, a family of scale worms that is widely distributed in marine ecosystems from the littoral to the deep sea. They are very diverse at hydrothermal vents (Tunnicliffe 1991) where they occupy all the microhabitats available to metazoans, from the coldest (and most oxygenated), to the warmest (and usually the most hypoxic) waters. Scale worms in general (comprising several families, and including the Polynoidae) were known for having only tissue globins (neuroglobin and myoglobin) (Weber 1978; Dewilde et al. 1996). In contrast to their littoral relatives, most hydrothermal vent polynoid species have extracellular Hbs giving them a red-pigmented coelomic fluid (Hourdez, Lallier, Green, and Toulmond 1999; Hourdez S, personal observation). These Hbs can facilitate the diffusion of oxygen from the hypoxic environment, especially given their high affinity for oxygen (Hourdez, Lallier, Martin-Jézéquel, et al. 1999), and represent a significant oxygen storage for periods of complete anoxia (Hourdez and Weber 2005).
A phylogeny of the annelid globin sequences showed that the extracellular globins all evolved from a duplicated intracellular ancestral globin, and several duplication events followed to produce the present-day globin diversity found in the complex extracellular hexagonal bilayer Hb (HBL–Hb; Bailly et al. 2007). The original split between the intracellular and the extracellular globins occurred about 570 Ma in annelids (Goodman et al. 1988).

The hydrothermal vent environment was colonized by scale worms about 65 Ma (Hourdez S, Jollivet D, Govindji T, Chevaldonna S, Schaeffer W, Fisher CR, in preparation). All the vent-endemic subfamilies form a monophyletic group that rapidly radiated after this initial colonization event. All of these species express Hbs (single- or tetra-domain), suggesting that this trait was already present in the common vent ancestor (Hourdez S, et al. in preparation). We sequenced both the single- and tetra-domain (hereafter referred to SD, and TD, respectively) globin genes in *B. symmytilida* and *B. seepensis* to examine their exon–intron structure and to understand the origin and evolution of the tetra-domain globin.

Materials and Methods

Animal Collection

Branchiopolyne symmytilida specimens were collected from the 9°50’N locality on the East Pacific Rise in 2001 (9°46’N, 104°21’W, 2,515-m depth), and *B. seepensis* were collected from the Lucky Strike site in 2001 (Mid-Atlantic Ridge, 37°18’N, 32°16’W, 1,700-m depth). The worms were removed from the pallial cavity of their host mussels. The specimens were identified and immediately frozen in liquid nitrogen on board, transported back to the laboratory and stored at −80 °C until analyzed.

Nucleic Acid Extraction and cDNA Synthesis

DNA, RNA extractions, and cDNA synthesis were performed with standard procedures that are described in Supplementary Materials online.

Globin cDNA and Gene Sequencing for *B. symmytilida*

Protein Microsequencing and Polymerase Chain Reaction (PCR) Primer Design. The two coelomic Hbs (HbC1 and HbC2) from *B. symmytilida* were purified as described earlier (Hourdez, Lallier, Green, and Toulmond 1999). We used Edman degradation for microsequencing and the released amino acids were identified by high performance liquid chromatography. The N-terminus in HbC1 was blocked but HbC2 yielded the microsequence N-terminus VSAAQ-KAAIK. Based on this microsequence, degenerate primers were designed to amplify HbC2 by PCR (supplementary table S1, Supplementary Material online).

Initial Globin Amplification and Sequencing. Primers BSY_E1D1_C2F and an anchored oligo(dT) (supplementary table S1, Supplementary Material online) were used on the synthesized cDNA, to amplify part of the tetra-domain globin gene. Detailed PCR conditions and cloning procedures are given in Supplementary Material online. This initial PCR reaction produced two insert size classes: 460- to 600-bp inserts that include one domain (400 bp) with different sized 3’ untranslrated regions (UTRs), and 900-bp inserts corresponding to two domains (800 bp) with different sized 3’UTRs (see Results, supplementary fig. S1, Supplementary Material online). Two sequences representing the two size classes of inserts were chosen because they were the most abundant among the clones, designated BSY3 and BSY7. These sequenced clones were used to design specific primers to amplify the coding sequence and introns of the corresponding genes (single-domain and tetra-domain) (supplementary table S1, Supplementary Material online).

Bridging Oligonucleotide Rapid Amplification of cDNA Ends (BO-RACEing) for the Single-Domain Globin. The 5’UTR for sequence BSY3 was amplified by BO-RACEing (Shi et al. 2002). Specific primers and conditions are given in Supplementary Material online. This approach did not yield any amplification for sequence BSY7 and chromosome walking was used instead to obtain the missing portion of the sequence.

Chromosome Walking on Genomic DNA. Sequencing of globin BSY7 from *B symmytilida* was completed by directional genome walking using PCR (Mishra et al. 2002). The detailed procedure is given in the Supplementary Material online. Directional genome walking was also used to obtain the promoter regions of both the TD and SD globins, in *B. symmytilida* and in *B. seepensis*.

Northern Blot. A standard northern blot protocol (Sambrook et al. 1989) was used for *B. symmytilida*. The detailed procedure is given in the Supplementary Material online.

Globin Amplification and Sequencing in *B. seepensis*

The amplification of the SD and TD globin genes (cDNA and gDNA) from *B. seepensis* took advantage of the primers designed for the same genes in *B. symmytilida* and of an expressed sequence tag library from which 2,500 clones were sequenced (Hourdez S and Tanguy A, unpublished data). Amplification and sequencing followed a standard procedure detailed in Supplementary Materials online. Chromosome directional walking (see above) was used to sequence the 5’UTR and the promoter region of the globin genes.

Phylogenetic Analyses

The sequences were assembled and nucleotide positions with conflicts were resolved based on their chromatograms with CodonCode Aligner 2.0.6 (http://www.codoncode.com/aligner/index.htm). Multiple nucleotide and amino acid sequence alignments were performed by using ClustalX 2.0.10 (Larkin et al. 2007) and, when necessary, manually optimized by using the sequence aligner editor Se-Al
Results

cDNA Cloning and Sequencing

Amplification of *B. symmytilida* cDNA with degenerate primers and oligo(dT) yielded six distinct sequences that can be separated into two types (supplementary fig. S1, Supplementary Material online). The first type has a 400-bp coding region, corresponding to a globin domain, followed by a 3' UTR sequence that differed in length (sequences BSY1 and BSY3). The second type has a 800-bp coding region, corresponding to two globin domains (sequences BSY2, BSY4, BSY5, and BSY7), followed by a 3' UTR sequence also presenting differences in length. These two globin domains will be hereafter referred to as D3 and D4 (from 5' to 3'), in reference to the *Branchipolynoe* Hb model composed of four domains (Hourdez, Lallier, Green, and Toulmond 1999; the same nomenclature will be used for the upstream domains: D1 and D2). The 3' UTR for sequences BSY2, BSY4, and BSY7 are nearly identical and a few differences appeared in their coding regions. The three remaining 3' UTR sequences (corresponding to sequences BSY1, BSY3, and BSY5) are clearly different. A Northern blot on *B. symmytilida* cDNA samples probed with a portion of sequence BSY3 and BSY7 (the most common sequences among the clones) revealed that these correspond to different transcript sizes. The BSY3 probe revealed a single band of ~610 bp in length, the size expected for a full-length mRNA coding for a single-domain globin (supplementary fig. S2A, Supplementary Material online). The BSY7 probe revealed a single band of ~1,980 bp in length, consistent with the expected size for full-length mRNA coding for a tetra-domain globin (supplementary fig. S2B, Supplementary Material online).

The complete BSY3 cDNA sequence encodes an SD globin (coding sequence of 417 bp, including the stop codon), with a 67-base 5' UTR (supplementary fig. S3, Supplementary Material online) and a 58-base 3' UTR. After removal of the initial methionine, the deduced amino acid sequence (137 codons) would produce a protein with a molecular weight (MW) of 13,826.8 Da.

The complete BSY7 cDNA sequence has a 79-base 5' UTR, a 1,674-bp coding sequence (including the stop codon), and a 102-base 3' UTR (polyA tail not included). The mature protein encoded corresponds to a four-domain globin (552 codons) (supplementary fig. S4, Supplementary Material online), with an MW of 57,691.9 Da, a mass that closely matches the value found for the native HbC2 subunit (Hourdez, Lallier, Green, and Toulmond 1999).

The cDNA of *B. seepensis* for both the SD and TD globins have the same length and number of codons as the homologous sequences from *B. symmytilida* (supplementary figs. S3 and S4, Supplementary Material online). The corresponding proteins have an MW of 13,798.7 and 57,742.9 Da for the SD and TD globins, respectively.

Protein Primary Structure

The protein sequences for both *Branchipolynoe* species were aligned with other intracellular and extracellular annelid globins, two nematode (*Ascaris suum*) globin sequences, and the myoglobin from the sperm whale *Physeter catodon* (fig. 1). Only two positions were invariant: the proximal histidine (F8H, i.e., helix F, position 8 with the *Physeter* myoglobin sequence as a reference) and phenylalanine on the corner between helices C and D (CD1F). A tryptophan in helix A (A12W) was conserved in all but the nematode sequences. For all *B. symmytilida* and *B. seepensis* sequences, the distal histidine is replaced by a glutamine (E7Q), a feature also observed in *Ascaris*. Similarly, the B-helix tyrosine (B10Y), essential in modulating the oxygen affinity in *Ascaris* (De Baere et al. 1994), is also found in all *Branchipolynoe* spp. sequences. A tryptophan (H8W) is present in all sequences except in *P. catodon*. The two conserved cysteines in extracellular globins that form the characteristic intrachain disulfide bridge (A2C and H11C) are not found in any of the *Branchipolynoe* sequences.

The TD sequences also have a cysteine (E18C) 11 residues after E7Q, a feature that is found in some globins of the tube worms *Riftia pachyptila* and *Lamellibrachia* sp. (from hydrothermal vents and cold seeps, respectively). For all *Branchipolynoe* sequences, there is no pre A helix, signal peptide, or linker sequences.
Origin of the Globin Gene and Relationships with Other Annelid Globins

For both Branchipolynoe species, polymorphism was present in the different amplified sequences; therefore, a consensus nucleotide sequence was produced based on the majority of clones obtained for each species. These consensus sequences were translated and used in all phylogenetic analyses.

The unrooted phylogenetic tree clearly separates the globins that are typical extracellular HBL–Hbs from all intracellular globins (fig. 2). The SD globin and the four domains of the TD globin from both Branchipolynoe species clearly group with the intracellular annelid globins, indicating that these extracellular globins have a distinct origin from all other annelid extracellular globins.

Evolution of the Tetra-Domain Structure

A phylogeny of the various Branchipolynoe globin sequences was determined using the SD as an outgroup because of its more ancestral status compared with the tetra-domain sequences (fig. 2). Several nucleotide substitution models were used, and when using MrBayes, the codon model was also chosen. These analyses yielded different tree topologies depending on the phylogenetic method used and the selected nucleotide substitution model (supplementary fig. S5, Supplementary Material online).

The phylogenetic tree based on amino acid sequences suggests that D4 is the most ancestral of the domains followed by D3, D2, and D1 in the TD gene. Although this phylogeny is well supported, it may not reflect the history of domain duplications as these can be going through.

![Fig. 1. Globin sequences from annelids, nematodes, and a vertebrate. Branchipolynoe globin sequences are shaded, TD globins shaded in light gray, and SD globins in dark gray. Conserved residues are shown in bold (CD1F and F8H), and heme pocket residues that may explain high O2 affinity in Branchipolynoe are boxed. Cysteines forming an intrachain disulfide bridge in typical extracellular annelid globins (A2C and H11C) are underlined. Cysteine E18 underlined in the TD globins from Branchipolynoe spp. and for Riftia and Lamellibrachia. Intron (I1 and I2) conserved positions are shown above the sequences. Bsy: Branchipolynoe symmmitylida; Bse: Branchipolynoe seepensis; TD: tetra-domain; SD: single-domain; D1–D4: domains 1–4; AacuNg: Aphrodite aculeata neuroglobin; Gly: Glycera sp.; Lumt: Lumbricus terrestris; Tubifex: Tubifex tubifex; Phese: Pheretima seiboldi; Tylo: Tylarhynchus heterochaetus; Rifb: Riftia pachyptila; Lam: Lamellibrachia sp.; Asuum: Ascaris suum; and Phyca: Physeter catodon.]
periods of relaxed selective pressure and/or positive selection. Analysis based on nucleotides provided a different result, suggesting that D1 (or D3) is the most ancestral domain. The best resolved trees correspond to four equiprobable topologies (supplementary fig. S5, Supplementary Material online). In each tree topology, the globin domains of both species form well-supported pairs, indicating that duplications giving birth to the TD occurred prior to the radiation between the two Branchipolynoe species. The deeper branches of the nucleotide-based topologies, however, were not well supported (bootstrap values usually not higher than 65% and at best 73%), suggesting that duplications occurred very close to each other over time or that variable selective pressure over the various branches reduced the phylogenetic signal.

The different topologies were tested against each other using maximum likelihood ratio tests in CodeML (Yang 1997). Pairwise comparison of these four main topologies revealed that topology (c) was the most probable, regardless of the \(d_{ni}/d_s \) ratio model selected. The pairwise differences between the different TD domains and the SD indicated that D1 possesses the fewest differences with SD, followed by D3 (table 1). In addition, D1 also displayed several motifs of adjacent amino acids that were nearly identical with the SD globin, reinforcing the hypothesis that D1 is more closely related to the ancestral state. D1 and D3 were also the domains with the smallest divergence between species for either nucleotide or amino acid sequences, suggesting that these domains are more constrained by purifying selection. To verify this hypothesis, we used BaseML (PAML) to test for a molecular clock using the theoretical topology D1D3 versus D2D4. The results indicate that the molecular clock is rejected in the evolution of the TD (\(L_{\text{clock}} = 2,171.78932, \quad L_{\text{clock}} - 1 = -2,190.984727; \quad LRT = 2\left[L_{\text{clock}} - 0 - L_{\text{clock}} - 1\right] = 38.390814 \geq 10.83[P = 0.001]\)). This supports the idea that D1 and D3 may be under stronger selective constraints and evolving slower than the other domains.

Promoters and 5’ UTRs

A portion of the promoter region was sequenced for the SD globin from B. symmytilida and for the TD globin for both

FIG. 2. Bayesian phylogenetic tree based on annelid globins corresponding to the alignment in figure 1. White bubble: extracellular globins; light-gray bubble: Branchipolynoe globins (single-domain: SD and tetra-domain: TD); dark-gray bubble: annelid intracellular globins. Posterior probability values are indicated above the branches. See figure 1 for abbreviations and accession numbers.

species. For both genes, the TATA box is located 32 bp upstream of the transcription start in *B. symmytilida*. For the SD sequence, only one base was different for the portion of 5'UTR for which there are data for both species (48 nt, i.e., 97.9% identity) (supplementary fig. S3, Supplementary Material online). The promoter for the TD globin, as well as the 5'UTR, from both species, also exhibit a high identity level (97.5% for the 5'UTR) (supplementary fig. S4, Supplementary Material online). A search for transcription regulatory signal-binding sites in *B. symmytilida* revealed a site for CP2, a factor that is known to enhance the transcription of globin genes in erythroid cells (Chae and Kim 2003). This element was however not found in *B. seepensis*. Other universal transcription factors, such as Oct-1, were identified in the promoter of both species (data not shown). Although these are extracellular Hbs, no signal sequence for secretion was found in *B. seepensis*. We sequenced a 700-bp fragment of the promoter. This region contains motifs for the binding of two transcription factors relevant for this gene: one site for hypoxia inducible factor 1 (HIF-1) and two sites for GATA-1, which plays an important role in erythroid development (De Maria et al. 1999) and has been reported to enhance erythropoiesis in response to tissue hypoxia (Krantz 1991; Zon et al. 1991). The sequenced promoter region for *B. symmytilida* does not cover the region where these transcription factor binding sites are located in *B. seepensis*.

Introns and Gene Structure

In both the SD and TD globin genomic sequences from both species, the typical three exon/two intron globin gene structure was present, and this motif is repeated four times in the TD gene (fig. 3). For all the genes, the introns are located at positions B12.2 and G7.0, corresponding to the typical globin introns positions. In the SD globin gene, the second intron exhibits a very high level of identity between the two species (94.4%). Although this is also true for the first 160 bp in intron 1, the identity then drops sharply because *B. seepensis* possesses a large (440-bp) insertion (supplementary table S2, Supplementary Material online). In the TD globin genomic sequence, each intron was usually 300 bp long, with one exception at 700 bp again for the first intron of D1 (supplementary table S2, Supplementary Material online). Interestingly, neither introns nor linker segments separate the four globin domains (supplementary fig. S4, Supplementary Material online). Pairwise intron sequence comparisons between the two species revealed a very high level of conservation (on average 90% of identity) of all but the second intron of D4. The major differences in the orthologous introns correspond to indels of varying size, from 3 to 41 bp. Comparisons of intron sequences among domains failed to reveal significant sequence similarity. In intron 2 from D1 and D2 from *B. seepensis*, there is a regulatory signal for GATA-1 and HIF-1, respectively.

Discussion

The coding sequence for the unique TD and SD globins genes, as well as the position and size of the introns, has been determined to understand the origin and evolution of these respiratory pigments. The TD globin with a multi-domain gene structure represents the emergence of a new type of Hb in annelids (Terwilliger 1992).
MW most closely matches the one for HbC2 subunits. Large polypeptidic assemblages are not unusual in invertebrate respiratory pigments (Terwilliger 1998). In all cases, the formation of large polypeptide complexes has been attributed to the necessity to avoid their excretion (Weber and Vinogradov 2001). In Daphnia and Artemia, the didomain and nine-domain Hbs, respectively, can form homo- or hetero-dimers (Mansfield et al. 1980; Dewilde et al. 1999). In the nematode A. suum, the didomain Hbs assemble into octamers of 328 kDa, through a C-terminus extension that forms a β-strand and each strand binds to each other with H-bonds in a zipper-like structure (Darawshe et al. 1987; De Baere et al. 1992). In Branchipolyne, there is no such extension and there are no interchain disulfide bridges to assemble into trimers or dimers, and only inter-subunit noncovalent bonds are involved.

Based on subtilisin partial digestion patterns and heme content determination, Hourdez, Lallier, Green, and Toulmond (1999) suggested that each Hb subunit was composed of four globin domains (with one likely truncated) each with one heme group. The sequences we obtained clearly show that there are indeed four domains but each of these domains is full length. This may indicate that the interdomain regions are not well exposed in the native Hb and susceptible to peptidic cleavage by a wide-spectrum peptidase.

Interestingly, the globins from Branchipolyne do not possess the two cysteine residues necessary to form the conserved disulfide bridge conserved in all other extracellular annelid globins (Bailly et al. 2007). This indicates that this character is not necessary for the globins to function outside of cells, although its conservation in the lineage of the HBL-Hb globins suggests that purifying selection is constraining these amino acid positions.

Structure–Function Relationship

The amino acid alignment revealed the presence of a glutamine instead of a distal histidine (E7H). Although this amino acid is usually conserved in vertebrates, some invertebrate species use other amino acids. In the nematode A. suum Hb, known to have one of the highest oxygen affinities among invertebrates (see Weber and Vinogradov 2001 for a review), the position is also occupied by a glutamine (E7Q). This high affinity can be explained in part by the interaction of the E7Q with a tyrosine in position B10Y (De Baere et al. 1994; Yang et al. 1995). Interestingly, Branchipolyne also has a tyrosine in position B10. This could explain the high affinity for oxygen that was found in B. symmytiida Hbs (Hourdez, Lallier, Martin-Jézéquel, et al. 1999).

In the TD globins, but not in the SD ones, there is a cysteine located 11 residues after the E7Q (E18C). This cysteine is known to be under strong selection in some annelids living in reduced habitats (Bailly et al. 2003), suggesting a key function for E18C in these habitats. It was hypothesized to be a key residue for reversible sulfide binding, a characteristic that is essential for vestimentiferan tubeworms that live symbiotically with sulfide-oxidizing bacteria (Zal et al. 1998). It was later shown that the E18 cysteine was not likely the binding site for transporting sulfide in R. pachyptila and that, at least for the 400-kDa Hb, zinc atoms were involved (Flores et al. 2005; Flores and Hourdez 2006). The SD globin from Branchipolyne is devoid of this specific residue, indicating that it most likely represents an adaptive convergence to life in a sulfide-rich habitat in the TDs. Its presence in the heme pocket may have a protective role for the heme group that usually reacts with sulfide to irreversibly form sulfhemoglobin, an altered molecule incapable of binding oxygen.

Secretion into the Coelomic Fluid

Although Branchipolyne SD and TD Hbs are extracellular (secreted in the coelomic cavity), their genes do not possess a signal peptide for secretion, whereas all other annelid extracellular globins have such a signal (Riggs 1991; Bailly et al. 2007). The absence of a signal peptide in all Branchipolyne globins could be due to the fact that we did not obtain the whole sequence and that the upstream sequence (promoter) actually corresponds to an intron. This however is unlikely as we did locate the TATA box and the sequence corresponding to the 5’ UTR, and a 700-bp stretch upstream did not reveal any other open reading frame in B. seepensis TD globin gene. This may indicate that the secretion of Branchipolyne Hbs is holocrine (by rupture of the cell membrane and the release of all the components of the cytoplasm). This is supported by the fact that, in at least one other vent species (Lepidonotopodium piasceae), the SD globin expressed in the muscles (myoglobin) has exactly the same MW as the one found in the coelomic cavity (Hourdez, unpublished data).

Origin and Evolution of the Tetra-Domain Globin

Phylogenetic relationships among annelid globins indicate that extracellular globins have evolved independently from the intracellular (circulating or noncirculating) ones and diverged about 570 Ma (Goodman et al. 1988), an origin distinct from extracellular globins found in other phyla (Bailly et al. 2007). Branchipolyne extracellular globin sequences have a distinct history, not only from other phyla’s extracellular globins (including multi-domain globins), but also from the typical extracellular annelid globins. It appears that they arose from an intracellular annelid globin more recently than the original split between intra and extracellular globins in annelids. Despite this different evolutionary history, the SD and TD globins conserved the basic globin gene structure of three exons and two introns, including intron positions. This arrangement differs from that of Aphrodite aculeata myoglobin (Dewilde et al. 1996) in which the first intron is missing. This species belongs to the scale-worm family Aphroditidae, a close related family to the Polynoidae. This indicates that the ancestor to all scale worms most likely did possess this first (B12.2) intron and that it was later lost in the lineage leading to A. aculeata. Some of the introns showed a high level of conservation between the two species, but in both the SD and the TD globin genes, there is a strongly divergent
intron (intron 1 in the SD, intron 2 in D4 for the TD). This may indicate strong selective constraint on the intron sequence for a possible role related to a regulatory function.

The phylogenetic analyses yielded trees with only limited support for the internal branches. This could be indicative of a rapid succession of the duplication events to lead to this structure and/or to different selective pressure affecting the various domains. We found that D1 and D3 are probably under stronger purifying selection than D2 and D4. This would then yield to different branch lengths and the absence of a molecular clock. Although the phylogenetic trees do not allow us to clearly decide on a likely duplication scenario, other observations (pairwise distances, conservation of some amino acid motifs) suggest that the TD structure is likely the result of two tandem duplications, the first one giving rise to D1D2, and the second one affecting these two domains together to generate the whole TD. Domain D1 is likely the most ancestral domain, as 1) in both species, intron 1 from D1 has the same size as in the SD globin, 2) pairwise differences between the SD and D1 are smaller than all the other domains, and 3) there are some conserved amino acids motifs. This duplication scenario shows that duplication moved in a 5’ to 3’ direction where downstream duplicates were likely joined by intron losses. The alternative scenario where domain 4 is ancestral and duplications proceeded in a 3’ to 5’ direction seems less likely because with each subsequent domain duplication the 5’ regulatory region may have had to be reconstructed.

Duplication Events

The mechanism responsible for these duplication events remains unclear for the moment. Interestingly, the TD globin gene from these scale worms does not have any bridge introns. This contrasts with the didomain globins from the bivalve *Barbatia reeveana* (Naito et al. 1991), the water-flea *Daphnia pulex* (Dewilde et al. 1999), and some nematodes (*A. suum* and *Pseudoterranova decipiens*; Dixon et al. 1992; Sherman et al. 1992). Similarly, in mollusk hemocyanins, the seven or eight domains are separated by bridge introns that are thought to be the remnants of the duplication of the gene (Lieb and Todt 2008). Amino acid linker sequences are also missing between the domains of the TD globins from *Branchipolynoe*. This kind of structure is known in other invertebrate multi-domain proteins such as the nine-domain Hb from *Artemia* (Manning et al. 1990; Trotman et al. 1994) and the didomain Hb of the bivalve *B. reeveana* (Naito et al. 1991). It is however not found in the nematode two-domain Hb (De Baere et al. 1992; Sherman et al. 1992). These linker sequences are thought to be the remnants of an interdomain intron that lost its splicing signals and was eventually integrated into the coding sequence. All *Branchipolynoe* TD domains are full length, indicating that there likely were interdomain introns that were secondarily integrally lost, as suggested by Naito et al. (1991) for *B. reeveana*, Dewilde et al. (1999) for *D. pulex* Hb, and Dixon et al. (1992) for *P. decepiens*. The alternative, less likely, hypothesis would require two end-to-end tandem duplications that preserved 1) the whole length of the domains and 2) the reading frame. In another water flea, *Moina macrocopa*, the two-domain globin also lacks the bridge intron (Kato et al. 2001), and the authors suggest unequal crossing-over as the mechanism for the duplication of the gene, with a subsequent loss of the bridge intron when the Cladocera (water fleas) families diverged. Finally, the TD structure could also correspond to the result of unequal crossing-overs between two copies of an initial didomain structure but this would yield chimeric domains and our search for such possible chimeras proved unsuccessful (data not shown).

Concluding Remarks

Our work shows that *Branchipolynoe* extracellular Hbs have a different origin and evolutionary history from other annelid extracellular Hbs. It appears that an ancestral intracellular myoglobin was duplicated and evolved to form an extracellular globin by evolutive tinkering. The evolution of these Hbs, constitutively expressed at high levels, is most likely the result of strong selective pressure due to the chronic hypoxia that characterizes hydrothermal vents (Hourdez and Lallier 2007). The multi-domain structure allows a higher concentration of oxygen binding sites (and thereby transport–storage capacity), without increasing the colloid osmotic pressure of the coelomic fluid.

Supplementary Material

Supplementary tables S1 and S2 and supplementary figures S1–S5 are available at Molecular Biology and Evolution online (http://www.mbe.oxfordjournals.org/).

Acknowledgments

The authors would like to thank the crews of the ships and submersibles, as well as the chief scientists, of the cruises ATOS 2001 (project funded by Ifremer and Institut National des Sciences de l’Université), and EPR 2001 (project funded by an NSF grant to C.R. Fisher [NSF OCE-0002729]). We would also like to thank Isabelle Boutet-Tanguy and Arnaud Tanguy for technical advice in laboratory. This work is part of the project HYPOXEO (Région Bretagne) and was supported by the ESTeam research Marie Curie grant under the sixth framework program from the European Commission.

References

Kato et al. 2001. The alternative, less likely, hypothesis would require two end-to-end tandem duplications that preserved 1) the whole length of the domains and 2) the reading frame. In another water flea, *Moina macrocopa*, the two-domain globin also lacks the bridge intron (Kato et al. 2001), and the authors suggest unequal crossing-over as the mechanism for the duplication of the gene, with a subsequent loss of the bridge intron when the Cladocera (water fleas) families diverged. Finally, the TD structure could also correspond to the result of unequal crossing-overs between two copies of an initial didomain structure but this would yield chimeric domains and our search for such possible chimeras proved unsuccessful (data not shown).

Concluding Remarks

Our work shows that *Branchipolynoe* extracellular Hbs have a different origin and evolutionary history from other annelid extracellular Hbs. It appears that an ancestral intracellular myoglobin was duplicated and evolved to form an extracellular globin by evolutive tinkering. The evolution of these Hbs, constitutively expressed at high levels, is most likely the result of strong selective pressure due to the chronic hypoxia that characterizes hydrothermal vents (Hourdez and Lallier 2007). The multi-domain structure allows a higher concentration of oxygen binding sites (and thereby transport–storage capacity), without increasing the colloid osmotic pressure of the coelomic fluid.

Supplementary Material

Supplementary tables S1 and S2 and supplementary figures S1–S5 are available at Molecular Biology and Evolution online (http://www.mbe.oxfordjournals.org/).

Acknowledgments

The authors would like to thank the crews of the ships and submersibles, as well as the chief scientists, of the cruises ATOS 2001 (project funded by Ifremer and Institut National des Sciences de l’Université), and EPR 2001 (project funded by an NSF grant to C.R. Fisher [NSF OCE-0002729]). We would also like to thank Isabelle Boutet-Tanguy and Arnaud Tanguy for technical advice in laboratory. This work is part of the project HYPOXEO (Région Bretagne) and was supported by the ESTeam research Marie Curie grant under the sixth framework program from the European Commission.

References

