Rainwater Harvesting for Non-potable Reuse in Gardens: Green vs. Traditional Roofing
Natasha T. Nicholson, Brett V. Long, Shirley E. Clark, Julia M. Spicher, Kelly A. Steele, Christine Y.S. Siu
Environmental Engineering Program
Penn State Harrisburg, Middletown, PA 17057

Introduction
- Early stormwater management assumed roof pollutant loadings were overwhelmingly due to atmospheric deposition.
- Roofing materials themselves seen as environmentally benign. Is this true? Literature review indicated concerns.
- Laboratory “leach” testing indicated that potential for pollutant release potential (primarily nutrients, lighter hydrocarbons, pesticides, and metals) is high from traditional materials.

Questions to Be Addressed
- Given this large “store” of pollutants in the materials, would they be released in actual field conditions?
- What are the long-term concentrations/loadings from these materials?
- How do these releases compare to green roofing?

Environmental Significance
- If roofing materials pollute, they must be included both as a source in modeling and as a location needing remediation.
- Rainwater harvesting from roofing requires careful selection of materials based on runoff quality throughout the roof’s life.
- Green roofing is known to cool urban heat islands and to provide water retention of rainfall. Is cleaner runoff (compared to traditional materials) an additional benefit of green roofs?

Objectives
- Determine the pollutant release (nutrients and metals primarily) from commonly-used roofing materials and from a green roof throughout their life cycle.
- Evaluate runoff quality in relation to plant toxicity for harvesting for non-potable uses (landscape irrigation could save ~ 15 – 30% of household drinking water use).

Methods
- **Phase I**: Laboratory testing (modified TCLP) was conducted on a variety of roofing materials and sealants to determine potential pollutant release.
- **Phase II**: Intact panels of traditional materials installed to monitor long-term degradation. Roof slope and material spacing based on roofer’s recommendations. Investigate climatic effects including:
 - salt spray; freeze-thaw; UV exposure, generally less-intense rains than southeast US.
- Field (Phase II) monitoring in late July/early August 2005.

Results and Discussion
- Laboratory testing demonstrated that many traditional materials had a “reservoir” of pollutants potentially available for release.
- Median nutrient concentrations meet aquatic life and drinking water criteria. Wood products released more N, while green roof released more P into runoff. P levels, though, were low.
- Most roofs released N concentrations above the 25th percentile of PA stream concentrations.
- Concerns regarding metals from traditional roofing materials.
- Copper – Elevated in wood product runoff; stream criteria maximum concentration = 65 µg/L; Plant toxicity = 2,000 µL.
- Zinc – Elevated in uncoated, galvanized metal roof runoff; stream criteria maximum concentration = 120 µg/L; Plant toxicity = 2,000 – 11,000 µL.

Conclusions and Future Research
- Uncoated galvanized metals and wood products primary concerns for release of metals and organics.
- Copper-based preservatives used in wood.
- Nutrient releases seen early in several materials’ lives, with rapid reductions in runoff concentrations seen after several storms.
- The aged roofing panels showed that some materials will release measurable concentrations of pollutants over their entire life.
- Rainwater harvesting from some traditional roofing materials (cedar shakes, uncoated galvanized metal) is problematic.
- If runoff collected from these materials, pretreatment required prior to reuse for even landscape irrigation.
- Green roof runoff chemically “cleaner” compared to traditional roofing.

Acknowledgements
- The authors would like to thank the following people for their support and analytical assistance:
 - Dr. Robert Pitt (University of Alabama) and Richard Field (US EPA).
 - The authors would like to thank the following groups for their assistance:
 - Penn State Graduate Council Faculty Research Grants committee
 - UA Department of Geology and of Civil, Construction and Environmental Engineering for their sample analyses.