Wet-Weather Pollution from Commonly-Used Building Materials

Julia Hafera
Shirley E. Clark, Ph.D., P.E.
James C. Elligson
J. Bradley Mikula, MS EPC
Penn State Harrisburg

Melinda M. Lalor, Ph.D.
University of Alabama at Birmingham

QUESTIONS TO BE ANSWERED

- What is the potential pollutant release from common building materials both when new and after aging?
 - How does exposure to road salt and other adverse conditions affect pollutant release?
- Can we use short-term laboratory testing to predict long-term pollutant release in the field?
- Can we modify existing roofing materials or develop a more environmentally-friendly roofing material (focusing on those materials that are used in large quantities as roofing surfaces and substrates)?

<table>
<thead>
<tr>
<th>National Stormwater Quality Database</th>
</tr>
</thead>
<tbody>
<tr>
<td>(based on MS4 NPDES Phase I Permits)</td>
</tr>
<tr>
<td>Parameter:</td>
</tr>
<tr>
<td>All data combined:</td>
</tr>
<tr>
<td>Median (COV):</td>
</tr>
<tr>
<td>Residential (1,061 events):</td>
</tr>
<tr>
<td>Commercial (497 events):</td>
</tr>
<tr>
<td>Industrial (518 events):</td>
</tr>
<tr>
<td>Freeways (185 events):</td>
</tr>
</tbody>
</table>

Plating Company Study

- Semi-bright nickel, bright nickel, chrome
- Steel and aluminum substrates
- Galvanized roofing, partly painted – 10,000 sf

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Historical Concentrations (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zinc</td>
<td>0.8 – 3.0</td>
</tr>
<tr>
<td>Copper</td>
<td>0.02 – 0.7</td>
</tr>
<tr>
<td>Lead</td>
<td>ND – 0.1</td>
</tr>
<tr>
<td>TSS</td>
<td>5 – 76</td>
</tr>
</tbody>
</table>

Galvanized (Galvalume) Roofing – Airport Facility

- 7 storms sampled of direct roof runoff
 - Zinc
 - 0.42 to 14.7 mg/L (average 88% dissolved; COV = 7%).
 - Copper
 - 0.01 to 1.4 mg/L (average 75% dissolved; COV = 24%).
 - Lead
 - Not detected

SCRAPYARD RUNOFF (SOLUBLE FRACTION)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Concentration (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphate</td>
<td>0.05 – 0.35</td>
</tr>
<tr>
<td>Copper</td>
<td>0.1 – 0.3</td>
</tr>
<tr>
<td>Lead</td>
<td>0.1 – 0.3</td>
</tr>
<tr>
<td>Zinc</td>
<td>0.1 – 6.7</td>
</tr>
<tr>
<td>Calcium</td>
<td>8 – 200</td>
</tr>
<tr>
<td>Magnesium</td>
<td>1.8 – 12</td>
</tr>
</tbody>
</table>

Galvanized metal roofing panels used on a building in Denali, Alaska.

Categories of Materials to be Investigated in both Laboratory and Field Testing

- Galvanized metal (both painted and unpainted)
- Aluminum gutters/siding
- Vinyl roofing panels
- Asphalt roofing shingles
- Roofing felt
- Roofing sealants
- Membrane/rubberized roofing
- Cedar shingles
- Faux slate shingles (made from recycled materials)
- Untreated wood (with and without paint)
- Treated wood

Laboratory Testing

Laboratory Testing: Roof Coatings and Sealers

Potential Pollutants (from labels and MSDS):
- Leak Stopper – Rubberized Roof Patch
 Petroleum Distillate
 Penetrex™ (penetrating oil)
- Silver Dollar Fibered Aluminum Roof Coating
 Aluminum Flakes
 Asphalt
- Gardner Wet-R-Dri™ All Weather Plastic Roof Cement
 Petroleum Distillate
 Asphalt
 Silicate Mineral
 Chrysotile Mineral Fiber

Analytes

- pH
- Conductivity
- Chemical oxygen demand
- Semi-volatile organics (EPA Method 8270 and 608) – laboratory testing only
- Heavy metals and major cations (copper, chromium, cadmium, lead, zinc, arsenic, calcium, magnesium, sodium, potassium)
- Nutrients (nitrate, ammonia, total nitrogen, phosphate, total phosphorus)
- Toxicity (Microtox™) on periodic PSH field samples
Methodology

- Summer 2002: Laboratory TCLP (acid rain simulation)
- Fall/Winter 2002 and Spring 2003: Laboratory investigation of selected materials using rainfall
- Winter 2004 – Laboratory-testing of 60-year-old outdoor (painted) metal roofing panels.
- Spring 2005: Reconstruction of test frames at PSH and UAB. Slight design modifications resulting in larger surface area and decreased angle of roofing section to match typical construction guidelines used.
- Summer 2005 – indefinite: Long-term, outdoor investigation from intact installations on test frames. Runoff samples analyzed regularly (every storm first two months; at least one storm per month after first two months).

Results: Laboratory Testing

- Data not shown for pH, as minimal change occurred from the materials as compared to the leachant solution.
- 60+-year old roofing panel testing complete. Primary analytes were metals since these were metal panels with original paint.
- Conductivity not shown – most samples near background, but metal roofing panels generated elevated conductivity.

Chemical Oxygen Demand

Laboratory-Scale Tests

Nitrate

Laboratory-Scale Tests

Ammonia-Nitrogen (NH₃-N)

Laboratory-Scale Tests
Phosphate (PO₄-P)

Laboratory-Scale Tests

Copper

Laboratory-Scale Tests

Lead

Laboratory-Scale Tests

Zinc

Laboratory-Scale Tests

Aged Roofing Panels

60+-Year Roofing Panels: Heavy Metals

Cu

Cr

Pb

Zn
Results: Field Testing

- 2.5 months of sampling and exposure complete.
- pH, conductivity, and COD values showed little variability between storms.
- Conductivity stabilized after ~20 days
- Physical degradation of roofing panels, particularly the metal panels, is visible after two weeks of exposure.
Summary of Results to Date: Laboratory TCLP

- **Organics:**
 - Most non-detects. Highest: roofing felt [bis(2-ethylhexyl) phthalate = 315 μg/L].
 - COD: Pressure-treated wood > Silver Dollar Aluminum Roofing Coating > Roofing felt.

- **Nutrients:**
 - Nitrate highest: roofing felt, the two woods, and Leak Stopper.
 - Ammonia high: galvanized metal and roofing felt.
 - Phosphate elevated: galvanized metal and Gardner Wet-R-Dri.

- **Metals:**
 - Copper highest in the two woods, followed by shingles and Silver Dollar Aluminum Coating (order of magnitude lower).
 - Lead highest: Leak Stopper.
 - Others high: Silver Dollar Coating and galvanized metal.
 - Zinc highest: galvanized metal (Zn is sacrificial cation).
 - Others elevated but four orders of magnitude less: waterproof wood, Leak Stopper, faux slate, and Kool-Seal White Acrylic.

Summary of Results to Date: Laboratory Aged roofing panels for both dissolution and TCLP:

- 1 – 5 mg/kg of Cu
- 1 – 10 mg/kg Cr
- 30 – 70 mg/kg Pb.
- Zinc 3 orders of magnitude higher than Pb (10 – 40 g/kg).

- Little difference noted between the rusted and non-rusted panels (testing on no-paint areas).
- Paint likely contributed Cr and Pb to leachate.
- Overall Cr concentrations were higher when the painted panel was dissolved.

- Aged panels [simulated rainwater] had measurable releases of chromium, lead and zinc, although concentrations 2 – 4 orders of magnitude less than that released in TCLP test.
- No Cu detected when panels exposed to simulated rainfall.
- Pollutant release in same TCLP tests (new and old material) showed similar results.

Summary of Results to Date: Outdoor Testing

- **pH:** All samples have runoff pH between 5 – 6.5, except for roofing felt, rubberized roofing, and cedar shakes (all of which have runoff pH < 5).
- **Wood panels,** both treated and untreated, have high conductivity and COD levels.
- **Roofing felt,** cedar shakes, and water-proof wood highest nitrate concentrations. Water-proof wood also had high ammonia releases.
- **Asphalt shingles** yield total phosphorous levels four times greater than any other roofing panels, whereas untreated plywood generated elevated average phosphate levels.

Conclusions and Future Research

- **Materials with metallic preservatives or metal skin coatings** (metal flakes a listed ingredient) tend to leach more of the measured metals. Treated woods contributed Cu significantly more than any other material.
- **Laboratory shows** that nutrient contributions could be considerable. Follow-up testing to measure nutrients. Early sampling indicates nutrient contributions could be considerable.
- **Field installations** required to determine the effects of weathering on intact pieces so as to predict stormwater loadings.
 - Installation practices such as exposing cut edges and use of sealers may impact the temporal pattern of pollutant release from these materials.
- **Long term testing** began this summer at UAB and PSH (to look at climatic differences in degradation).
 - Elevated COD in runoff from wood products.
 - Elevated NO₃ concentrations in runoff from roofing felt and wood roofing materials.

Questions?