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Summary.The support vector machine (SVM) is a powerful binary classification tool with high
accuracy and great flexibility. It has achieved great success, but its performance can be ser-
iously impaired if many redundant covariates are included. Some efforts have been devoted
to studying variable selection for SVMs, but asymptotic properties, such as variable selection
consistency, are largely unknown when the number of predictors diverges to 1. We estab-
lish a unified theory for a general class of non-convex penalized SVMs. We first prove that, in
ultrahigh dimensions, there is one local minimizer to the objective function of non-convex penal-
ized SVMs having the desired oracle property. We further address the problem of non-unique
local minimizers by showing that the local linear approximation algorithm is guaranteed to con-
verge to the oracle estimator even in the ultrahigh dimensional setting if an appropriate initial
estimator is available.This condition on the initial estimator is verified to be automatically valid as
long as the dimensions are moderately high. Numerical examples provide supportive evidence.

Keywords: Local linear approximation; Non-convex penalty; Oracle property; Support vector
machines; Ultrahigh dimensions; Variable selection

1. Introduction

Owing to the recent advent of new technologies for data acquisition and storage, we have
seen an explosive growth of data complexity in a variety of research areas such as genomics,
imaging and finance. As a result, the number of predictors becomes huge. However, there are
only a moderate number of instances that are available for study (Donoho, 2000). For example,
in tumour classification using genomic data, expression values of tens of thousands of genes
are available, but the number of arrays is typically of the order of tens. Classification of high
dimensional data poses many statistical challenges and calls for new methods and theories. In
this paper we consider high dimensional classification where the number of covariates diverges
with the sample size and can be potentially much larger than the sample size.

The support vector machine (SVM) (Vapnik, 1996) is a powerful binary classification tool
with high accuracy and great flexibility. It has achieved success in many applications. However,
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one serious drawback of the standard SVM is that its performance can be adversely affected
if many redundant variables are included in building the decision rule (Friedman et al., 2001);
see the evidence in the numerical results of Section 5.1. Classification using all features has
been shown to be as poor as random guessing because of the accumulation of noise in high
dimensional space (Fan and Fan, 2008). Many methods have been proposed to remedy this
problem, such as recursive feature elimination suggested by Guyon et al. (2002). In particular,
superior performance can be achieved with a unified method, namely achieving variable selection
and prediction simultaneously (Fan and Li, 2001) by using an appropriate sparsity penalty. It is
well known that the standard SVM can fit in the regularization framework of loss plus penalty
by using hinge loss and the L2-penalty. Based on this, several attempts have been made to
achieve variable selection for the SVM by replacing the L2-penalty with other forms of penalty.
Bradley and Mangasarian (1998), Zhu et al. (2004) and Wegkamp and Yuan (2011) considered
the L1-penalized SVM; Zou and Yuan (2008) proposed to use the F∞-norm SVM to select
groups of predictors; Wang et al. (2006, 2008) suggested the elastic net penalty for the SVM;
Zou (2007) proposed to penalize the SVM with the adaptive lasso penalty; Zhang et al. (2006),
Becker et al. (2011) and Park et al. (2012) studied smoothly clipped absolute deviation (SCAD)
(Fan and Li, 2001) penalized SVM. Recently Park et al. (2012) studied the oracle property of
the SCAD-penalized SVM with a fixed number of predictors. Yet, to the best of our knowledge,
the theory of variable selection consistency of sparse SVMs in high dimensions or ultrahigh
dimensions (Fan and Lv, 2008) has not been studied so far.

In this paper, we study the variable selection consistency of sparse SVMs. Instead of using
the L2-penalty, we consider the penalized SVM with a general class of non-convex penalties,
such as the SCAD penalty or the minimax concave penalty (MCP) (Zhang, 2010). Though the
convex L1-penalty can also induce sparsity, it is well known that its variable selection consistency
in linear regression relies on the stringent ‘irrepresentability condition’ on the design matrix.
This condition, however, can easily be violated in practice; see the examples in Zou (2006)
and Meinshausen and Yu (2009). Moreover, the regularization parameter for model selection
consistency in this case is not optimal for prediction accuracy (Meinshausen and Bühlmann,
2006; Zhao and Yu, 2007). For the non-convex penalty, Kim et al. (2008) investigated the
oracle property of SCAD-penalized least squares regression in the high dimensions. However,
a different set of proving techniques is needed for the non-convex penalized SVMs because the
hinge loss in the SVM is not a smooth function. The Karush–Kuhn–Tucker local optimality
condition is generally not sufficient for the set-up of a non-smooth loss plus a non-convex
penalty. A new sufficient optimality condition based on subgradient calculation is used in the
technical proof in this paper. We prove that under some general conditions, with probability
tending to 1, the oracle estimator is a local minimizer of the non-convex penalized SVM objective
function where the number of variables may grow exponentially with the sample size. By oracle
estimator, we mean an estimator obtained by minimizing the empirical hinge loss with only
relevant covariates. As one referee pointed out, with a finite sample, the empirical hinge loss
may have multiple minimizers because the objective function is piecewise linear. This issue will
vanish asymptotically because we assume that the population hinge loss has a unique minimizer.
Such an assumption on the population hinge loss has been made in the existing literature (Koo
et al., 2008).

Even though the non-convex penalized SVMs are shown to enjoy the aforementioned
local oracle property, it is largely unknown whether numerical algorithms can identify this local
minimizer since the objective function involved is non-convex and typically multiple local mini-
mizers exist. Existing methods rely heavily on conditions that guarantee that the local minimizer
is unique. In general, when the convexity of the hinge loss function dominates the concavity of
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the penalty, the non-convex penalized SVMs actually have a unique minimizer due to global
convexity. Recently Kim and Kwon (2012) gave sufficient conditions for a unique minimizer of
the non-convex penalized least square regression when global convexity is not satisfied. However,
for ultrahigh dimensional cases, it would be unrealistic to assume the existence of a unique local
minimizer. See Wang et al. (2013) for relevant discussion and a possible solution to non-convex
penalized regression.

In this paper, we further address the non-uniqueness issue of local minimizers by verifying
that, with probability tending to 1, the local linear approximation (LLA) algorithm (Zou and
Li, 2008) is guaranteed to yield an estimator with the desired oracle property in merely two
iterations under the localizability condition (Fan et al., 2014). This convergence result extends
the work of Fan et al. (2014) by relaxing the differentiability assumption of the loss function
and holds in the ultrahigh dimensional setting with p=o{exp.nδ/} for some positive constant
δ. We further show that the localizability condition is automatically valid for the moderately
high dimensional setting with p = o.

√
n/. To the best of our knowledge, this is the first result

on the convergence of the LLA algorithm in the set-up of a non-smooth loss function with a
non-convex penalty.

The rest of this paper is organized as follows. Section 2 introduces the methodology of non-
convex penalized SVMs. Section 3 contains the main results of the properties of non-convex
penalized SVMs. The implementation procedure is summarized in Section 4. Simulation studies
and a real data example are provided in Section 5, followed by a discussion in Section 6. Technical
proofs are presented in Appendix A. A file containing R demonstration code for one simulation
example and the real data example is available from http://www4.stat.ncsu.edu/∼wu/
soft/VarSelforSVMbyZhangWuWangLi.zip.

2. Non-convex penalized support vector machines

We begin with the basic set-up and notation. In binary classification, we are typically given
a random sample {.Yi, Xi/}n

i=1 from an unknown population distribution P.X, Y/. Here Yi ∈
{1, −1} denotes the categorical label and Xi = .Xi0, Xi1, : : : , Xip/T = .Xi0, .XÅ

i /T/T denotes the
input covariates with Xi0 = 1 corresponding to the intercept term. The goal is to estimate a
classification rule that can be used to predict output labels for future observations with input
covariates only. With potentially varying misclassification cost specified by weight Wi = w if
Yi =1 and Wi =1−w if Yi =−1 for some 0 < w < 1, the linear weighted SVM (Lin et al., 2002)
estimates the classification boundary by solving

min
β

n−1
n∑

i=1
Wi.1−YiXT

i β/+ +λβÅTβÅ,

where .1−u/+ =max{1−u, 0} denotes the hinge loss, λ> 0 is a regularization parameter and
β= .β0, .βÅ/T/T with βÅ = .β1, β2, : : : , βp/T. The standard SVM is a special case of the weighted
SVM with weight parameter w = 0:5. In this paper, we consider the weighted SVM for more
generality. In general, the corresponding decision rule, sgn.XTβ/, uses all covariates and is not
capable of selecting relevant covariates.

Towards variable selection for the linear weighted SVM, we consider the population linear
weighted hinge loss E{W.1−YXTβ/+}. Let β0 = .β00, β01, : : : , β0p/T = .β00, .βÅ

0 /T/T denote the
true parameter value, which is defined as the minimizer of the population weighted hinge loss,
namely

β0 =arg min
β

E{W.1−YXTβ/+}: .1/
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The number of covariates p=pn is allowed to increase with the sample size n. It is even possible
that pn is much larger than n. In this paper we assume that the true parameter β0 is sparse.
Let A = {1 � j � pn;β0j �= 0} be the index set of the non-zero coefficients. Let q = qn = |A| be
the cardinality of set A, which is also allowed to increase with n. Without loss of generality, we
assume that the last pn −qn components of β0 are 0, i.e. βT

0 = .βT
01, 0T/. Correspondingly, we

write XT
i = .ZT

i , RT
i /, where Zi = .Xi0, Xi1, : : : , Xiq/T = .1, .ZÅ

i /T/T and Ri = .Xi[q+1], : : : , Xip/T.
Further we denote π+ and π− respectively to be the marginal probability of the label Y =1 and
Y =−1.

To facilitate our theoretical analysis, we introduce the gradient vector and Hessian matrix of
the population linear weighted hinge loss. Let L.β1/= E{W.1 −YZTβ1/+} be the population
linear weighted hinge loss by using only relevant covariates. Define S.β1/= .S.β1/j/ to be the
.qn +1/-dimensional vector given by

S.β1/=−E{I.1−YZTβ1 �0/WYZ},

where I.·/ denotes the indicator function. Also define H.β1/ = .H.β1/jk/ to be the .qn + 1/ ×
.qn +1/ matrix given by

H.β1/=E{δ.1−YZTβ1/WZZT},

where δ.·/ denotes the Dirac delta function. It can be shown that, if well defined, S.β1/ and
H.β1/ can be considered to be the gradient vector and Hessian matrix of L.β1/ respectively. See
lemma 2 of Koo et al. (2008) for details.

2.1. Non-convex penalized support vector machines
By acting as if the true sparsity structure is known in advance, the oracle estimator is defined
as β̂= .β̂T

1 , 0T/T, where

β̂1 =arg min
β1

n−1
n∑

i=1
Wi.1−YiZT

i β1/+: .2/

Here the objective function is piecewise linear. With a finite sample, it may have multiple mini-
mizers. In that case, β̂1 can be chosen to be any minimizer. Our forthcoming theoretical results
still hold. In the limit as n→∞, β̂1 minimizes the population version of the objective function
E{W.1 − YZTβ1/+}. Lin (2002) showed that, when the misclassification costs are equal, the
minimizer of E{.1 − Y f.Z//+} over measurable f.Z/ is the Bayes rule sgn{p.Z/ − 1

2}, where
p.z/ = P.Y = 1|Z = z/. This suggests that the oracle estimator is aiming at approximating the
Bayes rule. In practice, achieving an estimator with the desired oracle property is very challeng-
ing, because the sparsity structure of the true parameter β0 is largely unknown. Later we shall
show that, under some regularity conditions, our proposed algorithm can find an estimator
with oracle property and we claim convergence with high probability. Indeed, the numerical
examples in Section 5.1 demonstrate that the estimator selected by our proposed algorithm has
performance that is close to that of the Bayes rule. Note that the Bayes rule is unattainable here
because we assume no knowledge on the high dimensional conditional density P.X|Y/.

In this paper, we consider the non-convex penalized hinge loss objective function

Q.β/=n−1
n∑

i=1
Wi.1−YiXT

i β/+ +
pn∑

j=1
pλn.|βj|/, .3/

where pλn.·/ is a symmetric penalty function with tuning parameter λn. Let p′
λn

.t/ be the deriva-
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tive of pλn.t/ with respect to t. We consider a general class of non-convex penalties that satisfy
the following conditions.

Assumption 1. The symmetric penalty pλn.t/ is assumed to be non-decreasing and concave
for t ∈ [0, ∞/, with a continuous derivative p′

λn
.t/ on .0, ∞/ and pλn.0/=0.

Assumption 2. There exists a>1 such that limt→0+ p′
λn

.t/=λn, p′
λn

.t/�λn − t=a for 0<t<aλ
and p′

λn
.t/=0 for t �aλ.

The motivation for such a non-convex penalty is that the convex L1-penalty lacks the oracle
property owing to the overpenalization of large coefficients in the model selected. Consequently
it is undesirable to use the L1-penalty when the purpose of the data analysis is to select the
relevant covariates among potentially high dimensional candidates in classification. Note that
p, q, λ and other related quantities are allowed to depend on n, and we suppress the subscript
n whenever there is no confusion.

Two commonly used non-convex penalties that satisfy assumptions 1 and 2 are the SCAD
penalty and the MCP. The SCAD penalty (Fan and Li, 2001) is defined by

pλ.|β|/=λ|β|I.0� |β|<λ/+ aλ|β|− .β2 +λ2/=2
a−1

I.λ� |β|�aλ/+ .a+1/λ2

2
I.|β|>aλ/

for some a> 2. The MCP (Zhang, 2010) is defined by

pλ.|β|/=λ

(
|β|− β2

2aλ

)
I.0� |β|<aλ/+ aλ2

2
I.|β|�aλ/ for some a> 1:

3. Oracle property

3.1. Regularity conditions
To facilitate our technical proofs, we impose the following regularity conditions.

Condition 1. The densities of ZÅ given Y = 1 and Y =−1 are continuous and have common
support in Rq.

Condition 2. E.X2
j /<∞ for 1� j �q.

Condition 3. The true parameter β0 is unique and a non-zero vector.

Condition 4. qn =O.nc1/, namely limn→∞ qn=nc1 <∞, for some 0� c1 < 1
2 .

Condition 5. There is a constant M1 >0 such that λmax.n−1XT
AXA/�M1, where XA is the first

qn +1 columns of the design matrix and λmax denotes the largest eigenvalue. It is further assumed
that max1�i�n ‖Zi‖=Op{√

qn log.n/}, .Zi, Yi/ are in general position (Koenker (2005), section
2.2) and Xij are sub-Gaussian random variables for 1� i�n, qn +1� j �pn.

Condition 6. λmin{H.β01/}�M2 for some constant M2 > 0, where λmin denotes the smallest
eigenvalue.

Condition 7. n.1−c2/=2 min1�j�qn |β0j|�M3 for some constant M3 > 0 and 2c1 <c2 �1.

Condition 8. Denote the conditional density of ZTβ01 given Y = 1 and Y = −1 as f and g
respectively. It is assumed that f is uniformly bounded away from 0 and ∞ in a neighbourhood
of 1 and g is uniformly bounded away from 0 and ∞ in a neighbourhood of –1.
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Remark 1. Conditions 1–3 and 6 were also assumed for fixed p in Koo et al. (2008). We need
these assumptions to ensure that the oracle estimator is consistent in the scenario of diverging
p. Condition 3 states that the optimal classification decision function is not constant, which is
required to ensure that S.β/ and H.β/ are a well-defined gradient vector and Hessian matrix of
the hinge loss; see lemma 2 and lemma 3 of Koo et al. (2008). Conditions 4 and 7 are common
in the literature of high dimensional inference (Kim et al., 2008). More specifically, condition 4
states that the divergence rate of the number of non-zero coefficients cannot be faster than

√
n

and condition 7 simply states that the signals cannot decay too quickly. The condition on the
largest eigenvalues of the design matrix in condition 5 is similar to the sparse Riesz condition
and was also assumed in Zhang and Huang (2008), Yuan (2010) and Zhang (2010). Note that
the bound on the smallest eigenvalue is not specified. The condition on the maximum norm in
assumption 5 holds when ZÅ given Y follows a multivariate normal distribution. .Zi, Yi/ are in
general position if with probability 1 there are exactly qn +1 elements in D={i : 1−YiZT

i β̂1 =0}
(Koenker (2005), section 2.2). The condition for general position is true with probability 1 with
respect to Lebesgue measure. Condition 8 requires that there is enough information around the
non-differentiable point of the hinge loss, similarly to condition (C5) in Wang et al. (2012) for
quantile regression.

For illustrative examples that satisfy all the above conditions, assume that 0<π+ =1−π− <1
and let the number of signals be fixed. The first example is that the conditional distributions
of XÅ given Y have unbounded support Rp with sub-Gaussian tails. It can be easily seen that
the Fisher discriminant analysis is one special case when XÅ given Y are Gaussian. Conditions
1–4 and 7 are trivial. Condition 5 holds by the properties of sub-Gaussian random variables.
Koo et al. (2008) showed that condition 6 holds if the supports of the conditional densities
of ZÅ given Y are convex, which are naturally satisfied for Rq. Condition 8 is trivially sat-
isfied by the unbounded support of the conditional distribution of ZÅ given Y . Another ex-
ample is the probit model that XÅ has unbounded support Rp with sub-Gaussian tails and
Pr.Y = 1|XÅ/ = Φ.XTβ/ for some β �= 0. It can be easily checked that the conditional distri-
butions of XÅ given Y also have unbounded supports Rp and hence all the conditions are
satisfied.

3.2. Local oracle property
In this subsection, we establish the theory of the local oracle property for the non-convex
penalized SVMs, namely the oracle estimator is one of the local minimizers of the objective
function Q.β/ defined in equation (3). We start with the following lemma on the consistency of
the oracle estimator, which can be viewed as an extension of the consistency result in Koo et al.
(2008) to the diverging p scenario.

Lemma 1. Assume that conditions 1–7 are satisfied. The oracle estimator β̂ = .β̂
T
1 , 0T/T

satisfies ‖β̂1 −β01‖=Op{√
.qn=n/} when n→∞.

Though the convexity of the non-convex penalized hinge loss objective function Q.β/ is not
guaranteed, it can be written as the difference between two convex functions:

Q.β/=g.β/−h.β/, .4/

where

g.β/=n−1
n∑

i=1
Wi.1−YiXT

i β/+ +λn

p∑
j=1

|βj|
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and

h.β/=λn

p∑
j=1

|βj|−
p∑

j=1
pλn.|βj|/=

p∑
j=1

Hλn.βj/:

The form of Hλ.βj/ depends on the penalty function. For the SCAD penalty, we have

Hλ.βj/= β2
j −2λ|βj|+λ2

2.a−1/
I.λ� |βj|�aλ/+

{
λ|βj|− .a+1/λ2

2

}
I.|βj|>aλ/,

whereas, for the MCP, we have Hλ.βj/ = {β2
j =.2a/}I.0 � |βj| < aλ/ + .λ|βj| − aλ2=2/I.|βj|�

aλ/. This decomposition is useful, as it naturally satisfies the form of the difference of convex
functions algorithm (An and Tao, 2005).

To prove the oracle property of the non-convex penalized SVMs, we shall use a sufficient
local optimality condition for the difference convex programming that was first presented in
Tao and An (1997). This sufficient condition is based on subgradient calculus. The subgradient
can be viewed as an extension of the gradient of the smooth convex function to the non-smooth
convex function. Let dom(g) = {x : g.x/ < ∞} be the effective domain of a convex function
g. The subgradient of g.x/ at a point x0 is defined as @g.x0/ = {t : g.x/ � g.x0/ + .x − x0/Tt}.
Note that, at the non-differentiable point, the subgradient contains a collection of vectors. One
can easily check that the subgradient of the hinge loss function at the oracle estimator is the
collection of vectors s.β̂/= .s0.β̂/, : : : , sp.β̂//T with

sj.β̂/=−n−1
n∑

i=1
WiYiXij I.1−YiXT

i β̂ > 0/−n−1
n∑

i=1
WiYiXijvj, .5/

where −1 � vi � 0 if 1 − YiX
T
i β̂ = 0 and vi = 0 otherwise, j = 0, : : : , p. Under some regularity

conditions, we can study the asymptotic behaviours of the subgradient at the oracle estimator.
The results are summarized in the following theorem.

Theorem 1. Suppose that conditions 1–8 hold, and the tuning parameter satisfies λ =
o.n−.1−c2/=2/ and log.p/q log.n/n−1=2 =o.λ/. For the oracle estimator β̂, there exists vÅ

i which
satisfies vÅ

i = 0 if 1 − YiX
T
i β̂ �= 0 and vÅ

i ∈ [−1, 0] if 1 − YiX
T
i β̂ = 0, such that, for sj.β̂/ with

vi =vÅ
i , with probability approaching 1, we have

sj.β̂/=0, j =0, 1, : : : , q,

|β̂j|� .a+ 1
2 /λ, j =1, : : : , q,

|sj.β̂/|�λ and |β̂j|=0, j =q+1, : : : , p,

Theorem 1 characterizes the subgradients of the hinge loss at the oracle estimator. It basically
says that in a regular setting, with probability arbitrarily close to 1, those components of the
subgradients corresponding to the relevant covariates are exactly 0 and those corresponding to
irrelevant covariates are not far from 0.

We now present the sufficient optimality condition based on subgradient calculation. Corol-
lary 1 of Tao and An (1997) states that, if there is a neighbourhood U around the point xÅ

such that @h.x/∩ @g.xÅ/ �= ∅, ∀x ∈U ∩ dom.g/, then xÅ is a local minimizer of g.x/−h.x/. To
verify this local sufficiency condition, we study the asymptotic behaviours of subgradients of
the two convex functions in the aforementioned decomposition (4) of Q.β/. Note that, based on
equation (5), the subgradient function of g.β/ at β can be shown to be the following collection
of vectors:
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@g.β/=
{

ξ= .ξ0, : : : , ξp/T ∈Rp+1 : ξj =−n−1
n∑

i=1
WiYiXij I.1−YiXT

i β̂ > 0/

−n−1
n∑

i=1
WiYiXijvj +λlj, j =0, : : : , p

}
,

where l0 = 0, lj = sgn.βj/ if βj �= 0 and lj ∈ [−1, 1] otherwise for 1 � j � p, and −1 � vi � 0
if 1 − YiX

T
i β̂ = 0 and vi = 0 otherwise for 1 � i � n. Furthermore, by assumption 2 of the

class of non-convex penalty functions, limt→0+H ′
λ.t/= limt→0− H ′

λ.t/=λ sgn.t/−λ sgn.t/= 0.
Thus h.β/ is differentiable everywhere. Consequently the subgradient of h.β/ at point β is a
singleton:

@h.β/=
{

μ= .μ0, : : : , μp/∈Rp+1 :μj = @h.β/

@βj
, j =0, : : : , p

}
:

For the class of non-convex penalty functions under consideration, @h.β/=@βj =0 for j =0. For
1� j �p,

@h.β/

@βj
= βj −λ sgn.βj/

a−1
I.λ� |βj|�aλ/+λsgn.βj/I.|βj|>aλ/

for the SCAD penalty, and

@h.β/

@βj
= βj

a
I.0� |βj|<aλ/+λsgn.βj/I.|βj|�aλ/

for the MCP.
Combining this with theorem 1, we shall prove that with probability tending to 1, for any β in

a ball in Rp+1 with the centre β̂ and radius λ=2, there is a subgradient ξ= .ξ0, : : : , ξp/T ∈@g.β̂/

such that h.β/=@βj = ξj, j = 0, 1, : : : , p. Consequently the oracle estimator β̂ is itself a local
minimizer of equation (3). This is summarized in the following theorem.

Theorem 2. Assume that conditions 1–8 hold. Let Bn.λ/ be the set of local minimizers of the
objective function Q.β/ with regularization parameter λ. The oracle estimator β̂= .β̂T

1 , 0T/T

satisfies

Pr{β̂∈Bn.λ/}→1

as n→∞, if λ=o.n−.1−c2/=2/, and log.p/q log.n/n−1=2 =o.λ/.

It can be shown that, if we take λ=n−1=2+δ for some c1 < δ < c2=2, then the oracle property
holds even for p = o{exp.n.δ−c1/=2/}. Therefore, the local oracle property holds for the non-
convex penalized SVM even when the number of covariates grows exponentially with the sample
size.

3.3. An algorithm with provable convergence to the oracle estimator
Theorem 2 indicates that one of the local minimizers has the oracle property. However, there
can potentially be multiple local minimizers and it remains challenging to identify the oracle
estimator. In the high dimensional setting, assuming that the local minimizer is unique would
not be realistic.

In this paper, instead of assuming the uniqueness of solutions, we work directly on the con-
ditions under which the oracle estimator can be identified by some numerical algorithms that
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solve the non-convex penalized SVM objective function. One possible algorithm is the LLA
algorithm that was proposed by Zou and Li (2008). We focus on theoretical development first in
this section and delay the detailed LLA algorithm for the non-convex penalized SVMs to Section
4. Recently the LLA has been shown to be capable of identifying the oracle estimator in the set-
up of folded concave penalized estimation with a differentiable loss function (Wang et al., 2013;
Fan et al., 2014). We generalize their results to non-differentiable loss functions, so that they
can fit in the framework of the non-convex penalized SVMs. Similarly to their work, the main
condition required is the existence of an appropriate initial estimator inputted in the iterations
of the LLA algorithm. Denote the initial estimator as β̃

.0/
. Intuitively, if the initial estimator β̃

.0/

lies in a small neighbourhood of the true value β0, the algorithm should converge to the good
local minimizer around β0. This localizability will be formalized in terms of L∞-distance later.
With such an appropriate initial estimator, under the aforementioned regularity conditions, one
can prove that the LLA algorithm converges to the oracle estimator with probability tending
to 1 even in ultrahigh dimensions.

Let β̃
.0/ = .β̃

.0/

0 , : : : , β̃
.0/

p /T. Consider the following events:

(a) Fn1 ={|β̃.0/

j −β0j|>λ, for some 1� j �p};
(b) Fn2 ={|β0j|<.a+1/λ, for some 1� j �q};
(c) Fn3 ={for all subgradients s.β̂/, |sj.β̂/|>.1−1=a/λ for some q+1� j �p or |sj.β̂/| �=0

for some 0� j �q};
(d) Fn4 ={|β̂j|<aλ, for some 1� j �q}.

Denote the corresponding probability as Pni =Pr.Fni/, i=1, 2, 3, 4: Pn1 represents the localiz-
ability of the problem. When we have an appropriate initial estimator, we expect Pn1 to converge
to 0 as n→∞. Pn2 is the probability that the true signal is too small to be detected by any method.
Pn3 describes the behaviour of the subgradients at the oracle estimator. As stated in theorem 1,
there is a subgradient such that its components corresponding to irrelevant variables are near
0 and those corresponding to relevant variables are exactly 0, so Pn3 cannot be too large. Pn4
is concerned with the magnitude of the oracle estimator on relevant variables. Under regularity
conditions, the oracle estimator will detect the true signals and hence Pn4 will be very small.

Now we provide conditions for the LLA algorithm to find the oracle estimator β̂ in the
non-convex penalized SVMs based on Pn1, Pn2, Pn3 and Pn4.

Theorem 3. With probability at least 1−Pn1 −Pn2 −Pn3 −Pn4, the LLA algorithm initiated
by β̃

.0/
finds the oracle estimator β̂ after two iterations. Furthermore, if conditions 1–8

hold, λ= o.n−.1−c2/=2/ and log.p/q log.n/n−1=2 = o.λ/, then Pn2 → 0, Pn3 → 0 and Pn4 → 0
as n→∞.

The first part of theorem 3 provides a non-asymptotic lower bound on the probability that the
LLA algorithm converges to the oracle estimator. As we shall show in Appendix A, if none of
the events Fni happen, the LLA algorithm initiated with β̃

.0/
will find the oracle estimator in the

first iteration, and in the second iteration it will find the oracle estimator again and thus claim
convergence. Only a single correction is required in the first iteration and the second iteration is
needed to stop the algorithm. Therefore, the LLA algorithm can identify the oracle estimator
after two iterations and this result holds generally without conditions 1–8.

The second part of theorem 3 indicates that, under conditions 1–8, the lower bound is deter-
mined only by the limiting behaviour of the initial estimator. As long as an appropriate initial
estimator is available, the problem of selecting the oracle estimator from potential multiple local
minimizers is addressed. Let β̂

L1 be the solution to the L1-penalized SVM. When the initial
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estimator β̃
.0/

is taken to be β̂
L1 and the following condition 9 holds, by theorem 3 the oracle

estimator can be identified even in the ultrahigh dimensional setting. The result is summarized
in the following corollary.

Condition 9. Pr.|β̂L1
j −β0j|>λ, for some 1� j �p/→0 as n→∞.

Corollary 1. Let β̂.λ/ be the solution found by the LLA algorithm initiated by β̂
L1 after two

iterations. Assume that the same conditions in theorem 3 and condition 9 hold; then

Pr{β̂.λ/= β̂}→1 as n→∞:

In the ultrahigh dimensional case, we may require more stringent conditions to guarantee
condition 9. For the non-convex penalized least square regression, one can use the lasso solution
(Tibshirani, 1996) as the initial estimator and condition 9 holds if one can further assume the
restricted eigenvalue condition of the design matrix (Bickel et al., 2009). However, it is still
largely unknown whether this conclusion also applies to the setting where both the loss and the
penalty are non-differentiable. Without imposing any new regularity conditions, we next prove
that, in the moderately high dimensions with p=o.

√
n/, the solution to the L1-penalized SVM

satisfies condition 9 under conditions that are quite similar to 1–8.
The following regularity conditions are modified from 1–8. Conditions 3 and 7 and 8 are the

same as aforementioned.

Condition 1′. The densities of XÅ given Y =1 and Y =−1 are continuous and have a common
support in Rp.

Condition 2′. E[X2
j ] <∞ for 1� j �p.

Condition 3′. pn =O.nc1/ for some 0� c1 < 1
2 .

Condition 5′. There is a constant M1 >0 such that λmax.n−1XTX/�M1. It is further assumed
that max1�i�n ‖Xi‖=Op{√

pn log.n/}, .Xi, Yi/ are in general position (Koenker (2005), section
2.2) and Xij are sub-Gaussian random variables for 1� i�n, qn +1� j �pn.

Condition 6′. λmin{H.β0/}�M3 for some constant M3 > 0.

Under the new regularity conditions, we can conclude that the solution to the L1-penalized
SVM is an appropriate initial estimator. Combined with theorem 3, the LLA algorithm initiated
with a zero vector can identify the oracle estimator with one more iteration. The results are
summarized in the following theorem.

Theorem 4. Assume that β̂
L1 is the solution to the L1-penalized SVM with tuning parameter

cn. If the modified conditions hold, λ=o.n−.1−c2/=2/, p log.n/n−1=2 =o.λ/ and cn =o.n−1=2/,
then we have Pr.|β̂L1

j −β0j|>λ, for some 1 � j �p/→ 0 as n→∞. Further, the LLA algo-
rithm initiated by β̂

L1 finds the oracle estimator in two iterations with probability tending
to 1. i.e. Pr{β̂.λ/= β̂}→1 as n→∞.

Theorem 4 can guarantee that the LLA algorithm initialized by the β̂
L1 identifies the oracle

estimator with high probability only when p=o.
√

n/. However, our empirical studies suggest
that, even for cases with p much larger than n, the LLA algorithm initiated by β̂

L1 usually
converges within two iterations and the local minimizer identified has acceptable performance.

4. Implementation and tuning

To solve the non-convex penalized SVMs, we use the LLA algorithm. More explicitly, we start
with an initial value {β̃

.0/
: β̃

.0/

j =0, j =1, 2, : : : , p}. At each step t �1, we update by solving
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min
β

{
n−1

n∑
i=1

Wi.1−YiXT
i β/+ +

p∑
j=1

p′
λ.|β̃.t−1/

j |/|βj|
}

, .6/

where p′
λ.·/ denotes the derivative of pλ.·/. Following the literature, when β̃

.t−1/

j = 0, we take
p′

λ.0/ as p′
λ.0+/ =λ. The LLA algorithm is an instance of the majorize–minimize algorithm

and converges to a local minimizer of the non-convex objective function.
With slack variables, the convex optimization problem (6) can be easily recast as a linear

programming problem

min
ξ,η,β

{
n−1

n∑
i=1

Wiξi +
p∑

j=1
p′

λ.|β̃.t−1/

j |/ηj

}

subject to

ξi �0, i=1, 2, : : : , n,

ξi �1−YiXT
i β, i=1, 2, : : : , n,

ηj �βj, ηj �−βj, j =1, 2, : : : , p:

We propose to use the stopping rule that p′
λ.|β̃.t−1/

j |/ stabilizes for j =1, 2, : : : , p, namely when
Σp

j=1{p′
λ.|β̃.t−1/

j |/−p′
λ.|β̃.t/

j |/}2 is sufficiently small.
For the choice of tuning parameter λ, Claeskens et al. (2008) suggested the SVM information

criterion SVMIC which, for a subset S of {1, 2, : : : , p}, is defined as

SVMIC.S/=
n∑

i=1
ξi + log.n/|S|,

where |S| is the cardinality of S and ξi, i= 1, 2, : : : , n, denote the corresponding optimal slack
variables. This criterion directly follows the spirit of the Bayesian information criterion BIC by
Schwarz (1978). Chen and Chen (2008) showed that BIC can be too liberal when the model
space is large and proposed the extended BIC

EBICγ.S/=−2 logLikelihood+ log.n/|S|+2γ

(
p

|S|
)

, 0�γ �1:

By combining these ideas, we suggest the SVM-extended BIC

SVMICγ.S/=
n∑

i=1
2Wiξi + log.n/|S|+2γ

(
p

|S|
)

, 0�γ �1:

Note that SVMICγ reduces to SVMIC when γ =0 and w =0:5. We use γ =0:5 as suggested by
Chen and Chen (2008) and choose the λ that minimizes SVMICγ .

5. Simulation and real data examples

We carry out Monte Carlo studies to evaluate the finite sample performance of the non-convex
penalized SVMs. We compare the performance of the SCAD-penalized SVM, MCP-penalized
SVM, standard L2-SVM, L1-penalized SVM, adaptively weighted L1-penalized SVM (Zou,
2007) and hybrid Huberized SVM (Wang et al., 2008) (denoted by SCAD-svm, MCP-svm,
L2-svm, L1-svm, Adap L1-svm and Hybrid-svm respectively) with weight parameter w = 0:5.
The main interest here is the ability to identify the relevant covariates and the control of test
error when p>n.
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5.1. Simulation study
We consider two data generation processes. The first, which is adapted from Park et al. (2012),
is essentially a standard linear discriminant analysis setting. The second is related to probit
regression.

(a) Model 1: Pr.Y = 1/ = Pr.Y = −1/ = 0:5, XÅ|.Y = 1/ ∼ MN.μ,Σ/, XÅ|.Y = −1/ ∼
MN.−μ,Σ/, q = 5, μ = .0:1, 0:2, 0:3, 0:4, 0:5, 0, : : : , 0/T ∈ Rp, Σ = .σij/ with non-zero
elements σii = 1 for i = 1, 2, : : : , p and σij = ρ = −0:2 for 1 � i �= j � q. The Bayes rule
is sgn(2.67 X1 +2:83X2 +3X3 +3:17X4 +3:33X5) with Bayes error 6.3%.

(b) Model 2: XÅ ∼MN.0p,Σ/, Σ= .σij/ with non-zero elements σii =1 for i=1, 2, : : : , p and
σij = 0:4|i−j| for 1 � i �= j �p, Pr.Y = 1|XÅ/=Φ{.XÅ/TβÅ} where Φ.·/ is the cumulative
density function of the standard normal distribution, βÅ = .1:1, 1:1, 1:1, 1:1, 0, : : : , 0/T

and q=4. The Bayes rule is sgn(X1 +X2 +X3 +X4) with Bayes error 10.4%.

We consider various .n, p/ settings for each data generation process with p much larger
than n. Similarly to Mazumder et al. (2011), an independent tuning data set of size 10n is
generated to tune any regularization parameter for all methods by minimizing the estimated
prediction error calculated over the tuning data set. We also report the performance of the
SCAD- and MCP-penalized SVMs by using SVMICγ to select the tuning parameter λ. Tun-
ing by a large independent tuning data set of 10n approximates the ideal ‘population tuning’,
which is usually not available in practice. By giving all the other methods the best possible
tuning, we are controlling the effect of tuning parameter selection and being conservative
about the performance of the non-convex penalized SVMs tuned by SVMICγ . As we shall
see later, the results of SCAD- and MCP-penalized SVMs by using the independent tuning
data set are slightly better than the corresponding results by using SVMICγ tuning; and all
other methods have no ability to select the correct model exactly, even with an unrealistically
good tuning parameter. The range of λ is {2−6, : : : , 23}. We use a= 3:7 for the SCAD penalty
and a=3 for the MCP as suggested in the literature. We generate an independent test data set
of size n to report the estimated test error. The columns ‘Signal’ and ‘Noise’ summarize the
average number of selected relevant and irrelevant covariates respectively. The numbers in the
‘Correct’ column summarize the percentages of selecting the exactly true model over replica-
tions.

Table 1 shows the results for model 1 for various .n, p/ settings. The numbers in parentheses
are the corresponding standard errors based on 100 replications. When tuned by using an
independent tuning set of size 10n, both SCAD- and MCP-penalized SVMs identify more
relevant variables than any other methods and they also reduce the number of falsely selected
variables dramatically. When tuned by SVMICγ , SCAD- and MCP-penalized SVMs select
slightly fewer signals when n = 100, but this is based on the fact that other methods select a
much larger model without proper control of noise. A large proportion of the missed relevant
covariates are from X1 as it has the weakest signal. Note that SVMICγ performs almost the same
as population tuning when n is relatively large. In general, the non-convex penalized SVMs have
an overwhelmingly high probability of selecting the exact true mode as n and p increase, whereas
other methods show very weak, if any, ability to recover the exact true model. This is consistent
with our theory of the asymptotic oracle property of non-convex penalized SVMs. The test errors
of SCAD- and MCP-penalized SVMs are uniformly smaller than those of any other method in
all settings, even in the settings with a small sample size n=100 and tuned by SVMICγ , where
they select slightly fewer signals. This is because, in high dimensional classification problems, a
large number of falsely selected variables will greatly blur the prediction power of the relevant
variables.
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Table 1. Simulation results for model 1

Method n p Signal Noise Correct Test error
(%) (%)

SCAD-svm 100 400 4.94 (0.03) 0.89 (0.19) 64 8.71 (0.4)
100 800 4.93 (0.03) 0.93 (0.14) 51 9.39 (0.4)
200 800 5.00 (0.00) 0.09 (0.05) 96 7.20 (0.2)
200 1600 5.00 (0.00) 0.07 (0.04) 96 7.24 (0.2)

MCP-svm 100 400 4.90 (0.04) 0.88 (0.17) 53 8.96 (0.4)
100 800 4.92 (0.03) 1.37 (0.20) 40 10.59 (0.5)
200 800 5.00 (0.00) 0.06 (0.04) 97 7.30 (0.2)
200 1600 5.00 (0.00) 0.09 (0.03) 92 6.79 (0.2)

SCAD-svm.SVMICγ / 100 400 4.64 (0.08) 0.48 (0.11) 64 10.32 (0.6)
100 800 4.63 (0.09) 0.57 (0.09) 52 11.68 (0.7)
200 800 5.00 (0.00) 0.03 (0.02) 97 7.24 (0.2)
200 1600 4.99 (0.01) 0.05 (0.03) 95 7.23 (0.2)

MCP-svm.SVMICγ / 100 400 4.46 (0.10) 0.44 (0.08) 45 11.81 (0.6)
100 800 4.34 (0.11) 0.68 (0.11) 38 13.13 (0.7)
200 800 5.00 (0.00) 0.09 (0.03) 92 7.34 (0.2)
200 1600 5.00 (0.00) 0.06 (0.03) 95 7.19 (0.2)

L1-svm 100 400 4.87 (0.05) 32.97 (1.47) 0 16.08 (0.5)
100 800 4.63 (0.07) 44.34 (2.18) 0 19.71 (0.6)
200 800 5.00 (0.00) 21.33 (1.70) 0 9.59 (0.3)
200 1600 4.99 (0.01) 33.37 (0.96) 0 10.88 (0.3)

Hybrid-svm 100 400 4.78 (0.05) 24.74 (1.37) 0 16.34 (0.5)
100 800 4.62 (0.06) 27.16 (1.30) 0 19.93 (0.6)
200 800 5.00 (0.00) 12.86 (0.99) 0 9.93 (0.2)
200 1600 4.99 (0.01) 10.85 (0.98) 0 10.53 (0.3)

Adap L1-svm 100 400 4.39 (0.08) 13.14 (0.90) 0 16.76 (0.5)
100 800 3.99 (0.08) 12.50 (0.69) 0 20.19 (0.6)
200 800 4.86 (0.04) 3.93 (0.25) 1 10.04 (0.3)
200 1600 4.49 (0.06) 1.01 (0.09) 4 13.43 (0.4)

L2-svm 100 400 5.00 (0.00) 395.00 (0.00) 0 39.23 (0.5)
100 800 5.00 (0.00) 795.00 (0.00) 0 42.99 (0.5)
200 800 5.00 (0.00) 795.00 (0.00) 0 39.22 (0.3)
200 1600 5.00 (0.00) 1595.00 (0.00) 0 42.50 (0.4)

Table 2 shows the results for model 2 for n = 250 and p = 800. The numbers in parentheses
are the corresponding standard errors based on 200 replications. We observe similar perfor-
mance patterns in terms of both variable selection and prediction error. Because of the higher
correlation between signal and noise, in model 2 it is generally more difficult to select the rele-
vant covariates. Both SCAD- and MCP-penalized SVMs still have a reasonable performance in
identifying the underlying true model and result in more accurate prediction. Note that under
this data generation process the adaptively weighted L1-penalized SVM behaves similarly to
non-convex penalized SVMs, though its oracle property is largely unknown.

5.2. Real data application
We next use a real data set to illustrate the performance of the non-convex penalized SVM.
This data set is part of the ‘MicroArray quality control II’ project, which is available from the
gene expression omnibus database with accession number GSE20194. It contains 278 patient
samples from two classes: 164 have positive oestrogen receptor status and 114 have negative
oestrogen receptor status. Each sample is described by 22283 genes.
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Table 2. Simulation results for model 2 with nD250 and pD800

Method Signal Noise Correct Test error
(%) (%)

SCAD-svm 3.99 (0.01) 0.26 (0.08) 92.5 11.4 (0.1)
MCP-svm 3.99 (0.01) 0.17 (0.07) 93.5 11.3 (0.1)
SCAD-svm.SVMICγ / 3.96 (0.02) 0.05 (0.02) 94 11.5 (0.1)
MCP-svm.SVMICγ / 3.98 (0.01) 0.07 (0.02) 92.5 11.4 (0.1)
L1-svm 4.00 (0.00) 6.84 (0.42) 7.5 12.4 (0.1)
Hybrid-svm 4.00 (0.00) 4.03 (0.41) 10.5 11.9 (0.1)
Adap L1-svm 4.00 (0.00) 2.90 (0.28) 38 11.8 (0.1)
L2-svm 4.00 (0.00) 796.00 (0.00) 0 32.5 (0.2)

Table 3. Classification error of the gene data set

Method Test error (%) Genes

SCAD-svm 9.8 (0.2) 2.06 (0.43)
MCP-svm 9.6 (0.2) 1.04 (0.02)
L1-svm 10.9 (0.2) 28.74 (1.36)
Adap L1-svm 13.1 (0.2) 34.30 (1.03)
Hybrid-svm 10.0 (0.1) 1391.60 (94.86)
L2-svm 10.8 (0.2) 3000.00 (0.00)

The original data have been standardized for each predictor. To reduce the computational
burden, only the 3000 genes with largest absolute values of the two sample t-statistics are used.
Such simplification has been considered in Cai and Liu (2011). Though only 3000 genes are
used, the classification result is satisfactory. We randomly split the data into an equally balanced
training set with 50 samples with positive oestrogen receptor status and 50 samples with negative
oestrogen receptor status, and the rest were designated as the test set. As in the simulation study,
we use a=3:7 for the SCAD penalty and a=3 for the MCP penalty. To obtain a fair comparison,
a fivefold cross-validation is implemented on the training set to select a tuning parameter by a
grid search over {2−15, : : : , 23} for all methods and the test error is calculated on the test data.
This procedure was repeated 100 times.

Table 3 summarizes the average classification error and number of genes selected. The numbers
in parentheses are the corresponding standard errors based on 100 replications. Non-convex
penalized SVMs achieve a significantly lower test error than all the other methods except for the
doubly penalized hybrid SVM. Although the doubly penalized hybrid SVM performs similarly
to SCAD- and MCP-penalized SVMs in terms of test error, it selects a much more complex
model in general. In addition, the number of genes selected by non-convex penalized SVMs is
stable, whereas the model size that is selected by hybrid SVMs ranges from 102 genes to 2576
genes across the 100 replications. Such stability is desirable, so the procedure is robust to the
random partition of the data. The numerical results confirm that SCAD- and MCP-penalized
SVMs can achieve both promising prediction power and excellent gene selection ability.

6. Discussion

In this paper we study the non-convex penalized SVMs with a diverging number of covariates
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in terms of variable selection. When the true model is sparse, under some regularity conditions,
we prove that it enjoys the oracle property, i.e. one of the local minimizers of the non-convex
penalized SVM behaves like the oracle estimator as if the true sparsity is known in advance and
only the relevant variables are used to form the decision boundary. We also show that, as long
as we have an appropriate initial estimator, we can identify the oracle estimator with probability
tending to 1.

6.1. Connection to Bayes rule
In this paper, the true model and the oracle property are built on β0, which is the minimizer of
the population version of the hinge loss. This definition has a strong connection to the Bayes rule,
which is theoretically optimal if the underlying distribution is known. In the equal weight case
(w = 1

2 ), the Bayes rule is given by sgn.XTβBayes/ with βBayes = arg minβ E[I{sgn.XTβ/ �= Y}]:
To appreciate the connection, we first note that βBayes and β0 are equivalent to each other in the
important special case of Fisher linear discriminant analysis. Indeed, consider an informative
example setting with π+ =π− = 1

2 , XÅ|.Y =1/∼N.μ+,Σ/ and XÅ|.Y =−1/∼N.μ−,Σ/, where
μ+ and μ− denote different mean vectors for two classes and Σ a same variance–covariance
matrix. It is known that in this case the Bayes rule boundary is given by

.μ+ −μ−/TΣ−1{xÅ − 1
2 .μ+ +μ−/}=0:

β0 as the minimizer of the population hinge loss satisfies the gradient condition

S.β0/=−E{I.1−YXTβ0 �0/YX}=0,

which is equivalent to the equations

Pr.1−XTβ0 �0|Y =1/=Pr.1+XTβ0 �0|Y =−1/,

E{I.1−XTβ0 �0/XÅ|Y =1}=E{I.1+XTβ0 �0/XÅ|Y =−1}: .7/

For any βÅ
0,⊥ that satisfies .βÅ

0 /TΣβÅ
0,⊥ = 0, .XÅ/TβÅ

0 and .XÅ/TβÅ
0,⊥ are conditionally inde-

pendent given Y and thus we can decompose the conditional expectation in equation (7) into
two parts. It can be seen from equation (7) that

β00 =− 1
2 βÅT

0 .μ+ +μ−/,

.μ+ −μ−/TβÅ
0,⊥ =0, ∀βÅ

0,⊥satisfying βÅT
0 ΣβÅ

0,⊥ =0,

i.e. μ+ −μ− lies in the space that is spanned by ΣβÅ
0 . The decision boundary defined by the

true value is then

xTβ0 ≡C.μ+ −μ−/TΣ−1{xÅ − 1
2 .μ+ +μ−/}=0

for some constant C. Therefore, the Bayes rule is equivalent to β0.
In more general settings, βBayes and β0 may not be the same. However, Lin (2000) showed

that the non-linear SVM approaches the Bayes rule in a direct fashion, and its expected misclas-
sification rate quickly converges to that of the Bayes rule even though its extension to a linear
SVM is largely unknown. Furthermore, denote R.f/ and R0.f/ to be the risk in terms of the
0–1 loss and hinge loss respectively, for any measurable f , i.e. R.f/=E.I[sgn{f.X/} �=Y ]/ and
R0.f/ = E{.1 − Y f.X//+}. It is known that minimizing R.f/ directly is very difficult because
minimizing the empirical 0–1 loss is infeasible in practice (Bartlett et al., 2006). Instead, we can
always shift the target from the 0–1 loss to a convex surrogate such as the hinge loss. Assume that
the minimizers of R.f/ and R0.f/ are both linear functions, and by definition they are XTβBayes
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and XTβ0 respectively. By theorem 1 of Bartlett et al. (2006), we have the optimal excess risk
upper bound

R.XTβ/−R.XTβBayes/�R0.XTβ/−R0.XTβ0/

for any β. Hence pursuing the oracle property on β0 has the potential to control the excess
risk efficiently. As can be seen in this paper, the main advantages of working with the hinge loss
instead of the 0–1 loss are the theoretical tractability and convenience in practical implementa-
tion.

6.2. Other issues
As one referee pointed out, the objective function (2) in the definition of our oracle estimator is
piecewise linear and may have multiple minimizers. The same issue applies to the L1-penalized
SVM and the non-convex penalized SVM. On the basis of our theoretical development, non-
uniqueness of the minimizer of function (2) is not essential. When the minimizer is not unique,
our theoretical results still hold for any particular minimizer. In this sense, we can first use
the non-convex penalized SVM to identify important predictors. In the next step, to obtain a
unique classifier, a refitting can be applied by using the standard L2-penalized SVM on those
identified important predictors. For model 1 in Section 5.1, we considered this refitting. This
additional refitting step does not lead to much improvement: it reduces the average test errors
in some settings but not in others. Thus the refitting result is not reported here.

An alternative approach to deal with this non-uniqueness is to consider a joint penalty by using
both a non-convex penalty and a standard L2-penalty. The objective function then becomes

n−1
n∑

i=1
Wi.1−YiXT

i β/+ +
pn∑

j=1
pλ1n

.|βj|/+
pn∑

j=1
λ2nβ

2
j

for two different tuning parameters λ1n and λ2n. The corresponding oracle estimator is then
defined as the minimizer of the objective function for the standard L2-SVM by using only the
relevant covariates. One advantage of this joint penalty formulation over the method that is
proposed in this paper is that the uniqueness of the oracle estimator is guaranteed in the finite
sample case. However, it involves simultaneously selecting two tuning parameters, and this may
not be convenient in practice. We conduct a simple numerical experiment using model 1 in
Section 5.1 with n = 200 and p = 600 or p = 800. The simulation results are summarized in
Table 4. As shown in Table 4, our numerical example suggests that the performance of this joint
penalty method is similar to the approach that is proposed in this paper.

Several issues remain unsolved. In this paper we study only the SVMs in non-separable
cases in the limit. Although the non-separable cases are important in practical applications,

Table 4. Comparision between SCAD and joint penalized SVMs by using model 1

Method p Signal Noise Correct Test error
(%) (%)

SCAD-svm 600 5.00 (0.00) 0.17 (0.07) 93 7.04 (0.2)
800 5.00 (0.00) 0.13 (0.06) 93 7.25 (0.2)

Joint SCAD + L2-svm 600 5.00 (0.00) 1.22 (0.28) 65 7.12 (0.2)
800 5.00 (0.00) 2.64 (0.62) 50 7.10 (0.2)



Variable Selection for Support Vector Machines 69

it would be interesting to show similar results for separable cases. The asymptotic analysis
of separable cases requires the positiveness of the limit of the regularization term, which is
different from the analysis in this paper. Another issue is the availability of an appropriate
initial estimator in ultrahigh dimensions. Our empirical studies suggest that the L1-penalized
SVM provides a reasonable initial estimator and the LLA algorithm converges very quickly even
for cases with p>>n. However, it still lacks theoretical justification since our theorem 4 provides
theoretical support in only moderately high dimensions with p=o.

√
n/. One could try to extend

the work of Bickel et al. (2009) by assuming similar types of restricted eigenvalues conditions.
This extension would require new techniques because both the loss function and the penalty are
non-differentiable and the non-smooth locations are different in L1-penalized SVMs, whereas
the set-up in Bickel et al. (2009) is a smooth loss function with a non-smooth penalty.
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Appendix A

We first prove lemma 1.

A.1. Proof of lemma 1
Let l.β1/ = n−1 Σn

i=1Wi.1 − YiZT
i β1/+. Note that β̂1 = arg minβ1 l.β1/. We shall show that, when ∀η > 0,

there is a constant Δ such that, for all n sufficiently large, Pr[inf ||u||=Δ l{β01 +√
.q=n/u}> l.β01/]�1−η.

Because l.β1/ is convex, with probability at least 1−η, β̂1 is in the ball {β1 : ||β1 −β01||�Δ
√

.q=n/}. De-
note Λn.u/=nq−1[l{β01 +√

.q=n/u}− l.β01/]. Observe that E{Λn.u/}=nq−1[L{β01 +√
.q=n/u}−L.β01/].

Recall also that β0 = arg minβ E{W.1 − YXTβ/}. If we restrict the last p − q elements to be 0, it can be
easily seen that β01 = arg minβ1 E{W.1 − YZTβ1/} = arg minβ1 L.β1/; thus S.β01/ = 0. By Taylor series
expansion of L.β1/ around β01, we have E{Λn.u/} = 1

2 uTH.β̃/u + op.1/, where β̃ = β01 + √
.q=n/tu for

some 0 < t < 1. As shown in Koo et al. (2008), for 0 � j, k � q, the (j, k)th element of the Hessian ma-
trix H.β01/ is continuous given condition 1 and 2; thus H.β/ is continuous. By continuity of H.β/ at β01,
then 1

2 uTH.β̃/u= 1
2 uTH.β01/u+o.1/ as n→∞. Define Wn =−Σn

i=1 ζiWiYiZi where ζi =I.1−YiZT
i β01 �0/.

Recall that S.β01/=−E.ζiWiYiZi/=0. If we define

Ri,n.u/=Wi

(
1−YiZT

i

(
β01 +

√
q√
n

u
))

+
−Wi.1−YiZT

i β01/+ + ζiWiYiZT
i

√
.q=n/u

then we have

Λn.u/=E{Λn.u/}+WT
n u=

√
.qn/+q−1

n∑
i=1

[Ri,n.u/−E{Ri,n.u/}]: .8/

Then similarly to equation (28) in Koo et al. (2008) we have

q−2
n∑

i=1
E[|Ri,n.u/−E{Ri,n.u/}|2]�CΔ2 E[q−1.1+‖Z‖2/U{√

.1+‖Z‖2/Δ
√

.q=n/}],

where U.t/= I.|1 −YiZT
i β01|< t/. Condition 2 implies that E{q−1.1 +‖Z‖2/}<∞. Hence, for any " > 0,

we can choose a positive constant C such that E[q−1.1+‖Z‖2/ I{q−1.1+‖Z‖2/>C}] <"=2; then
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E[q−1.1+‖Z‖2/U{√
.1+‖Z‖2/Δ

√
.q=n/}]�E[q−1.1+‖Z‖2/ I{q−1.1+‖Z‖2/>C}]

+C Pr{|1−YiZT
i β01|<CΔ

√
.q=n/}:

We can take a large N such that Pr{|1 − YiZT
i β01| < CΔ

√
.q=n/} < "=.2C/ for all n > N by condition 4.

This proves that q−2 Σn
i=1 E[|Ri,n.u/−E{Ri,n.u/}|2]→0 as n→∞. Observe that E{WT

n u=
√

.qn/}=0, and

var{WT
n u=

√
.qn/}�Cn−1q−1

n∑
i=1

.ZT
i u/2 �Cq−1λmax.n−1XT

AXA/‖u‖2 →0

as n→∞. Therefore, the first term of equation (8) will dominate other terms as n→∞. By condition 6
we have 1

2 uTH.β01/u > 0. Thus we can choose a sufficiently large Δ such that Λn.u/ > 0 with probability
1−η for ‖u‖=Δ and all sufficiently large n.

The proof of theorem 1 relies on the following lemmas.

Lemma 2.

Pr
{

max
q+1�j�p

n−1

∣∣∣∣ n∑
i=1

WiYiXij I.1−YiZT
i β01 �0/

∣∣∣∣>λ=2
}

→0 as n→∞:

Proof. Recall that E{WiYiXij I.1−YiZT
i β01 �0/}=0. By condition 5 and lemma 14.9 of Bühlmann and

Van De Geer (2011), we have Pr{n−1|Σn
i=1 WiYiXij I.1−YiZT

i β01 �0/|>λ=2}� exp.−Cnλ2/. Note that

Pr
{

max
q+1�j�p

n−1

∣∣∣∣ n∑
i=1

WiYiXij I.1−YiZT
i β01 �0/

∣∣∣∣>λ=2
}

=Pr
{ ⋃

q+1�j�p

{
n−1

∣∣∣∣ n∑
i=1

WiYiXij I.1−YiZT
i β01 �0/

∣∣∣∣>λ=2
}}

�p exp.−Cnλ2/→0

as n→∞ by the fact that log.p/=o.nλ2/.

Lemma 3. For any Δ> 0,

Pr
[

max
q+1�j�p

sup
||β1−β01||�Δ

√
.q=n/

∣∣∣∣ n∑
i=1

WiYiXij{I.1−YiZT
i β1 �0/− I.1−YiZT

i β01 �0/

−Pr.1−YiZT
i β1 �0/+Pr.1−YiZT

i β01 �0/}
∣∣∣∣>nλ

]
→0

as n→∞.

Proof. We generalize an approach by Welsh (1989). We cover the ball {β1 : ‖β1 − β01‖ � Δ
√

.q=n/}
with a net of balls with radius Δ

√
.q=n5/. It can be shown that this net can be constructed with cardinality

N � dn4q for some d > 0. Denote the N balls by B.t1/, : : : , B.tN/, where tk, k = 1, : : : , N, are the centres.
Denote κi.β1/=1−YiZT

i β1, and

Jnj1 =
N∑

k=1
Pr
(∣∣∣∣ n∑

i=1
WiYiXij [I{κi.tk/�0}− I{κi.β01/�0}−Pr{κi.tk/�0}+Pr{κi.β01/�0}]

∣∣∣∣>nλ=2
)

,

Jnj2 =
N∑

k=1
Pr
(

sup
β̃1∈B.tk/

∣∣∣∣ n∑
i=1

WiYiXij [I{κi.β̃1/�0}− I{κi.tk/�0}−Pr{κi.β̃1/�0}+Pr{κi.tk/�0}]

∣∣∣∣>nλ=2
)

:

Then, by condition 5,

Pr

(
sup

||β1−β01||�Δ
√

.q=n/

∣∣∣∣∣ n∑
i=1

WiYiXij [I{κi.β1/�0}− I{κi.β01/�0}

−Pr{κi.β1/�0}+Pr{κi.β01/�0}]

∣∣∣∣∣>nλ

)
�Jnj1 +Jnj2:

To evaluate Jnj1, let Ui =WiYiXij [I{κi.tk/� 0}− I{κi.β01/� 0}− Pr{κi.tk/� 0}+ Pr{κi.β01/� 0}]. The
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Ui are independent mean 0 random variables, and var.Ui/=E.U2
i /=E.U2

i |Yi = 1/ Pr.Yi = 1/+E.U2
i |Yi =

−1/ Pr.Yi =−1/. Denote F and G the cumulative density function of the conditional distribution of ZTβ01
given Y =1 and Y =−1. Observe that

E.U2
i |Yi =1/�C.Fi{1+ZT

i .β01 − tk/}[1−Fi{1+ZT
i .β01 − tk/}]+Fi.1/{1−Fi.1/}

−2Fi[min{1+ZT
i .β01 − tk/, 1}]+2Fi.1/Fi{1+ZT

i .β01 − tk/}/

�C|ZT
i .tk −β01/|,

and it follows by condition 8 that

E.U2
i |Yi =−1/�C{Gi{−1+ZT

i .β01 − tk/}[1−Gi{−1+ZT
i .β01 − tk/}]+Gi.−1/{1−Gi.−1/}

−2.1−Gi[max{−1+ZT
i .β01 − tk/, −1}]/+2{1−Gi.−1/}[1−Gi{−1+ZT

i .β01 − tk/}]}
�C|ZT

i .tk −β01/|:
Thus we have

n∑
i=1

var.Ui/�nC max
i

‖Zi‖‖tk −β01‖=nO{√
q log.n/}O{√

.q=n/}=O{√
nq log.n/}:

Applying lemma 14.9 of Bühlmann and Van De Geer (2011), for some positive constants C1 and C2 under
the assumptions on the rate of λ,

Jnj1 �2N exp
{

− n2λ2=4
C1

√
nq log.n/+C2nλ

}
�C exp{4q log.n/−Cnλ}: .9/

To evaluate Jnj2, note that I.x� s/ is decreasing in s. Denote

Vi = [I{κi.β̃1/�0}− I{κi.tk/�0}−Pr{κi.β̃1/�0}+Pr{κi.tk/�0}]:

We have −Bi �Vi �Ai for any β̃1 ∈B.tk/, where

Ai = I{κi.tk/�−Δ
√

.q=n5/}− I{κi.tk/�0}−Pr{κi.tk/�Δ
√

.q=n5/}+Pr{κi.tk/�0},
Bi = I{κi.tk/�0}− I{κi.tk/�Δ

√
.q=n5/}−Pr{κi.tk/�0}+Pr{κi.tk/�−Δ

√
.q=n5/}:

Therefore, we have

Pr
(

sup
β̃1∈B.tk/

∣∣∣∣ n∑
i=1

WiYiXij [I{κi.β̃1/�0}− I{κi.tk/�0}−Pr{κi.β̃1/�0}+Pr{κi.tk/�0}]

∣∣∣∣>nλ=2
)

�Pr
(

C max
i

|Xij| sup
β̃1∈B.tk/

∣∣∣∣ n∑
i=1

Vi

∣∣∣∣>nλ=2
)

�Pr
{

C max
i

|Xij|max
(

n∑
i=1

Ai,
n∑

i=1
Bi

)
>nλ=2

}
by the fact that Ai > 0 and Bi > 0. Note that

n∑
i=1

Ai =
n∑

i=1
[I{κi.tk/�−Δ

√
.q=n5/}− I{κi.tk/�0}−Pr{κi.tk/�−Δ

√
.q=n5/}+Pr{κi.tk/�0}]

+
n∑

i=1
[Pr{κi.tk/�−Δ

√
.q=n5/}−Pr{κi.tk/�Δ

√
.q=n5/}]

and
n∑

i=1
[Pr{κi.tk/�−Δ

√
.q=n5/}−Pr{κi.tk/�Δ

√
.q=n5/}]

= [Fi{1+Δ
√

.q=n5/−ZT
i .β01 − tk/}−Fi{1−Δ

√
.q=n5/−ZT

i .β01 − tk/}] Pr.Yi =1/

+ [Gi{−1+Δ
√

.q=n5/−ZT
i .β01 − tk/}−Gi{−1−Δ

√
.q=n5/−ZT

i .β01 − tk/}] Pr.Yi =−1/

�Cn log.q/
√

.q=n5/
√

q=C log.q/qn−3=2

by condition 8. Denote
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Oi = [I{κi.tk/�−Δ
√

.q=n5/}− I{κi.tk/�0}−Pr{κi.tk/�−Δ
√

.q=n5/}+Pr{κi.tk/�0}]:

Thus, for sufficiently large n by λ=o.n−.1−c2/=2/ and condition 7, we have

N∑
k=1

Pr
(

C
n∑

i=1
Ai >nλ=2

)
�

N∑
k=1

Pr
{

C
n∑

i=1
Oi >nλ=2−C log.q/qn−3=2

}
�

N∑
k=1

Pr
(

C
n∑

i=1
Oi >nλ=4

)
:

Note that Oi are independent mean 0 random variables, and

E.O2
i /=E[I{κi.tk/�−Δ

√
.q=n5/}− I{κi.tk/�0}]2 �√

.q=n5/ max
i

‖Zi‖=Cq log.n/n−5=2,

using a similar idea to deriving the upper bound of E.U2
i /. Applying Bernstein’s inequality and the fact

that maxi |Xij|=Op{√
log.n/} for sub-Gaussian random variables, for some positive constant C1 and C2,

N∑
k=1

Pr
(

C max
i

|Xij|
n∑

i=1
Ai >

nλ

2

)
�N exp

{
− n2λ2=4

C1qn−3=2 log.n/3=2 +C2nλ

}
�C exp{4q log.n/−Cnλ}:

Similarly, we can prove that ΣN
k=1 Pr.C maxi |Xij|Σn

i=1Bi >nλ=2/�C exp{4q log.n/−Cnλ}. Therefore, we
have

Jnj2 �C exp{4q log.n/−Cnλ}: .10/

Using inequalities (9) and (10), then the probability of lemma 3 is bounded by
p∑

j=q+1
.Jnj1 +Jnj2/�C exp{log.p/+4q log.n/−Cnλ}→0 .11/

which completes the proof.
Now we prove Theorem 1.

A.2. Proof of theorem 1
The unpenalized hinge loss objective function is convex. By the convex optimization theorem, there exists
vÅ

i such that sj.β̂/=0, j =0, 1, : : : , q, with vi =vÅ
i .

Note that min1�j�q |β̂j| � min1�j�q |β0j| − max1�j�q |β̂j − β0j|. By condition 7 we have n.1−c2/=2 ×
min1�j�qn |β0j|�M1, and max1�j�q |β̂j −β0j|=Op{√

.q=n/} by theorem 1. Thus we have min1�j�q |β̂j|=
Op.n−.1−c2/=2/. By λ=o.n−.1−c2/=2/, we have Pr{|β̂j|� .a+ 1

2 /λ}→1 for j =0, 1, : : : , q.
By the definition of the oracle estimator, we have |β̂j| = 0, j = q + 1, : : : , p. It suffices to show that

Pr{|sj.β̂/| > λ, for somej = q + 1, : : : , p}→ 0. Let D = {i : 1 − YiZT
i β̂1 = 0}; then, for j = q + 1, : : : , p, we

have

sj.β̂/=−n−1
n∑

i=1
WiYiXijI.1−YiZT

i β̂1 �0/−n−1 ∑
i∈D

WiYiXij.vj −1/,

where −1�vi �0 if i∈D and vi =0 otherwise. By condition 5 .Zi, Yi/ are in general positions; with prob-
ability 1 there are exactly q+1 elements in D. Then by condition 4, with probability 1 |n−1Σi∈D WiYiXij.vj −
1/|=O{qn−1 log.q/}=o.λ/. Thus we need to show only that Pr{maxq+1�j�p |n−1 Σn

i=1 WiYiXij I.1−YiZT
i β̂1

�0/|>λ}→0. Observe that

Pr
{

max
q+1�j�p

∣∣∣∣n−1
n∑

i=1
WiYiXijI.1−YiZT

i β̂1 �0/

∣∣∣∣>λ

}
�Pr

[
max

q+1�j�p

∣∣∣∣n−1
n∑

i=1
WiYiXij{I.1−YiZT

i β̂1 �0/− I.1−YiZT
i β01 �0/}

∣∣∣∣>λ=2
]

+Pr
{

max
q+1�j�p

∣∣∣∣n−1
n∑

i=1
WiYiXij I.1−YiZT

i β01 �0/

∣∣∣∣>λ=2
}

: .12/

By lemma 1 the second term of inequality (12) is op.1/. From lemma 1, the first term of inequality (12) is
bounded by
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Pr
[

max
q+1�j�p

∣∣∣∣n−1
n∑

i=1
WiYiXij{I.1−YiZT

i β̂1 �0/− I.1−YiZT
i β01 �0/}

∣∣∣∣>λ=2
]

�Pr
[

max
q+1�j�p

sup
‖β1−β01‖�Δ

√
.q=n/

∣∣∣∣n−1
n∑

i=1
WiYiXij{I.1−YiZT

i β1 �0/− I.1−YiZT
i β01 �0/

−Pr.1−YiZT
i β1 �0/+Pr.1−YiZT

i β01 �0/}
∣∣∣∣>λ=4

]
+Pr

[
max

q+1�j�p
sup

‖β1−β01‖�Δ
√

.q=n/

∣∣∣∣n−1
n∑

i=1
WiYiXij{Pr.1−YiZT

i β1 �0/

−Pr.1−YiZT
i β01 �0/}

∣∣∣∣>λ=4
]
: .13/

By lemma 3, the first term of inequality (13) is op.1/. Thus we need to bound only the second term of
inequality (13). Note that

|Pr.1−YiZT
i β1 �0/−Pr.1−YiZT

i β01 �0/|� |Fi{1+ZT
i .β1 −β01/}−Fi.1/|Pr.Yi =1/

+|Gi{−1+ZT
i .β1 −β01/}−Gi.−1/|Pr.Yi =−1/:

Then we have

max
q+1�j�p

sup
‖β1−β01‖�Δ

√
.q=n/

∣∣∣∣n−1
n∑

i=1
WiYiXij{Pr.1−YiZT

i β1 �0/−Pr.1−YiZT
i β01 �0/}

∣∣∣∣
�C max

i,j
|Xij| sup

‖β1−β01‖�Δ
√

.q=n/

n−1
n∑

i=1
‖Zi‖‖β1 −β01‖=Op{√

log.pn/}O{√
.q=n/}Op{√

q log.n/}

=op.λ/:

Thus

Pr
[

max
q+1�j�p

sup
‖β1−β01‖�Δ

√
.q=n/

∣∣∣∣n−1
n∑

i=1
WiYiXij{Pr.1−YiZT

i β1 �0/−Pr.1−YiZT
i β01 �0/}

∣∣∣∣>λ=4
]

=op.1/,

which completes the proof.
Now we prove theorem 2.

A.3. Proof of theorem 2
We shall show that β̂ is a local minimizer of Q.β/ by writing Q.β/ as g.β/−h.β/.

By theorem 1, we have Pr{G ⊆ @g.β̂/}→1, where

G ={ξ= .ξ0, : : : , ξp/ : ξ0 =0; ξj =λ sgn.β̂/j , j =1, : : : , q; ξj = sj.β/+λlj , j =q+1, : : : , p},

where lj ∈ [−1, 1], j =q+1, : : : , p.
Consider any β in Rp+1 with centre β̂ and radius λ=2. It suffices to show that there exist ξÅ ∈G such

that Pr{ξÅ
j = @h.β/=@βj}→1 as n→∞.

Since @h.β/=@β0 =0, we have ξÅ
0 = @h.β/=@β0.

For j = 1, : : : , q, we have min1�j�q |βj| � min1�j�q |β̂j| − max1�j�q |β̂j − βj| � .a + 1
2 /λ − λ=2 = aλ

with probability 1 by theorem 1. Therefore by assumption 2 of the class of penalties Pr{@h.β/=@βj =
λ sgn.βj/}→1 for j =1, : : : , q. For sufficently large n, sgn.βj/= sgn.β̂j/. Thus we have Pr{ξÅ

j =@h.β/=@βj}
→1 as n→∞ for j =1, : : : , q.

For j = q + 1, : : : , p, we have Pr{|βj| � |β̂j| + |βj − β̂j| � λ} → 1 by theorem 1. Therefore we have
Pr{@h.β/=@βj =0}→1 for SCAD and Pr{@h.β/=@βj =−βj=a}→1 for the MCP. Observe that by assump-
tion 2 we have Pr{|@h.β/=@βj|�λ}→1 for the class of penalties. By lemma 1 we have Pr{|sj.β̂j/|�λ}→1
for j = q + 1, : : : , p. We can always find lj ∈ [−1, 1] such that Pr{ξÅ

j = sj.β̂/ + λlj = @h.β/=@βj} → 1 for
j =1, : : : , q, for both penalties. This completes the proof.

The proof of theorem 3 consists of two parts. First we shall show that the LLA algorithm initiated
by β̃.0/ gives the oracle estimator after one iteration. Then we shall show that, once the LLA algorithm
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has found the oracle estimator β̂, the LLA algorithm will find it again in the next iteration, i.e. the LLA
algorithm will converge.

A.4. Proof of theorem 3
Assume that none of the events Fni is true, for i=1, : : : , 4. The probability that none of these event is true
is at least 1−Pn1 −Pn2 −Pn3 −Pn4. Then we have

|β̃.0/

j |= |β̃.0/

j −β0j|�λ, q+1� j �p,

|β̃.0/

j |� |β0j|− |β̃.0/

j −β0j|�aλ, 1� j �q:

By assumption 2 of the class of non-convex penalties, we have p′
λ.|β̃.0/

j |/ = 0 for 1 � j � q. Therefore the
solution of the next iteration of β̃.1/ is the solution to the convex optimization

β̃
.1/ =arg min

β
n−1

n∑
i=1

Wi.1−YiXT
i β/+ + ∑

q+1�j�p

p′
λ.|β̃.0/

j |/ |βj|: .14/

By the fact the Fn3 is not true, there are some subgradients of oracle estimator s.β̂/ such that sj.β̂/=0 for
0� j �q and |sj.β̂/|<.1−1=a/λ for q+1� j �p. By the definition of subgradient, we have

n−1
n∑

i=1
Wi.1−YiXT

i β/+ �n−1
n∑

i=1
Wi.1−YiXT

i β̂/+ + ∑
0�j�p

sj.β̂/.βj − β̂j/

=n−1
n∑

i=1
Wi.1−YiXT

i β̂/+ + ∑
q+1�j�p

sj.β̂/.βj − β̂j/:

Then we have for any β{
n−1

n∑
i=1

Wi.1−YiXT
i β/+ + ∑

q+1�j�p

p′
λ.|β̃.0/

j |/|βj|
}

−
{

n−1
n∑

i=1
Wi.1−YiXT

i β̂/+ + ∑
q+1�j�p

p′
λ.|β̃.0/

j |/|β̂j|
}

� ∑
q+1�j�p

{p′
λ.|β̃.0/

j |/− sj.β̂/ sgn.βj/} |βj|�
∑

q+1�j�p

{.1−1=a/λ− sj.β̂/ sgn.βj/} |βj|�0:

The strict inequality holds unless βj = 0 for all q + 1 � j � p. Since we consider the non-separable case
that the oracle estimator is unique, we know that the oracle estimator is the unique minimizer of prob-
lem (14) and hence β̃.1/ = β̂. This proves that the LLA algorithm finds the oracle estimator after one
iteration.

In the case that Fn2 is not true, we have |β̂j| > aλ for all 1 � j � q. Hence by assumption 2 of the
class of penalties p′

λ.|β̂j|/ = 0 for all 1 � j � q and p′
λ.|β̂j|/ = p′

λ.0/ = λ for all q + 1 � j � p. Once the
LLA algorithm has found β̂, the solution to the next LLA iteration β̃.2/ is the minimizer of the convex
optimization problem

β̃
.2/ =arg min

β
n−1

n∑
i=1

Wi.1−YiXT
i β/+ + ∑

q+1�j�p

λ|βj|: .15/

Then we have for any β{
n−1

n∑
i=1

Wi.1−YiXT
i β/+ + ∑

q+1�j�p

λ|βj|
}

−
{

n−1
n∑

i=1
Wi.1−YiXT

i β̂/+ + ∑
q+1�j�p

λ|β̂j|
}

� ∑
q+1�j�p

{λ− sj.β̂/ sgn.βj/} |βj|�0,

and hence β̃
.2/ = β̂ is the unique minimizer of problem (15), i.e. the LLA algorithm finds the oracle estimator

again and stops.
As n→∞, by theorem 1 we have Pn2 →0 and Pn4 →0. The proof for Pn3 →0 is similar to the proof for

theorem 1 by changing the constant to 1−1=a.
Now we prove theorem 4.
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A.5. Proof of theorem 4
Let ‖·‖1 be the L1-norm of a vector. Denote ln.β/=n−1 Σn

i=1 Wi.1−YiXT
i β/+ + cn‖β‖1. Note that

E.np−1[ln{β0 +√
.p=n/u}− ln.β0/]/=E[np−1{W.1−YXT{β0 +√

.p=n/u}/+ −W.1−YXTβ0/+}]
+np−1cn{‖β0 +√

.p=n/u‖1 −‖β0‖1}
for some constant Δ that ‖u‖=Δ. Observe that ‖β0 +√

.p=n/u‖1 −‖β0‖1 �‖√.p=n/u‖1 =√
.p=n/‖u‖1. By

the fact that cn =o.n−1=2/, we have np−1cn{‖β0 +√
.p=n/u‖1 −‖β0‖1}→0 as n→∞. Then, similarly to the

proof of lemma 1, we can show that the expectation is dominated by 1
2 uTH.β0/u>0 and Pr[inf‖u‖ =Δ ln{β0 +√

.p=n/u} > ln.β0/] � 1 − η. Hence ‖β̂L1 − β0‖ = Op{√
.p=n/}. Because pn−1=2 = o.λ/, Pr.|β̂L1

j − β0j| >
λ, for some1 � j � p/ → 0 as n →∞. Then using theorem 1 and corollary 1 we have Pr{β̂.λ/ = β̂}→ 1,
which completes the proof.
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