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Abstract: The varying coefficient model has been popular in the literature. In this

paper, we propose a profile least squares estimation procedure for its regression co-

efficients when the random error is an auto-regressive (AR) process. We study the

asymptotic properties of the proposed procedure, and establish asymptotic normal-

ity for the resulting estimate. We show that the resulting estimate for the regression

coefficients has the same asymptotic bias and variance as the local linear estimate

for varying coefficient models with independent and identically distributed obser-

vations. We apply the SCAD variable selection procedure (Fan and Li (2001)) to

reduce model complexity of the AR error process. Numerical comparison and finite

sample performance of the resulting estimate are examined in Monte Carlo studies.

Our simulation results demonstrate the proposed procedure is more efficient than

the one ignoring the error correlation. The proposed methodology is illustrated by

a data example.

Key words and phrases: Auto-regressive error, profile least squares, SCAD, varying

coefficient model.

1. Introduction

Suppose that a random sample {(ut, xt1, . . . , xtp, yt), t = 1, . . . , n}, is col-

lected from the varying coefficient model

yt = α0(ut)xt0 + α1(ut)xt1 + · · ·+ αp(ut)xtp + εt, (1.1)

where α0(·), α1(·), . . . , αp(·) are unknown coefficient functions, and εt is the ran-

dom error. We set xt0 to be 1 to include the intercept α0(·). In practice, it is

common that data are collected over a period of time and are auto-correlated.

This paper is concerned with the varying coefficient model for data with auto-

regressive error εt.

The varying coefficient model was systematically introduced in Hastie and

Tibshirani (1993). The statistical estimation and inference procedures for varying

coefficient model with independent data or longitudinal data have been studied

intensively. See Fan and Zhang (2008) and references therein for details. More re-

cent developments can be found in Cheng, Zhang, and Chen (2009), Li and Zhang
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(2011) and references therein. Varying coefficient models have been proposed for

time series data. Cai, Fan, and Li (2000) proposed a local linear estimation pro-

cedure for functional-coefficient models with nonlinear time series, while Huang

and Shen (2004) developed an estimation procedure for the functional coefficient

models with nonlinear time series using a polynomial spline approach. Cai, Yao,

and Zhang (2001) proposed a local smoothed maximum likelihood estimator for

discrete time series data. Cai (2007) developed a local linear approach to esti-

mating the time trend and coefficient functions. In the absence of x-covariates,

the model reduces to a nonparametric model. Altman (1990) and Hart (1991)

studied a nonparametric model for time series error with ut = t/n (i.e., the fixed

design cases). When {ut} resumes from random design, Xiao et al. (2003) pro-

posed a prewhiting estimation procedure for the nonparametric model to deal

with correlation among the errors. Li and Li (2009) proposed an estimation for

nonparametric regression with AR error by using techniques related to partial

linear models.

In this paper, we study the varying coefficient model with a stationary AR

error process with order d. Thus, the model may be regarded as a semiparamet-

ric regression model. We propose a profile least squares estimation procedure

based on local linear regression techniques. The profile least squares estimator

can estimate the functional coefficients and autoregressive coefficients effectively.

We establish asymptotic normality for the resulting estimator of the coefficient

functions and autoregressive coefficients. The asymptotic bias and variance of

the resulting estimates for the coefficient functions are the same as those of local

linear estimate for the varying coefficient model with independent and identi-

cally distributed observations. We further extend the SCAD method (Fan and

Li (2001)) to reduce model complexity of the AR process. Monte Carlo simu-

lations are conducted to compare the proposed procedure with the one ignoring

the error correlation, under different sampling schemes. The simulation results

demonstrate that the newly proposed procedure significantly outperforms the

one ignoring the error correlation in moderate samples.

The rest of this paper is organized as follows. In Section 2, we propose

a new procedure to estimate the coefficients and to reduce model complexity

of the AR order. Monte Carlo simulations and applications are presented in

Section 3. Concluding remarks are presented in Section 4. Regularity conditions

and technical proofs are given in an online supplemental appendix.

2. Semi-Varying Coefficient Model and Estimation Procedure

Assume that εt is an AR series

εt = β1εt−1 + · · ·+ βdεt−d + ηt,
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where {ηt} is independent and identically distributed random error with mean

zero and variance σ2. Throughout, it is assumed that the covariate processes

{(ut, xt1, . . . , xtp) : t ≥ 1} are independent of both error processes {εt : t ≥ 1}
and {ηt : t ≥ 1}. The order d for the AR error model is fixed, but may be large,

and variable selection for the AR error will be discussed in next section. Thus,

the model can be written as

yt = α0(ut) + α1(ut)xt1 + · · ·+ αp(ut)xtp + β1εt−1 + · · ·+ βdεt−d + ηt. (2.1)

If the values for εt were available, then the coefficient functions αj(·)’s and

AR coefficients βj ’s may be obtained by directly using existing estimation pro-

cedures for semiparametric varying-coefficient partially linear models. See, for

example, Fan and Huang (2005) and Fan, Huang, and Li (2007). In practice, εt is

not available but may be estimated by ε̂t = yt−α̃0(ut)−α̃1(ut)xt1−· · ·−α̃p(ut)xtp,

where {α̃j(·), j = 0, . . . , p} is obtained pretending the errors are independent. In

this paper, we employ the local linear estimator α̃j to estimate αj(·). Detailed

implementation can be found in Fan and Zhang (1999).

For simplicity, write α(ut) = (α0(ut), · · · , αp(ut))
T ,Xt = (1, xt1, . . . , xtp)

T ,

and et = (ε̂t−1, · · · , ε̂t−d)
T . Replacing εt’s with ε̂t’s, model (2.1) becomes

yt ≈ α(ut)
TXt + eTt β + ηt, (2.2)

where β = (β1, . . . , βd)
T . In Section 2.1, we propose an estimation procedure for

α(·) and β based on (2.2). We further propose a variable selection procedure for

the AR series by using the penalized profile least squares method in Section 2.2.

2.1. An estimation procedure

There exist various estimation methods for (2.2). We use the profile least

squares estimation procedure proposed by Fan and Huang (2005) to estimate β

and α(·).
For given β, let y∗t = yt − eTt β for t = d+ 1, . . . , n. Then

y∗t =

p∑
j=0

αj(ut)xtj + ηt (2.3)

which is a varying coefficient model. We can employ local linear regression (Fan

and Gijbels (1996)) to estimate {αj(·), j = 0, . . . , p}. Specifically for a given u0,

we locally approximate the coefficient function as

αj(u) ≈ αj(u0) + α′
j(u0)(u− u0)=̂aj + bj(u− u0).

Let Kh(u) = h−1K(u/h) be a scaled kernel function of kernel K(·) with band-

width h. Local linear regression is used to estimate the local parameter {(aj , bj),
j = 0, . . . , p} via minimizing the weighted least squares function
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n∑
t=d+1

[y∗t −
p∑

j=0

{aj − bj(ut − u0)}xtj ]2Kh(ut − u0),

with respect to {(aj , bj), j = 0, . . . , p}. Denote the resulting estimate by {(âj , b̂j), j =
0, . . . , p}. Then, α̂j(u0) = âj , and α̂′

j(u0) = b̂j , for j = 0, . . . , p.

It is clear that the local linear estimate ofM = (α(ud+1)
TXd+1, · · · ,α(un)

TXn)

is linear in terms of y∗ = (y∗d+1, · · · , y∗n)T . Let M̂ be the estimator of M. Then

it can be represented as

M̂ = Shy
∗, (2.4)

where Sh is a (n− d)× (n− d) smoothing matrix depending on {ut,Xt} and the

bandwidth only.

Let E = (ed+1, . . . , en)
T and η = (ηd+1, . . . , ηn)

T . Then (2.2) can be written

in a matrix form

y = M+Eβ + η.

Substituting for M(ut,Xt) by M̂(ut,Xt), we obtain a synthetic linear regression

model

(I − Sh)y ≈ (I − Sh)Eβ + η,

where I is the identity matrix. Thus, the profile least squares estimators for β

and M are

β̂ = {ET (I − Sh)
T (I − Sh)E)−1ET (I − Sh)

T (I − Sh)y, (2.5)

M̂ = Sh(y−Eβ̂). (2.6)

Let µl =
∫
ulK(u) du and νl =

∫
ulK2(u) du. Theorem 1 states the asymp-

totic distribution of β̂ and the asymptotic bias and variance of α̂j(u0), j =

0, . . . , p.

Theorem 1. If Conditions A—H in the online supplemental appendix hold, the

following statements are valid.

(A) If f has the same distribution as that of ft = (εt−1, . . . , εt−d)
T and σ2 =

var(ηt), √
n(β̂ − β) → N(0, σ2{E(f fT )}−1).

(B) If α̂j(u0, β̂) stands for α̂j(u0) and g(u) is the density function of u,

√
nh{α̂j(u0, β̂)− αj(u0)−

1

2
µ2α

′′
j (u0)h

2} → N(0,
ν0σ

2

g(u0)
), j = 0, . . . , p.
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According to Fan and Huang (2005), σ2{E(f fT )}−1 is the semiparametric

efficiency bound for general varying coefficient partially linear model. In addition,

the asymptotic distribution of β̂ is the same as that of Yule-Walker estimator for

the AR model:

εt = β1εt−1 + · · ·+ βdεt−d + ηt.

(see Theorem 8.1.1 of Brockwell and Davis (1991)). Thus, Theorem 1 (A) implies

that β̂ is as efficient as if the one knew the true functional coefficients αj(·)’s in
advance. Theorem 1 (B) indicates that α̂j(·, β̂) shares the same asymptotic bias

and variance as those of the local linear regression for independent and identically

distributed observations.

2.2. Issues related to practical implementation

One needs to specify two bandwidths, one for initial estimate and one for

the profile least squares method, and has to specify the order of the AR error

model. We discuss these issues in this subsection.

Bandwidths selection. Following Cai, Fan, and Li (2000), we employ multi-

fold cross-validation to choose the bandwidths. We randomly partition the entire

data set into J subsets dj , j = 1, . . . , J , and use J − 1 data subsets to estimate

the functional coefficients. Denote the resulting estimate without data set dj by

α̃(−j)(·). The cross-validation score for bandwidth selection in the initial estimate

is defined to be

CV0(h) =
J∑

j=1

∑
t∈dj

{yt −XT
t α̃(−j)(ut)}2.

We minimize CV0(h) over a set of grid points to choose the optimal bandwidth

for the initial estimate. Similarly, we can define the cross-validation scores for

the profile least squares method. Denote the resulting estimate based on data

excluding dj-data subset by α̂(−j)(·) and β̂(−j). The cross-validation score of

bandwidth selection for the profile least squares estimate is defined to be

CV1(h) =

J∑
j=1

∑
t∈dj

{yt −XT
t α̂(−j)(ut)− eTt β̂(−j)}2.

We minimize this cross-validation score over a set of grid points to choose the

optimal bandwidth for the profile least squares estimate. It is typical to set J = 5

or 10 in practice.

Variable selection for the AR error model. Regarding model (1.1), we can

start from a large order AR model and establish an algorithm to reduce the model

complexity. Motivated by the variable selection mechanism in linear regression,

we add a penalty term to the squared loss function as:
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1

2

n∑
t=d+1

{yt−α0(ut)−α1(ut)xt1−· · ·−αp(ut)xtp−eTt β}2+n

d∑
j=1

pλj
(|βj |), (2.7)

where pλj
(·) is a penalty function with tuning parameter λj controlling the model

complexity. The tuning parameter can be selected by a data driven method. The
choice of λj will be discussed later.

With a proper choice of penalty function and λj , we expect to get some
exact zero estimates by minimizing (2.7) with respect to β. This is equivalent
to removing the corresponding terms from the original model. However, it is
challenging to minimize (2.7) directly because the functional coefficient αl(·) has
not been parameterized. Using the profile technique as introduced in the previous
section, we can substitute the functional part by a linear form of β and get the
profile least squared loss function

1

2
(y−ETβ)T (I − Sh)

T (I − Sh)(y−ETβ) + n

d∑
j=1

pλj
(|βj |). (2.8)

There are various choices for the penalty function pλj
(·). Fan and Li (2001)

provided insights into this choice and advocated a penalty which can (a) auto-
matically force the estimators of nonsignificant βj to zero, (b) keep the estimators
of large βj unbiased, and (c) make the resulting estimate of regression coefficients
continuous in some sense. Such commonly used penalty functions as the family
of Lq penalties (q ≥ 0) do not have these properties. Fan and Li (2001) proposed
the smoothly clipped absolute deviation (SCAD) penalty that does, and we use
it here. The derivative of the SCAD penalty is

p′λ(β) = λ{I(β ≤ λ) +
(aλ− β)+
(a− 1)λ

I(β > λ)}

for β > 0, with a = 3.7 as suggested by Fan and Li (2001). We refer the
penalized profile least squares with the SCAD penalty as the SCAD procedure
for simplicity.

Algorithm. The minimization of the SCAD penalized profile least squares is
not easy because the objective function is irregular at the origin and does not
have a second derivative at some points. To proceed, we take the local quadratic
approximation to the SCAD penalty function suggested by Fan and Li (2001).

Suppose we can get an estimate β
(k)
j in the kth step iteration that is close to the

true βj . If |β(k)
j | is close to 0, then we set β̂j = 0. Otherwise, the SCAD penalty

is locally approximated by a quadratic function as

[pλj
(|βj |)]′ = p′λj

(|βj |) · sgn(βj) ≈
p′λj

(|β(k)
j |)

|β(k)
j |βj

.
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We can employ Newton-Raphson algorithm to minimize (2.8). In practice,

we use an iterative ridge regression to find the minimizer of (2.8),

β(k+1) = {ET (I − Sh)
T (I − Sh)E+ nΣλ(β

(k))}−1ET (I − Sh)
T (I − Sh)y, (2.9)

where Σλ(β
(k)) = diag{p′λ1

(|β(k)
1 |)/|β(k)

1 |, . . . , p′λd
(|β(k)

d |)/|β(k)
d |} for nonvanished

β(k). The unpenalized profile least squares estimator is taken as the initial value

to update β(1).

Tuning parameter selection. The other important issue in implementation

is to select the tuning parameter λj . The minimization of (2.8) with respect

to (λ1, . . . , λd) is a challenging high dimensional optimization problem, but the

magnitude of λj is believed to be proportional to the standard error of the es-

timate of βj . Following Fan and Li (2004), we set λj = λ se(β̂j) where se(β̂j) is

the standard error of the unpenalized least squares estimates. To this end, the

original d-dimensional optimization reduces to a 1-dimensional problem. We can

minimize the BIC or GCV score to find the optimal λ. Here we use the BIC

selector.

Define the effective number of parameters of the penalized least squares

estimator (2.9) to be

e(λ) = tr[{D̃ +Σλ(β̂)}−1D̃],

where D̃ = ET (I − Sh)
T (I − Sh)E for nozero β̂.

Wang, Li, and Tsai (2007) advocated using the BIC tuning parameter se-

lector for linear regression, and showed that it yields an oracle estimate in an

asymptotic sense. Thus, we use the BIC tuning parameter selector to select λ.

The BIC score can be written as

BIC(λ) = log
(RSS

n

)
+ e(λ)

log n

n
,

where RSS = ∥(I −Sh)y− (I −Sh)Eβ̂∥2 is the residual sum of squares given λ.

The primary goal of the SCAD procedure is to reduce the model complexity of

the AR error with large order d, and is slightly different from the order selection

of the AR error process. It is of interest to extend the SCAD procedure for the

order selection of the AR error model while taking additional prior information

for the AR model into account. The SCAD procedure also involves a bandwidth

in the profile least squares method. It is typical to take the bandwidth for the

profile least squares without a penalty for the SCAD procedure (Fan and Li

(2004)).

3. Simulation and Application

In this section, we investigate the finite sample performance of the proposed

procedures by Monte Carlo simulation, and compare the performance of proposed
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procedures with the local linear estimator without considering the error structure.

We also illustrate the proposed procedure by an empirical analysis of a data

example. All numerical studies were conducted by Matlab code.

3.1. Simulation studies

A random sample of size n, n = 250 or 500, was generated from

yt = α0(ut) + α1(ut)xt1 + α2(ut)xt2 + εt,

where α0(u) = 3u2 − 2u + 1, α1(u) = cos(2πu), α2(u) = 2 sin(2πu) were the

functional coefficients with the same degree of smoothness, and {ut, xt1, xt2} were

covariate with distribution that will be spelled out in two ways. The error process

εt is an AR process of order d = 10, 20,

εt =
d∑

j=1

βjεt−j + ηt,

with ηt ∼ N(0, σ2) and σ = 0.5 or 1. We considered two situations: first an

AR model with β1 = 0.5 or 0.7, and all other βj ’s zero; the second is another

AR model with β1 = 0.5, β2 = 0.4 or β1 = 0.7, β2 = 0.2, and all others zero.

Although the true model for the error process is either AR(1) or AR(2), the

profile least squares procedure and the SCAD procedure used AR(d) with d = 10

or 20 in our simulations. The number of replications for each case was 500.

To understand how the sampling scheme of covariates affects the proposed

procedure, we considered two sampling schemes in our simulation.

I. {ut} is i.i.d. uniform on [0, 1]. {xt1, xt2} is a multivariate normal distribution

with mean vector

[
0

0

]
and covariance matrix

[
1 0.6

0.6 1

]
.

II. {vt} is i.i.d. standard normal for t = 1, . . . , n. We took ut = Φ{(avt +
bvt−1)/

√
a2 + b2} for t = 2, 3, . . . , n + 1, with Φ(v) the distribution function

of the standard normal. Thus, {ut} was a 1-dependent process. {xt1, xt2}
was generated as a multidimensional 1-dependent process as well. We took

{zt1, zt2} to be multivariate normal with mean vector

[
0

0

]
and covariance

matrix

[
1 0.6

0.6 1

]
. {xt1, xt2} = c{zt1, zt2} + d{zt−1,1, zt−1,2} with c2 + d2 = 1

for t = 2, 3, . . . , n + 1. In our simulation, we took a = 0.9, b = 0.1, c = 0.8,

and d = 0.6.

The scheme to generate {ut} has been used in Li and Li (2009). For each

sampling scheme, profile least squares and penalized profile least squares with

SCAD penalty were compared with the oracle estimator obtained by substituting
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Table 1. Simulation results under sampling scheme I. (1−RMSE) ∗ 100% is
summarized for comparison. ‘Profile’ stands for profile least squares method,
‘SCAD’ for penalized profile least squares method with SCAD penalty, and
‘Oracle’ for the oracle estimator that uses the true order of the AR error,
and h1 and h2 are the bandwidths in the initial estimation and profile least
squares estimation, respectively.

(β1, β2) σ h1 h2 Profile SCAD Oracle h1 h2 Profile SCAD Oracle
d = 10 n = 250 n = 500

(0.5,0) 0.5 0.104 0.104 10.922 11.976 14.175 0.104 0.086 23.802 24.333 26.054
(0.7,0) 0.5 0.124 0.124 23.720 24.111 26.501 0.104 0.104 30.132 30.149 30.717
(0.5,0.4) 0.5 0.104 0.104 12.507 13.664 16.500 0.104 0.086 23.976 23.562 22.870
(0.7,0.2) 0.5 0.124 0.124 19.328 20.660 21.993 0.086 0.086 37.554 37.655 37.970
(0.5,0) 1 0.215 0.149 18.618 20.744 23.518 0.124 0.149 20.594 21.239 22.115
(0.7,0) 1 0.310 0.215 50.444 52.022 52.524 0.149 0.149 37.105 37.352 38.354
(0.5,0.4) 1 0.215 0.179 21.684 24.762 26.534 0.149 0.149 20.030 21.263 20.897
(0.7,0.2) 1 0.215 0.179 32.005 32.895 36.098 0.179 0.124 39.004 39.975 41.305

d = 20 n = 250 n = 500
(0.5,0) 0.5 0.104 0.104 5.285 11.093 16.503 0.086 0.086 10.748 12.785 16.601
(0.7,0) 0.5 0.124 0.124 16.584 19.664 24.934 0.086 0.104 24.338 25.641 37.084
(0.5,0.4) 0.5 0.104 0.104 8.055 11.497 17.961 0.104 0.072 14.379 16.796 20.822
(0.7,0.2) 0.5 0.124 0.104 25.212 26.430 32.535 0.086 0.086 33.411 33.698 36.879
(0.5,0) 1 0.179 0.179 6.059 10.444 17.485 0.124 0.149 14.212 16.033 19.289
(0.7,0) 1 0.179 0.149 25.267 29.270 36.821 0.149 0.149 37.071 38.894 40.808
(0.5,0.4) 1 0.215 0.179 17.228 22.528 26.835 0.124 0.149 22.897 24.895 25.496
(0.7,0.2) 1 0.179 0.179 28.700 31.454 34.479 0.149 0.149 35.839 37.454 38.123

the true autoregressive order. The oracle estimator was included as a benchmark.

We compared their performances according to

MSE{α(·)} =
1

n

n∑
t=1

p∑
j=0

{α̂j(ut)− αj(ut)}2.

We summarize our simulation results in terms of relative MSE (RMSE), defined

by the ratio of the MSE of an estimation procedure to the MSE of α̃(·), the
estimate of α(·), pretending the error εt independent. We report the percentage

of accuracy gain, defined by (1− RMSE) ∗ 100%.

The multi-fold cross-validation method for bandwidth selection was time-

consuming in simulation studies as we had to repeat each case 500 times. To

reduce computational burden, we determined the bandwidths for each case as

follows. For a given bandwidth, take

MSE(h) =
1

n

n∑
t=1

p∑
j=0

{α̂j(ut)− αj(ut)}2,

where α̂j(·) is the local linear estimator or the profile least squares estimator

respectively. In our simulation, we set the bandwidth that minimized MSE(h) in

a pilot study. Tables 1 and 2 depict the median of percentages of accuracy gain,
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Table 2. Simulation results under sampling scheme II. (1 − RMSE) ∗ 100%
is summarized for comparison. Caption of this table is the same as that for
Table 1.

(β1, β2) σ h1 h2 Profile SCAD Oracle h1 h2 Profile SCAD Oracle
d = 10 n = 250 n = 500

(0.5,0) 0.5 0.100 0.100 8.409 11.442 16.385 0.075 0.075 16.096 16.412 17.925
(0.7,0) 0.5 0.100 0.100 28.352 30.144 34.264 0.100 0.100 28.735 28.315 29.105
(0.5,0.4) 0.5 0.100 0.100 14.861 16.234 19.186 0.100 0.075 23.019 24.162 24.501
(0.7,0.2) 0.5 0.100 0.100 33.225 34.287 36.634 0.100 0.100 28.995 29.493 36.981
(0.5,0) 1 0.175 0.175 10.061 13.215 17.335 0.150 0.125 15.697 17.197 18.660
(0.7,0) 1 0.175 0.175 30.141 32.737 35.722 0.150 0.125 35.101 37.152 37.399
(0.5,0.4) 1 0.175 0.150 17.940 18.952 21.047 0.150 0.150 19.560 19.657 20.903
(0.7,0.2) 1 0.200 0.175 35.434 37.394 39.523 0.150 0.125 36.598 37.240 38.974

d = 20 n = 250 n = 500
(0.5,0) 0.5 0.100 0.100 3.126 7.624 16.385 0.075 0.100 5.160 6.745 8.315
(0.7,0) 0.5 0.100 0.100 22.804 27.181 34.264 0.100 0.075 32.334 32.230 29.105
(0.5,0.4) 0.5 0.100 0.100 8.200 11.421 19.186 0.100 0.075 21.513 22.645 24.501
(0.7,0.2) 0.5 0.100 0.100 27.940 29.979 36.634 0.100 0.075 33.900 35.655 36.981
(0.5,0) 1 0.175 0.175 3.324 9.963 17.335 0.150 0.125 13.030 16.125 18.660
(0.7,0) 1 0.175 0.175 25.994 30.771 35.722 0.150 0.125 32.003 35.008 37.399
(0.5,0.4) 1 0.175 0.150 12.325 15.752 21.047 0.150 0.150 18.423 19.379 20.903
(0.7,0.2) 1 0.200 0.175 30.464 33.339 39.523 0.150 0.150 34.745 36.106 38.974

defined by (1−RMSE)∗100%, over the 500 simulations. In these tables, ‘Profile’

stands for profile least squares method, ‘SCAD’ for penalized profile least squares

method with SCAD penalty, and ‘Oracle’ for the oracle estimator that uses the

true order of the AR error process, and h1 and h2 are the bandwidths in the

initial estimation and profile least squares estimation, respectively.

Simulation results for sampling scheme I are summarized in Table 1. Under

this sampling scheme, the covariates {ut} and {xt1, xt2} were independent. Our

proposed methods improve the estimation accuracy, especially when the correla-

tion is strong. The SCAD procedure always outperforms the profile least squares

method. This superiority is more significant when the sample size is small. On

the other hand, when n = 250 and σ = 1, the profile least squares approach at

d = 10 performs better than that at d = 20. This implies that variable selection

for the AR error may be a necessary step when d is large.

When the sample size is large, such as n = 500, both the profile least squares

method and the SCAD method have larger gain over the working independence

procedure. In addition, their performances are close to each other and also close

to the oracle estimator. This is expected because the estimate should be more

accurate as the sample size increases. The difference between d = 10 and d = 20

is not remarkable. This implies that the proposed procedure is not very sensitive

to the assumption of the AR order provided a variable selection for the AR error

is conducted.

For sampling II, both {ut} and {xt1, xt2} are 1-dependent processes. How-

ever, the overall pattern of Table 2 is very similar to that in Table 1. The SCAD
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Figure 1. Correlogram of residual ε̂t. Plots are the autocorrelation and
partial autocorrelation for ε̂t. In each plot, the upper and lower dashed lines
represent 95% confidence intervals.

method has a better performance than the profile least squares method for all

cases, and is close to the oracle estimator, especially when the sample size is

large. We can conclude that our proposed estimation methods work well with

either independent or 1-dependent errors.

3.2. An application

We illustrate the proposed methodology with an empirical analysis of a data

set collected from the website of Pennsylvania-New Jersey-Maryland Interconnec-

tions (PJM), the largest regional transmission organization (RTO) in the U.S.

electricity market. The data set includes 340 daily observations of electricity

price, electricity load, and prices of oil, natural gas and coal in the Pennsylvania

electric (PENELEC) district. It is of interest to study the relationship between

the electricity price and electricity load, and prices of oil, natural gas, and coal.

In this illustration, we take electricity price as the response variable yt, the nor-

malized electricity load as ut, and prices of oil, natural gas, and coal as covariates

x1t, x2t, and x3t, respectively. We fit the data using the model

yt = α0(ut) + α1(ut)x1t + α2(ut)x2t + α3(ut)x3t + εt.
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Figure 2. Correlogram of residual η̂t. Plots are the autocorrelation and
partial autocorrelation for η̂t. In each plot, the upper and lower dashed lines
represent 95% confidence intervals.

Initial estimate α̃j(·). Local linear regression was used to obtain the initial

estimate of αj(·). The correlation structure of errors was ignored in the initial

estimate. The 10-fold cross-validation method was used to select a bandwidth.

The selected bandwidth for the initial estimate was 0.2089, which minimized

CV0(h), defined in Section 2.2.

Residual analysis. Based on the initial estimate, we further calculated its

residuals. The autocorrelation plot of the residuals is depicted in Figure 1, which

shows that there exists a periodic structure in {ε̂t}. The partial-autocorrelation

plot is displayed in Figure 1, which suggests that an AR(d) with d ≤ 10 may fit

the errors well.

We now applied the proposed estimation procedure for the data. The band-

width was selected by another 10-fold cross-validation, and the selected band-

width h = 0.1899 at which the CV1(h) defined in Section 2.2 reached its mini-

mum.

With the selected bandwidth, we applied penalized profile least squares with

SCAD penalty to select the AR order and estimated αj(·) and β. The BIC tuning

parameter selector for the SCAD had λ = 0.0290. AR coefficients at lag 1 and 9

were significant, the AR(9) model was selected. After taking the autocorrelation
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(A) Estimate of α0(·) (B) Estimate of α1(·)

(C) Estimate of α2(·) (D) Estimate of α3(·)

Figure 3. Plot of α̂j(·)’s in model (3.1). Dashed curves are the initial esti-
mates; Solid curves are the penalized profile least squares estimate.

into account, the autocorrelation and partial-autocorrelation plots, displayed in

Figure 2, confirm that the residuals η̂t look like a white noise process.

Final model. We came to the final model

ŷt = α̂0(ut)+ α̂1(ut)xt1+ α̂2(ut)xt2+ α̂3(ut)xt3+0.0851ε̂t−1+0.0139ε̂t−9, (3.1)

where α̂j , j = 0, 1, 2, 3, as depicted in Figure 3. Compared with the initial esti-

mate, the estimate α̂j(·) is smoother when the correlation of errors is accounted.

4. Discussions

In this paper, we proposed a new estimation procedure for the varying coef-

ficient model with AR error by using profile least squares techniques. We further

proposed to select the order of the AR process using the penalized profile least

squares with the SCAD penalty. We studied the asymptotic properties of the

proposed estimators, and established their asymptotic normality. Monte Carlo

simulation studies showed that our proposed method can effectively improve es-

timation accuracy under different sampling schemes. Finally, we applied the

penalized profile least squares method in a data example.

As a topic for future research, one can consider a more general AR structured

error in the varying-coefficient setting. That is to assume the autoregressive

coefficients are smoothing functions depending on another covariate rather than
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constant coefficients. The estimation and inference of such an extended model

needs more systematic studies.
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