Math 571 Analytic Number Theory I, Fall 2018, Problems 4
Due Tuesday 25th September 2018

These questions are interconnected.

1. Let \(\pi_2(X) \) denote the number of prime numbers \(p \leq X \) for which \(p + 2 \) is also prime and let \(D = \sqrt{X} \) and \(P = \prod_{p \leq D} p \). Define \(b_n \) to be 0 unless \((n(n + 2), P) = 1 \) in which case take \(b_n = 1 \), and define \(Z = \sum_{n \leq X} b_n \). Prove that \(\pi_2(X) \leq Z + D \).

2. Prove that if \(\omega \) is the multiplicative function with \(\omega(2) = 1 \), \(\omega(p) = 2 \) when \(2 < p \leq D \) and \(\omega(p^k) = 0 \) otherwise, then

\[
\pi_2(N) \ll \frac{X}{S(D)} + R
\]

where \(S(D) = \sum_{q \leq D} \mu(q)^2 \prod_{p|q} \frac{\omega(p)}{p - \omega(p)} \) and \(R = \sum_{q \leq D} \sum_{r \leq D} \mu(q)^2 \mu(r)^2 \omega([q, r]) \).

3. Prove that \(S(D) = T(D) + T(D/2) \) where \(T(Q) = \sum_{q \leq Q} \mu(q)^2 \prod_{p|q} \frac{2}{p - 2} \).

4. Prove that if \(p > 2 \), then \(\frac{2}{p - 2} = \sum_{k=1}^{\infty} \frac{2^k}{p^k} \) and that if \(g \) is the multiplicative function with \(g(p^k) = 2^k \), then \(T(Q) \geq \sum_{\substack{q \leq Q \ \text{odd}}} \frac{g(q)}{q} \).

5. Prove that \(g(q) \geq d(q) \) and that \(T(Q) \geq \sum_{\substack{q \leq Q \ \text{odd}}} \frac{d(q)}{q} \).

6. Prove that if \(Q \geq 2 \), then \(\sum_{\substack{q \leq Q \ \text{odd}}} \frac{d(q)}{q} \gg (\log Q)^2 \) and hence that if \(X \geq 2 \), then

\[
\pi_2(X) \ll \frac{X}{(\log X)^2}.
\]

Note: By working a bit harder it can be shown that \(S(\sqrt{X}) \sim \frac{\log^2 X}{C} \) where \(C \) is the twin prime constant, i.e. Selberg’s sieve applied in this way gives an upper bound 8 times larger than the conjectured asymptotic formula.

7. (Brun 1919) Let \(\mathcal{P}_2 \) denote the set of primes \(p \) for which \(p + 2 \) is also prime. Prove that \(\sum_{p \in \mathcal{P}_2} \frac{1}{p} \) converges.