1. (a) Let \(d_n = \text{lcm}[1, 2, \ldots, n] \). Show that \(d_n = e^{\psi(n)} \).

(b) Let \(P \in \mathbb{Z}[x] \), deg \(P \leq n \). Put \(I = I(P) = \int_0^1 P(x) \, dx \). Show that \(Id_{n+1} \in \mathbb{Z} \), and hence that \(d_{n+1} \geq 1/|I| \) if \(I \neq 0 \).

(c) Show that there is a polynomial \(P \) as above so that \(Id_{n+1} = 1 \).

(d) Verify that \(\max_{0 \leq x \leq 1} |x^2(1-x)^2(2x-1)| = 5^{-5/2} \).

(e) For \(P(x) = (x^2(1 - x)^2(2x - 1))^{2n} \), verify that \(0 < I < 5^{-5n} \).

(f) Show that \(\psi(10n + 1) \geq (\frac{1}{2} \log 5) \cdot 10n \).

2. (i) Prove that
\[
\int_1^x \frac{\psi(u)}{u^2} \, du = \log x + O(1).
\]

(ii) Prove that \(\limsup_{x \to \infty} \frac{\psi(x)}{x} \geq 1 \) and \(\liminf_{x \to \infty} \frac{\psi(x)}{x} \leq 1 \).

(iii) Prove that if there is a constant \(c \) such that \(\psi(x) \sim cx \) as \(x \to \infty \), then \(c = 1 \).

(iv) Prove that if there is a constant \(c \) such that \(\pi(x) \sim c \frac{x}{\log x} \) as \(x \to \infty \), then \(c = 1 \).

3. Let \(\omega(n) \) denote the number of different prime factors of \(n \). Suppose that \(n \geq 3 \). Prove that
\[
\omega(n) \leq \frac{\log n}{\log \log n} \left(1 + O\left(\frac{1}{\log \log n} \right) \right).
\]