1. (i) Prove that if \(p \equiv 1 \pmod{3} \), then \(\left(\frac{-3}{p} \right)_L = 1 \). By quad. recip. \(\left(\frac{-3}{p} \right)_L = (-1)^{\frac{p-1}{2}} \left(\frac{2}{p} \right)_L = 1 \).

 (ii) Let \(\mathcal{M} = \{ n \in \mathbb{N} : p|n \implies p \equiv 1 \pmod{3} \} \). Prove that if \(n \in \mathcal{M} \), then \(x^2 + 3 \equiv 0 \pmod{4n} \) is soluble in \(x \). By (i), \(x^2 + 3 \equiv 0 \pmod{p} \) is soluble when \(p \equiv 1 \pmod{3} \), and \(1^2 + 3 \equiv 0 \pmod{4} \). Moreover a residue modulo \(p^k \) is a quadratic residue iff it is one modulo \(p \). Conclusion follows by Chinese remainder theorem.

 (iii) Let \(n \in \mathcal{M} \). Prove that there are \(a, B \in \mathbb{Z} \) with \(a > 0 \) such that \(B^2 + 12 = 4an \). Let \(b = B - 2a, c = (b^2 + 12)/4a \). Prove that \(b^2 - 4ac = -12 \) and \(a + b + c = n \). By (ii), \(x^2 + 3 \equiv 0 \pmod{m} \) is soluble. Hence there is a solution with \(x > n \). Let \(a = (x^2 + 3)/n \). Then \(B = 2x \) satisfies \(B^2 + 12 = 4an \). Moreover \(b^2 - 4ac = -12 \) and \(a + b + c = a + b + \frac{b^2 + 12}{4a} = a + B - 2a + B^2 - 4B + a^2 + 7 = B^2 + 7 \).

 (iv) Let \(h(d) \) be defined as in homework 11. Prove that \(h(-12) = 2 \). Consider \(b^2 - 4ac = -12 \) with \(-a < b \leq a < c \) or \(0 \leq b \leq a = c \). In either case \(b \) is even and \(a^2 - 4a^2 \geq -12 \), so \(a^2 \leq 4 \), \(a = 1 \) or \(2 \). When \(a = 1 \), since \(b \) is even, \(b = 0 \) and so \(c = 3 \) is the only solutions. When \(a = 2 \), \(8 \nmid 12 \) so \(b \neq 0 \). Hence \(b = c = 2 \) is the only solution.

 (v) Prove that if \(n \in \mathcal{M} \), then \(x^2 + 3y^2 = n \) is soluble in integers \(x \) and \(y \). By (iii), when \(n \in \mathcal{M} \), \(n \) is represented by \(ax^2 + bxy + cy^2 \) where \(b^2 - 4ac = -12 \) and so is represented by at least one of the reduced forms. But \(n \) is odd, so it is represented by \(x^2 + 3y^2 \).

2. (i) Prove that if \(p \equiv 1, 4 \pmod{7} \), then \(\left(\frac{-2}{p} \right)_L = 1 \). By the law of quad. recip. \(\left(\frac{-2}{p} \right)_L = \left(\frac{7}{p} \right)_L = \left(\frac{7}{p} \right)_L = 1 \).

 (ii) Let \(\mathcal{N} = \{ n \in \mathbb{N} : p|n \implies p \equiv 1, 4 \pmod{7} \} \). Prove that if \(n \in \mathcal{N} \), then \(x^2 + 7 \equiv 0 \pmod{4n} \) is soluble in \(x \). \(1^2 + 7 \equiv 0 \pmod{4} \). Moreover a residue modulo \(p^k \) is a quadratic residue iff it is one modulo \(p \). Hence by (i) and the Chinese remainder theorem \(x^2 + 7 \equiv 0 \pmod{4n} \)

 (iii) Let \(n \in \mathcal{N} \). Prove that there are \(a, B \in \mathbb{Z} \) with \(a > 0 \) such that \(B^2 + 7 = 4an \). Let \(b = B - 2a, c = (b^2 + 7)/4a \). Prove that \(b^2 - 4ac = -7 \) and \(a + b + c = n \). By (ii) there are \(B > n \) such that \(B^2 + 7 \equiv 0 \pmod{4n} \). Let \(a = (B^2 + 7)/4n \). Then \(b^2 - 4ac = -7 \) and \(a + b + c = a + b + \frac{b^2 + 7}{4a} = a + B - 2a + \frac{B^2 - 4B + a^2 + 7}{4a} = B^2 + 7

 (iv) Recall from homework 11 that \(h(-7) = 1 \). Prove that if \(n \in \mathcal{N} \), then \(x^2 + xy + 2y^2 = n \) is soluble in integers \(x \) and \(y \). By (iii), \(n \) is represented by \(ax^2 + bxy + cy^2 \) with \(b^2 - 4ac = -7 \). Hence it is represented by the lone reduced form \(x^2 + y^2 + 2y^2 \) with discriminant \(-7 \).

 (v) Let \(n \in \mathcal{N} \). Prove that \(x^2 + 7y^2 = 4n \) is soluble in integers \(x, y \). Moreover prove that \(x \) and \(y \) are both even, and thus \(x^2 + 7y^2 = n \) is also soluble in integers \(x \). By (iv), \(x^2 + xy + 2y^2 = n \). Hence \(4n = (2x + y)^2 + 7y^2 \), so \(4n \) has a representation \(4n = x^2 + 7y^2 \). Either \(x \) and \(y \) are both odd or both even. But if they are both odd, then \(x^2 + 7y^2 \equiv 1 + 7 \equiv 0 \pmod{8} \) and \(8 \nmid n \).