Easier problems

1. Evaluate \(\left(\frac{313}{367} \right)_J, \left(\frac{367}{401} \right)_J, \left(\frac{401}{313} \right)_J \).

2. Show that the congruence \(x^6 - 11x^4 + 36x^2 - 36 \equiv 0 \pmod{p} \) is soluble for every prime \(p \). Hint: Factorise \(z^3 - 11z^2 + 36z - 36 \).

3. Suppose that \(a \in \mathbb{Z}\setminus\{0\} \), and there is a \(b \in \mathbb{Z} \) such that \(a = -b^2 \). Show that there is an odd positive integer \(m \) such that \(\left(\frac{a}{m} \right)_J = -1 \). Deduce that there is an odd prime \(p \) such that \(\left(\frac{a}{p} \right)_J = -1 \). Let \(m \) be a solution to \(m \equiv 5 \pmod{8}, m \equiv 1 \pmod{b} \).

4. Suppose that \(a \in \mathbb{Z}\setminus\{0\} \) and \(a = \pm 2^u b \) where \(u \in \mathbb{N} \) and \(b \in \mathbb{N} \) with both \(u \) and \(b \) odd. Show that there is an odd positive integer \(m \) such that \(\left(\frac{a}{m} \right)_J = -1 \). Deduce that there is an odd prime \(p \) such that \(\left(\frac{a}{p} \right)_J = -1 \). Hint: Let \(m \) be a solution to \(m \equiv 5 \pmod{8}, m \equiv 1 \pmod{b} \).

5. Suppose that \(a \in \mathbb{Z}\setminus\{0\} \) and \(a = \pm 2^u b q^t \) where \(u \) is a non-negative integer, \(b \in \mathbb{N} \) and \(t \in \mathbb{N} \) with both \(b \) and \(t \) odd, and \(q \) is an odd prime. Show that there is an odd positive integer \(m \) such that \(\left(\frac{a}{m} \right)_J = -1 \). Deduce that there is an odd prime \(p \) such that \(\left(\frac{a}{p} \right)_J = -1 \). Hint: Let \(m \) be a solution to \(m \equiv 1 \pmod{4b}, m \equiv n \pmod{q} \) where \(n \) is a quadratic non-residue modulo \(q \).

Harder problem

6. Show that an integer \(a \) is a perfect square if and only if it is a quadratic residue for every prime \(p \) not dividing \(a \). Questions 3, 4, 5, are relevant. This is a simple example of the “local-to-global” principle.