MATH 567 NUMBER THEORY I, PROBLEMS 7

To be submitted by Tuesday, October 14th

Throughout this problem sheet, \(p \) denotes an odd prime number.

Easier problems

1. Let \(g \) be a primitive root modulo \(p \). Prove that the quadratic residues are precisely the residue classes \(g^{2k} \) with \(0 \leq k < \frac{1}{2}(p-1) \). Show that, if \(p > 3 \), then the sum of the quadratic residues modulo \(p \) is the 0 residue.

2. Show that if \(p \equiv \pm 1 \pmod{8} \), then 2 is a quadratic residue and otherwise 2 is a quadratic non-residue. By considering the polynomial \(x^2 - 2 \), or otherwise, show that there are infinitely many primes in the residue class 7 \(\pmod{8} \).

3. Of which primes is \(-2\) a quadratic residue?

4. Decide whether \(x^2 \equiv 150 \pmod{1009} \) is soluble or not.

5. Find all primes \(p \) such that \(x^2 \equiv 13 \pmod{p} \) has a solution.

Harder problems

6. Prove that every quadratic non-residue modulo \(p \) is a primitive root modulo \(p \) if and only if \(p = 2^{2n} + 1 \) for some non-negative integer \(n \).

7. Show that \((x^2 - 2)/(2y^2 + 3)\) is never an integer when \(x \) and \(y \) are integers.