To be submitted by Tuesday, October 7th

Easier problems

1. Show that \(\left(\sum_{m|n} d(m) \right)^2 = \sum_{m|n} d(m)^3. \)

2. Show that if \(\sigma(n) \) is odd, then \(n \) is a square or twice a square.

3. Show that \(\sum_{l|(m,n)} \mu(l) \) is 1 when \((m, n) = 1 \) and is 0 otherwise. Hence prove that \(\sum_{m=1:(m,n)=1} m = \frac{1}{2} n \phi(n) \) when \(n > 1. \)

4. Let \(\lambda(n) = (-1)^\Omega(n) \) (Liouville’s function). Show that \(\lambda(n) = \sum_{m|n} \mu(n/m^2). \)

5. Define \(f(n) \) to be \((-1)^{n-1}/2 \) when \(n \) is odd, 0 when \(n \) is even. Show that \(f \) is totally multiplicative and is periodic with period 4.

Harder problem

6. Let \(k \in \mathbb{N}, z \in \mathbb{C}, e(\alpha) = \exp(2\pi i \alpha). \) Define \(\Phi_k(z) = \prod_{l|k} (z^l - 1)^{\mu(k/l)}. \) the \(k \)-th cyclotomic polynomial, i.e. the monic polynomial whose roots are the primitive \(k \)-th roots of unity.

 (i) Show that \(\prod_{l|k} \Phi_l(z) = z^k - 1 \) and \(\Phi_1(z) = z - 1. \)

 (ii) Deduce that \(\Phi_k(z) = \prod_{l|k} (z^l - 1)^{\mu(k/l)}. \)

 (iii) Show that if \(k > 1, \) then \(\Phi_k(z) = \prod_{l|k} (1 - z^l)^{\mu(k/l)} \) and \(\Phi_k(0) = 1. \)

 (iv) By considering the expansion \((1 - z^l)^{-1} = 1 + z^l + z^{2l} + \cdots \) when \(|z| < 1 \) show that \(\Phi_k(z) \) has integer coefficients.

 (v) Let \(K \) be the largest squarefree divisor of \(k. \) Show that \(\Phi_k(z) = \Phi_K(z^k/K). \)

 (vi) Prove that \(\Phi_p(z) = 1 + z + \cdots + z^{p-1}. \)

 (vii) Show that if \(k \) is odd and \(k > 1, \) then \(\Phi_{2k}(z) = \Phi_k(-z^{2k-1}). \)

 (viii) Suppose that \(p \) and \(q \) are different primes. Show that, when \(|z| < 1, \Phi_{pq}(z) = (1-z)\sum_{n=0}^{\infty} b_n z^n \) where \(b_n \) is the number of choices of \(u, v \in \mathbb{Z} \) with \(0 \leq u \leq q-1, \)

 (ix) Show that \(b_n = 0 \) or 1 and that the coefficients of \(\Phi_{pq}(z) \) are \(\pm 1 \) or 0.

 (x) Show that if \(k < 105, \) then the coefficients of \(\Phi_k(z) \) are \(\pm 1 \) or 0.

 (xi) Show that the coefficient of \(z^7 \) in \(\Phi_{105} \) is \(-2. \) It is known (Erdös 1948, Vaughan 1975) that sometimes the coefficients of \(\Phi_k(z) \) are as large as \(\exp \left(\frac{2 \log k}{ \log \log k} \right) \) and that “almost always” the largest coefficient is arbitrarily large (Meier 1995).

 So much for intuition ...!

 (xi) Prove that if \(k > 1, \) then \(\Phi_k(1) = e^{\Lambda(k)}. \)