Easier problems
1. Show that if \(p \) is a prime number and \(1 \leq j \leq p - 1 \), then \(p \) divides the binomial coefficient \(\binom{p}{j} \).
2. Show that \(n|(n - 1)! \) for all composite \(n > 4 \).
3. Exhibit a complete residue system modulo 17 composed entirely of multiples of 3.
4. Solve \(11x \equiv 21 \pmod{105} \).
5. Prove that \(3n^2 - 1 \) can never be a perfect square.

Harder problems
6. Prove that no polynomial \(f(x) \) of degree at least 1 with integral coefficients can be prime for every positive integer \(x \).
7. If \(2^n + 1 \) is an odd prime for some integer \(n \), prove that \(n \) is a power of 2.
8. Show that if \(p \) is an odd prime, then the number of solutions (i.e., the number of ordered pairs of residues modulo \(p \)) of the congruence \(x^2 - y^2 \equiv a \pmod{p} \) is \(p - 1 \) when \(a \not\equiv 0 \pmod{p} \) and \(2p - 1 \) when \(a \equiv 0 \pmod{p} \).